LBNL-40319
UCB//CSD-97-945

Measurements and Analysis
of End-to-End Internet Dynamics

Vern Paxson
Ph.D. Thesis

Computer Science Division
University of California, Berkeley

and

Information and Computing Sciences Division
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

April, 1997

This work was supported by the Director, Office of Energy Research, Scientific Computing Staff, of the United
States Department of Energy under Contract No. DE-AC03-76SF00098.

Measurements and Analysis of End-to-End Internet Dynamics

by

Vern Edward Paxson

B.S. (Stanford University) 1985
M.S. (University of California, Berkeley) 1991

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Prof. Domenico Ferrari, Chair
Prof. Michael Luby
Prof. John Rice

1997

Measurements and Analysis of End-to-End Internet Dynamics

Copyright 1997

by
Vern Edward Paxson

The U.S. Department of Energy has the right to use this document
for any purpose whatsoever including the right to reproduce

all or any part thereof

Abstract

Measurements and Analysis of End-to-End Internet Dynamics

by

Vern Edward Paxson
Doctor of Philosophy in Computer Science

University of California at Berkeley

Prof. Domenico Ferrari, Chair

Accurately characterizing end-to-end Internet dynamics—the performance that a user actually ob-
tains from the lengthy series of network links that comprise a path through the Internet—is excep-
tionally difficult, due to the network's immense heterogeneity. It can be impossible to gauge the
generality of findings based on measurements of a handful of paths, yet logistically it has proven
very difficult to obtain end-to-end measurements on larger scales.

At the heart of our work is a “measurement framework” we devised in which a humber
of sites around the Internet host a specialized measurement service. By coordinating “probes” be-
tween pairs of these sites we can measure end-to-end behavioraaig paths for a framework
consisting ofV sites. Consequently, we obtain a superlinear scaling that allows us to measure arich
cross-section of Internet behavior without requiring huge numbers of observation points. 37 sites
participated in our study, allowing us to measure more than 1,000 distinct Internet paths.

The first part of our work looks at the behavior of end-to-end routing: the series of routers
over which a connection's packets travel. Based on 40,000 measurements made using our frame-
work, we analyze: routing “pathologies” such as loops, outages, and flutter; the stability of routes
over time; and the symmetry of routing along the two directions of an end-to-end path. We find that
pathologies increased significantly over the course of 1995, indicating that, by one metric, routing
degradedover the year; that Internet paths are heavily dominated by a single route, but that routing
lifetimes range from seconds to many days, with most lasting for days; and that, at the end of 1995,
about half of all Internet paths included a major routing asymmetry.

The second part of our work studies end-to-end Internet packet dynamics. We analyze
20,000 TCP transfers of 100 Kbyte each to investigate the performance of both the TCP endpoints
and the Internet paths. The measurements used for this part of our study are much richer than
those for the first part, but require a great degree of attention to issuesitmfation, which we
address by applyingelf-consistency checks the measurements whenever possible. We find that
packet filters are capable of a wide range of measurement errors, some of which, if undetected, can
significantly taint subsequent analysis. We further find that network clocks exhibit adjustments and
skews relative to other clocks frequently enough that a failure to detect and remove these effects
will likewise pollute subsequent packet timing analysis.

Using TCP transfers for our network path “measurement probes” gains a number of ad-
vantages, the chief of which is the ability to probe fine time scales without unduly loading the
network. However, using TCP also requires us to accurately distinguish between connection dy-

namics due to the behavior of the TCP endpoints, and dynamics due to the behavior of the network
path between them. To address this problem, we develop an analysis pragramly , that has

coded into it knowledge of how the different TCP implementations in our study function. In the
process of developingpanaly , we thus in tandem develop detailed descriptions of the perfor-
mance and congestion-avoidance behavior of the different implementations. We find that some of
the implementations suffer from gross problems, the most serious of which would devastate overall
Internet performance, were the implementations ubiquitously deployed.

With the measurements calibrated and the TCP behavior understood, we then can turn to
analyzing the dynamics of Internet paths. We first need to determine a pattieneck bandwidth
meaning the fastest transfer rate the path can sustain. Knowing the bottleneck bandwidth then lets
us determine which packets a sender transmits must necespagiygbehind their predecessors,
due to the load the sender imposes on the path. This in turn allows us to determine which of our
probes are perforceorrelated We identify several problems with the existing bottleneck estimation
technique, “packet pair,” and devise a robust estimation algorithm, PBM (“packet bunch modes”),
that addresses these difficulties. We calibrate PBM by gauging the degree to which the bottleneck
rates it estimates accord with known link speeds, and find good agreement. We then characterize
the scope of Internet path bottleneck rates, finding wide variation, not infrequent asymmetries, but
considerable stability over time.

We next turn to an analysis of packet loss along Internet paths. To do so, we distin-
guish between losses of “loaded” data packets, meaning those which necessarily queued behind a
predecessor at the bottleneck; “unloaded” data packets, which did not do so; and the small “acknow-
ledgement” packets returned to a TCP sender by the TCP receiver. We find that network paths are
well characterized by two general states, “quiescent,” in which no loss occurs, and “busy,” in which
one or more packets of a connection are lost. The prevalence of quiescent connections remained
about 50% in both our datasets, but for busy connections, packet loss rates increased significantly
over the course of 1995. We further find that loss rates vary dramatically between different regions
of the network, with European and especially trans-Atlantic connections faring much worse than
those confined to the United States.

We also characterize: loss symmetry, finding that loss rates along the two directions of
an Internet path are nearly uncorrelated; loss “outages,” finding that outage durations exhibit clear
Pareto distributions, indicating they span a large range of time scales; the degree to which a connec-
tion's loss patterns predict those of future connections, finding that observing quiescence is a good
predictor of observing quiescence in the future, and likewise for observing a busy network path, but
that the proportion of lost packets does not well predict the future proportion; and the efficacy of
TCP implementations in dealing with loss efficiently, by retransmitting only when necessary. We
find that most TCPs retransmit fairly efficiently, and that deploying the proposed “selective ack-
nowledgement” option would eliminate almost all of their remaining unnecessary retransmissions.
However, some TCPs incorrectly determine how long to wait before retransmitting, and these can
suffer large numbers of unnecessary retransmissions.

We finish our study with a look at variations in packet transit delays. We find great “peak-
to-peak” variation, meaning that maximum delays far exceed minimum delays. Delay variations
along the two directions of an Internet path are only lightly correlated, but correlate well with loss
rates observed in the same direction along the path. We identify three types of “timing compres-
sion,” in which packets arrive at their receiver spaced more closely together than when originally

transmitted. The prevalence of none of the three is such as to significantly perturb network perfor-
mance, but all three occur frequently enough to require judicious filtering by network measurement
procedures to avoid deriving false timing conclusions.

We then look at the question of the time scales on which most of a path's queueing vari-
ations occur. We find that, overall, most variation occurs on time scales of 100—1000 msec, which
means that transport connections might effectively adapt their transmission to the variations, but
only if they act quickly. However, as with many Internet path properties, we find wide ranges of
behavior, with not insignificant queueing variations occurring on time scales as small as 10 msec
and as large as one minute.

The last aspect of packet delay variations we investigate is the degree to which it reflects
an Internet path'available bandwidthWe show that the ratio between the delay variations packets
incur due to their connection's own loading of the network, versus the total delay variations incurred,
correlates well with the connection's overall throughput. We further find that Internet paths exhibit
wide variation in available bandwidth, ranging from very little available to virtually all. The degree
of available bandwidth diminished markedly over the course of 1995, but, as for packet loss rates,
we also find sharp geographic differences, so the overall trend cannot be summarized in completely
simple terms. Finally, we investigate the degree to which the available bandwidth observed by
a connection accurately predicts that observed by future connections, finding that the predictive
power is fairly good for time scales of minutes to hours, but diminishes significantly for longer time
periods.

We argue that our work supports several general themes:

e The N? scaling property of our measurement framework serves to measure a sufficiently di-
verse set of Internet paths that we might plausibly interpret the resulting analysis as accurately
reflecting general Internet behavior.

e To cope with such large-scaled measurements requires attention to calibration using self-
consistency checks; robust statistics to avoid skewing by outliers; and automated “micro-
analysis,” such as that performed tapanaly , that we might see the forest as well as the
trees.

e With due diligence to remove packet filter errors and TCP effects, TCP-based measurement
provides a viable means for assessing end-to-end packet dynamics.

¢ We find wide ranges of behavior, so we must exercise great caution in regarding any aspect
of packet dynamics as “typical.”

e Some common assumptions such as in-order packet delivery, FIFO bottleneck queueing, in-
dependent loss events, single congestion time scales, and path symmetries are all sometimes
violated.

e The combination of path asymmetries and reverse-path noise render sender-only measure-
ment techniques markedly inferior to those that include receiver-cooperation.

Finally, we believe an important aspect of this work is how it might contribute towards
developing a “measurement infrastructure” for the Internet; one that proves ubiquitous, informative,
and sound.

To Lindsay —

For making it both possible
and worthwhile

— with all my love

Contents

List of Figures
List of Tables

1 Introduction

| End-to-End Routing Behavior in the Internet
2 Overview of the Routing Study

3 Related Research
3.1 Studies of routing protocols.o oo
3.2 Studies of routing behavior. oo
3.3 End-to-end routingdynamics.
3.4 Routinginthelnternet e

4 Methodology

4.1 Experimental apparatuso
4.2 Thetraceroute Utility

421 TheTimeTolivefield

4.2.2 Howtraceroute works. oL

4.2.3 Traceroute limitations,
4.3 Exponential sampling. L
4.4 Which observations are representative?.
4.5 Testing for significant differences
4.6 Anoteonindependence e

5 The Raw Routing Data
5.1 Participatingsites.
5.2 Measurement breakdown.o Lo
5.3 Geography. e

Xi

XVi

© 00 00

6 Routing Pathologies

6.1
6.2
6.3

6.4
6.5
6.6

6.7

6.8
6.9

UNresponsive routers. o .o e e
Rate-limitingrouters. L
Routingloops e
6.3.1 Persistentroutingloops Lo
6.3.2 Temporary routingloops.
6.3.3 Locationofroutingloops.
Erroneousrouting. e e e
Connectivity altered mid-stream
Fluttering. e e
6.6.1 Asimpleexample. L
6.6.2 Amoredramaticexample
6.6.3 Flutteringatanothersite.
6.6.4 SKipping.
6.6.5 Significance of fluttering L.
Unreachability.
6.7.1 Hostdown.
6.7.2 Stubnetworkoutage.o
6.7.3 Infrastructure failure oL
6.7.4 Consistently unreachable hosts.
6.7.5 Unreachable duetotoomanyhops.
Temporary outagesl
Circuitous routing o e e

6.10 Summary e e

7 End-to-End Routing Stability

7.1
7.2
7.3
7.4
7.5
7.6

7.7

Importance of routing stability oL
Whyrouteschange. e
Two definitions of stability.
Reducingthedata.
Routing Prevalence.
Routing Persistence.
7.6.1 Rapidroute alternation.
7.6.2 Medium-scale route alternation
7.6.3 Large-scale route alternation.,
7.6.4 Duration of long-livedroutes. L.
7.6.5 Summary of routing persistence.
Detectingroutechanges

8 Routing Symmetry

8.1
8.2
8.3
8.4
8.5

Importance of routing symmetry
Sources of routing asymmetries.o
Definition of routing symmetry
Analysis of routing symmetry. oL
Increasing prevalence of asymmetry.

34
34
35
35
36
41
44
44
45
49
49
50
55
56
57
58
58
58
60
61
61
62
64
69

71
71
73
74
75
77
82
82
86
86
87
88
89

92
92

vi

8.6 Sizeofasymmetries e 98
Il End-to-End Internet Packet Dynamics 101
9 Overview of the Packet Dynamics Study 102
9.1 Methodology. e 103
9.1.1 Measurement considerations 103
9.1.2 UsingTCP. 104
9.1.3 Tracing at both senderandreceiver. 106
9.14 Analysisstrategies 107
9.2 Anoverviewof TCP. e 109
9.2.1 Datadeliverygoals. 109
9.2.2 Achieving high performance. 110
9.2.3 Congestioncontral L 112
9.24 Slowstart 113
9.25 Self-clocking 114
9.2.6 Respondingtocongestion. 117
9.2.7 Fastretransmitandrecovery. 119
9.3 TheRawMeasurements 122
10 Calibrating Packet Filters 125
10.1 The notion of “wiretime” 125
10.2 How packet filterswork. Lo 126
10.3 Packetfiltererrors. 127
10.3.1 Drops o o e 128
10.3.2 Packetdropreports. 128
10.3.3 Inferring filterdrops. 129
10.3.4 Tracetruncation 131
10.3.5 Additions 131
10.3.6 Resequencing o i e e 133
10.3.7 TiMiNG. o e 135
10.3.8 Misfiltering 137
10.4 Packet filter “vantage point”. Lo 138
10.5 Pairing packet departuresand arrivals L. 139
11 Analyzing TCP Behavior 142
11.1 Analysisstrategy 142
11.2 Checking packet and measurementintegrity 145
11.3 Senderanalysis. L 146
11.3.1 Dataliberations. 147
11.3.2 Inferring senderwindows 149
11.3.3 Inferring sourcequenches. 149
11.3.4 Inferring initialssthresh oo oL 151

11.4 Receiveranalysis. e e e 151

Vii

11.4.1 Ackobligations. 151
11.4.2 Inferring checksumerrors 153

11.5 Sender behavior of different TCP implementations. 155
11.5.1 Previous studies of TCP implementations 156
11.5.2 Generic Tahoe behavior 158
11.5.3 GenericRenobehavior. L. 158
11.54 BSDITCP. 159
11.5.5 Digital OSF/LTCR 161
11.5.6 HPIUXTCP. e 161
1157 IRIXTCP o e 162
11.5.8 Linux TCP. e 162
1159 NetBSDTCP e 164
11.5.10Solaris TCP. e 165
11.511SunOSTCP. e 168
11.512VITCP . . . e 168

11.6 Receiver behavior of different TCP implementations. 169
11.6.1 Ackingin-sequencedata. 169
11.6.2 Acking out-of-sequencedata 175
11.6.3 Gratuitousacks. 176
11.6.4 Responsedelays. 177
11.7 Behavior of additional TCP implementations 179
11.7.1 Windows NTTCP. 180
11.7.2 Windows 95 TCP. 180
11.7.3 Trumpet/Winsock TCP. 181

12 Calibrating Pairs of Clocks 185
12.1 Basic clock terminology. 185
12.1.1 Resolution. 186
12.1.2 Offset e 186
12.1.3 ACCUIaCY o o o e e e e e e 186
12.1.4 Skewanddrift. 186

12.2 Lack of synchronizedclocks. 187
12.3 Terminology for comparingclocks. 187
12.4 Assessing clockresolution. oo 189
12.4.1 Method for assessing resolution. 189
12.4.2 Results of assessing resolution L. 190

12.5 Assessing relative clock offset. 191
12.5.1 Method for assessing relative offset. 191
12.5.2 Relative offset for full-sized senderpackets 193
12.5.3 Results of assessing relative offset 193

12.6 Detecting clock adjustments. 201
12.6.1 A graphical technique for detecting adjustments. 201
12.6.2 Removing noise from OTT measurements. 203
12.6.3 An algorithm for detecting adjustments. 204

12.6.4 Results of checking for adjustments. 207

12.6.5 Problems with detectonmethod
12.6.6 Detecting adjustments via correlatian.
12.7 Assessing relative clockskew oo
12.7.1 Defining canonical sender/receiver skew.
12.7.2 Difficulties withnoise.
12.7.3 Failure of line-fitting approaches.
12.7.4 Atest based on cumulative minima.
12.7.5 Applying the testto a positivetrend.
12.7.6 Identifying skewtrends.
12.7.7 Results of checkingforskew.
12.7.8 oce'spuzzlingdynamics.
12.7.9 Removingrelativeskew
12.8 Additional clock consistency checks.
12.8.1 Non-positive min-RT
12.8.2 Gapanalysis e
12.9 Clock synchronization vs. stability.

13 Network Pathologies
13.1 Out-of-order delivery e
13.1.1 Detecting out-of-order delivery.
13.1.2 Results of out-of-orderanalysis.
13.1.3 Impactofreordering
13.2 Packetreplication. e
13.3 Packetcorruption. e

14 Bottleneck Bandwidth
14.1 Bottleneck bandwidth as a fundamental quantity.
14.2 Packetpair. e e e

14.4 Difficulties with packetpair.
14.4.1 Out-of-orderdelivery.
14.4.2 Limitations due to clock resolution.
14.4.3 Changes in bottleneck bandwidth.
14.4.4 Multi-channel bottleneck links.

145 Peakrate estimation

14.6 Robust bottleneck estimation.o oL
14.6.1 Forming estimates for each “extent”.
14.6.2 Searching for bottleneck bandwidth modes.

14.7 Analysis of bottleneck bandwidths inthe Internet.
14.7.1 Single bottlenecks oo
14.7.2 Bottleneckchanges,
14.7.3 Multi-channel bottlenecks
14.7.4 Estimation errors dueto TCP behaviar.

14.8 Efficacy of other estimation techniques
14.8.1 Efficacyof PR.

15

16

17

14.8.2 Efficacyof RBPP.
14.8.3 Efficacyof SBPP
14.8.4 Summary of different bottleneck estimatars

Packet Loss

15.1 Lossrates. e
15.2 Data packetlossvs. ackloss L.
15.3 Lossbursts
15.4 Losslocation e e e
15.5 Evolution of packetlossrate.
15.6 Efficacy of TCP retransmission.

Packet Delay

16.1 RTTvariation e
16.1.1 Theroleof RTTS
16.1.2 RTT measurement considerations
16.1.3 RTTextremes.
16.1.4 RTT variation duringaconnectian.

16.2 OTTvariation e e
16.2.1 Why we do not analyze OTTextremes
16.2.2 Range of OTT variation
16.2.3 Path symmetry of OTT variation.
16.2.4 Relationship between loss rate and OTT variation.
16.2.5 Evolution of OTT variation.
16.2.6 Removingload fromOTTs.
16.2.7 Periodicity iInOTTS. e

16.3 TiMiNg COMPreSSION o v it ettt e e e e e
16.3.1 Ackcompression. e e
16.3.2 Data packet timing compression.
16.3.3 Receivercompression. e

16.4 Queueinganalysis

16.5 Available bandwidth.

Summary

17.1 Theroutingstudy e

17.2 The packetdynamicsstudy,
17.2.1 Measurement calibration and TCP behavior
17.2.2 Timingcalibration. L
17.2.3 Network pathologies
17.2.4 Estimating bottleneck bandwidth
17.25 Packetloss
17.2.6 Packetdelay

17.3 Futureresearch. Lo

17.4 Themesofthework.

288
290

201

365
365
366

Bibliography

A The Network Probe Daemon
Al Daemonoperation e
A2 SECUMtY ISSUES o ot et e e e
A.2.1 Usingrtcpdump instead otcpdump
A.2.2 NPDauthentication.

Xi

List of Figures

51
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5
9.6

Sites participating in routing study, North Americaand Asia. 25
Sites participating in routing study, Europe oo oL 26
Number of measurements made for each Internet gatdataset 28
Number of measurements made for each Internet @atdataset 29
Links traversed during; andR9, North American perspective 33
Links traversed durin@, andR., European perspective 33
Routes taken by alternating packetsistt toumann 52
Distribution of longR; outages 63
Distribution of longR,0outages 63
Circuitous route fronbsdi tousc 64
Circuitous route frontbli toucol 65
Circuitous route frootmrao towustl L. 65
Circuitous route frontbl towustl 66
Individual routers comprising circuitous path frdoh towustl 67
Circuitous route fronmcar toxor 68
Circuitous route frormria tooce 68
Prevalence of the dominantroute 78
Prevalence of the dominant route, for different source sites 80
Prevalence of the dominant route, for different destination sites. 81
Site-to-site variation ifP{S ¢ 84
Estimated distribution of long-lived route durations. 88
Route observed fromcol toucl 96
Route observed fromcl toucol 96
Second route observed framal toucol 97
Distribution of asymmetry sizes 100
Sequence plot of a TCP connection during its “slow start” phase 113
Sequence plot of a “window-limited” TCP connection 115
TCP “self-clocking” e 116
Sequence plot showing a TCP timeout retransmissian. 119
Sequence plot showing a TCP “fast retransmission”. 120

Sequence plot showing TCP “fast recovery”. 122

10.1
10.2
10.3
10.4
10.5
10.6

10.7

111
11.2
11.3
11.4
11.5

11.6

11.7

11.8

11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12

Xii

Packet filter replication 132
Packet filterresequencing oo 133
Enlargement of resequencing event in previous figure. 134
Example of “time travel” 136
Same plot, with lines showing the ordering of the packets in the trace file . 136

Receiver sequence plot showing a forward clock adjustment, undetectable to the
BYE . . e 137
Example of an ambiguity caused by the packet filter's vantage point. . . . 138
Sequence plot showing effects of unobserved source quench. 150
Receiver sequence plot showing two data checksum errors. 154
Sequence plot showing a burst of checksumerrars 154
Sequence plot showing the Net/3 uninitializeehdbug 160
Sequence plot showing the HP/UX congestion window advance with duplicate
acks . ..o 161
Sequence plot showing broken Linux 1.0 retransmission behavior 163
Enlargement of righthand side of previous figure. 163
Sequence plot showing broken Solaris 2.3/2.4 retransmissions, RTT = 680 msec

Sequence plot showing broken Solaris 2.3/2.4 retransmissions, RTT = 2.6 sel66

165

Solaris 2.4 retransmitting without cuttiognd 167
Sequence plot showing Solaris 2.4 acknowledgments during initial slow-startl71
Corresponding burstiness atsender. 172
Sequence plot showing retransmission timeout due to loss of single Solaris 2.4 ack 173
Receiver sequence plot showing lulls due to Solaris 2.3 acking policy . . . 174
Sequence plot showing more frequent acking leading to “filling the pipe”. . 175
Sequence plot showing gratuitous acknowledgement 177
Sequence plot showing false gratuitous acknowledgement 178
Sequence plot showing Windows 95 TCP transmit problem. 180
Sequence plot showing Trumpet/Winsock TCP skipping initial slow start. . 181

Sequence plot showing Trumpet/Winsock TCP skipping slow start after timeout
Sequence plot showing Trumpet/Winsock timer-driven acking 183
Sequence plot showing Trumpet/Winsock failure to retain above-sequence da&s

Median magnitude of clock offse¥}; tracinghosts 194
Median magnitude of clock offse{}; tracing hosts 194
Evolution ofaustr 's relative clock offset over the course®f 196
Evolution ofoce 's relative clock offset over the coursedf 197
Evolution ofonl 's relative clock offset overthe coursed} 197
Expanded view of the central line in the previous figure 198
Evolution ofxor 's relative clock offset overthe coursed} 199
Evolution ofoce 's relative clock offset over the coursem 199
Evolution oflbli 's relative clock offset over the course®b 200
Evolution osandia 's relative clock offset over the coursed§ 200
Evolution oumont 's relative clock offset over the coursem} 201
OTT-pair plot illustrating a clock adjustment. 202

182

12.13 Same measurements after de-noising pair-plot. 205
12.14 Clock adjustment viatemporary skew. 208
12.15 Temporary skew leading to separate pivots. 208
12.16 Clock adjustment masked by excessive network delays. 209
12.17 Clock adjustment missed because too close to end of connection 210
12.18 Doubleclock adjustment. 211
12.19 Clock adjustment “hiccup”o 211
12.20 An OTT pair plot showing strong negative correlation 213
12.21 An OTT pair plot showing relative clock skew. 214
12.22 Clock skew obscured by networkdelays 217
12.23 Enlargementofreversepath. 217
12.24 Distribution ofR(n,k)forn =15 L. 220
12.25 Example of extreme clockskew 223
12.26 Strong relative clock skewof6%. 224
12.27 Example of puzzlingce behavior, 225
12.28 Another example of puzzlirgge behavior 225
12.29 One more example of puzzlinoge behavior 226
12.30 Initial packet filter timing glitch oL 229
13.1 Sequence plot showing a connection with 36% of data packets delivered out-of-
order 235
13.2 Sequence plot showing a connection with an out-of-order gap of 54 packets 236
13.3 Out-of-order delivery with two distinctslopes. 236
13.4 Sequence plot of entire connection shown in previous figure 237
13.5 Sequence plot of ack delivered out-of-order. 238
13.6 Sequence plot of two acks delivered out-of-order and very late 238
13.7 Distribution of out-of-order delivery interval fo¥; data packets 240
13.8 Distribution of data packet out-of-order delivery intervalfgrand\> 241
13.9 Sequence plot showing retransmission event leaditgptduplicate ack series 244
13.10 Enlargement dbp duplicate ack series. 245
13.11 Two acks replicated 8timeseach, 246
13.12 Data packet replicated 22times 247
13.13 Data packet replicated atsender. L. 247
14.1 Paired sequence plot showing timing of data packets at sender and when received 256
14.2 Sameplotwithacksincluded. 257
14.3 Receiver sequence plot illustrating difficulties of packet-pair bottleneck band-
width estimation in the presence of out-of-order arrivals 258
14.4 Receiver sequence plot showing two distinct bottleneck bandwidths 260
14.5 Enlargement of part of the previous figure. 261
14.6 Enlargement of part of the previous figure. 262
14.7 Multi-channel phasingeffect. 263
14.8 Peak-rate optimistic and conservative bottleneck estimates, window-limited con-
NECtioN e 266

14.9 Erroneous optimistic estimate due to data packet compression. 267

14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17

151
15.2
15.3
154
155
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

15.17

15.18

15.19
15.20
15.21

16.1
16.2
16.3
16.4

16.5
16.6
16.7

16.8

Xiv

Histogram of different single-bottleneck estimates\for 276
Histogram of different single-bottleneck estimates\for 277
Box plots of bottlenecks for different, receiving sites. 280
Time until a 20% shift in bottleneck bandwidth, if ever observed 281
Symmetry of median bottleneckrate L 283
Sequence plot reflecting halving of bottleneck rate. 284
Excerpt from a trace exhibiting a false “multi-channel” bottleneck. 285
Self-clocking TCP “fastrecovery’ 286
Connection durations fav; (solid) and\; (dotted) 292
Connection durations for sites common\tp(solid) and\, (dotted) 294
Hourly variation in ack loss rate for North American connections 297
Hourly variation in ack loss rate for European connections. 298
Successful North American measurements, perhaur 298
Successful European measurements, perhour. 299
N> loss rates for data packetsandacks 301
Complementary distribution plot &f; unloaded data packet lossrate 303
Complementary distribution plot &f; loaded data packet lossrate. 304
Complementary distribution plot &f, ack lossrate. 304
Distribution of packet loss outage durations. 307
Distribution of packet loss outage durations exceeding 200 msec. 308
Log-log complementary distribution plot.b% ack outage durations. 308
Receiver sequence plot showing packet lost at or before bottleneck link. . 311
Receiver sequence plot showing packet lost after bottleneck link. 311
Evolution of how well observing a zero-loss connection predicts that a future con-
nection will also be zero-loss oL 314
Evolution of how well observing a non-zero-loss connection predicts that a future
connection will also be non-zero-loss 315
Evolution of the mean difference in loss-rate between successive connections
alongthesamepath., 316
Receiver sequence plot showing large number of sequence holes 317
Redundant retransmissions subsequent to previous figure 318
Sender sequence plot showing failure of RTO adaption 320
Distribution of the ratio between a connection's maximum RTT to minimum RTT
Log-log complementary distribution plot of max-min RTT ratio. 328
Distribution of inverse ratio (minimum RTT to maximum RTT). 329
Q-Q plot of ratio of minimum RTT to maximum RTT versus fitted normal distri-
bution 329
Distribution of RTT interquartilerange. 330
Distribution of RTT interquartile range, normalized to minimum RTT 331
Distribution of difference between maximum RTT and minimum RTT, normalized
by interquartilerange 331
Distribution of interquartile and max-min OTT variation 333

328

XV

16.9 Scatter plot of interquartile ranges of unloaded data packet OTT variations versus

acks . .. 334
16.10 Scatter plot of ack loss rate versus interquartile ack OTT variatiogy'faon-
nections that lost atleastoneack, 336
16.11 Evolution of how the interquartile range of normalized ack OTT variation differs
withtime 337
16.12 Evolution of how the interquartile range of raw ack OTT variation differs with time 338
16.13 OTT plot revealing “broken” bottleneck estimate: one thatistoo low 339
16.14 Another OTT plot revealing a “broken” bottleneck estimate: one that failed to
detect a change in the bottleneckrate. 340
16.15 OTT plot showing virtually all OTT variation due to connection's own queueing
load 341
16.16 Enlargement of adjusted OTTs from previous figure. 341
16.17 Ack OTT plot showing 10-sec periodicities 342
16.18 Paired sequence plot showing ack compression. 344
16.19 Data packet timing compression.o 346
16.20 Rampant data packet timing compression 347
16.21 Receiver sequence plot showing major receiver compression. 347
16.22 Ack OTT plot for a connection with=4secforAQ, 350
16.23 Ack OTT plot for a connection with= 1 sec forQ™* 350
16.24 Proportion (normalized) of connections with given timescale of maximum sus-
tained delay variation?) Lo 352
16.25 Proportion (normalized) of connections with given timescale of maximum peak
delay variation®) 353
16.26 Distribution ofV; inferred available bandwidttg§ 357
16.27 Distribution ofV; inferred available bandwidthgj 357
16.28 Distribution of\; inferred available bandwidths] for connections with bottle-
neck rates exceeding 100 Kbyte/sec. 359
16.29 Distribution of\; inferred available bandwidths] for connections with bottle-
neck rates exceeding 100 Kbyte/sec. 359
16.30 Distribution of\; inferred available bandwidths] for connections with bottle-
neck rates exceeding 250 Kbyte/sec. 360
16.31 Distribution of Ay minimum inferred available bandwidth3) for connections
with bottleneck rates exceeding 100 Kbyte/sec 360
16.32 Distribution ofA; maximum inferred available bandwidtk®)(for connections
with bottleneck rates exceeding 100 Kbyte/sec. 361
16.33 Distribution ofV; inferred available bandwidthsj for U.S. connections. . . . 362

16.34 Distribution ofV; inferred available bandwidth3] for European connections. 363
16.35 Evolution of difference between inferred available bandwid)hfdr successive
CONNECLIONS e 363

List of Tables

Il
1]
\Y

VI
VIl
VI
IX

Xl
Xl
Xl

XV

XV

XVI
XVII

XVIII Types of results of bottleneck estimation faf; and >
Types of results after eliminating trace pairswithi -~
Raw and user-data rates of different commonlinks.

XIX
XX

XXI
XXII

Sites participating in first experimeri®f)
Additional sites participating in second experimeRbf
Summary of routing experiment difficulties.
Uncertainroutersites
Routercities e

Persistentrouting loops i®
Persistent routing loops iRy
Failure modes for unreachable hosts®y
Failure modes for unreachable hostsRa
Summary of representative routing pathologies.

Tightly-coupled routers
Summary of persistence at differenttime scales.
Summary of TTL method for detecting route changes.

Sites participating in the packet dynamicsstudy.
TCP Implementations known twpanaly

Relationship between relative clock accuracy and clock adjustments
Relationship between relative clock accuracy and clock skew

Ack loss rates for different connection geographies.
Conditional ack loss rates for different connection geographies
XXIII Unconditional and conditional loss rates for different packet types
XXIV Proportion of redundant retransmissions (RRs) due to different causes. . .

XVi

24
25
27
30
32

37
40
58
58
69

76
89
90

123
144

230
231

274
274
278

295
296
306
319

XVii

Acknowledgements

This work has its roots in the teaching, help, patience, and inspiration of a great number
of people, to whom | wish to express my heartfelt gratitude.

Simply put, Van Jacobson is the reason | have studied networking; the reason | embarked
on this study; and the reason | had faith that the work would, with sufficient diligence, yield a host
of new insights. | am delighted that, having known him for nearly twenty years, | still find he has
much to teach me.

Likewise, this work drew inspiration and invaluable support from Domenico Ferrari. The
energy and respect that he affords to both his students' efforts, and to his students themselves, has
made it a privilege to be advised by him.

| have also been delighted to have Sally Floyd as my mentor, colleague, and friend. She
has listened to countless half-baked ideas of how to analyze and interpret various measurements,
and has always patiently separated the promising from the harebrained. This calibration of ideas,
and her suggestions on how to then pursue the more promising ones, has proved invaluable for
fostering my sense of how to conduct sound research.

A number of others played major roles in shaping this work. | would particularly like to
thank John Rice and Mike Luby for their industrious efforts in serving on my dissertation committee,
which led to the work being much more solid than it would otherwise have been.

My heartfelt thanks to Greg Minshall, for his detailed, insightful comments on nearly
every page of the work (and for his willingness to burn an entire Friday evening discussing some
of them); and to Amit Gupta, John Hawkinson, Kurt Lidl, Craig Partridge, and anonymous SIG-
COMM andIEEE/ACM Transactions on Networkimgferees, all of whom contributed very helpful
comments on earlier versions of the work.

I would like to also thank my colleagues at the Network Research Group: Kevin Fall,
Craig Leres, and Steve McCanne, for their much appreciated ideas, support, and feedback.

Special thanks to Kathryn Crabtree, for her untiring help in surmounting innumerable
administrative hurdles along the dissertation trail. She is an invaluable asset to UCB computer
science.

This work would not have been possible without the efforts of the many volunteers who in-
stalled the Network Probe Daemon at their sites. In the process they endured debugging headaches,
inetd crashes, software updates, and a seemingly endless stream of queries from me regarding
their site's behavior. | am indebted to:

Guy Almes and Bob Camnadv);

Jos Alstersynij);

Jean-Chrysostome Boldhfia);

Hans-Werner Braun, Kim Claffy, and Bilal Chinoydsc);
Randy Bushrain);

Jon Crowcroft and Atanu Ghoshd{);

Peter Danzig and Katia Obraczkas¢);

Mark Eliot (sri);

Robert Elz gustr);

particular thanks to Mike for throwing down the glove, and for knowing which glove to use.

Xviii

Teus Hagendce);

Steinar Haug and &Vard Eidnesgintefl | sintef2);
John Hawkinsonr(ear andpanix);

TR Hein or);

Tobias Helbig and Werner Sinzesfutt);

Paul Hyder fcar);

Alden Jacksongandia);

Kate Lance 4ustr2);

Craig Lereslpl);

Kurt Lidl (pubnix);

Peter Linington, Alan Ibbetson, Peter Collinson, and lan Penky)
Steve McCanndlfli);

John Milburn korea);

Walter Mueller gmann);

Evi Nemeth, Mike Schwartz, Dirk Grunwald, Lynda McGinlay6! , batman);
Fran@is Pinard gmont);

Jeff Polk and Keith Bostichsdi);

Todd Satogatabfl);

Doug Schmidt and Miranda Florw(stl);

Sorell Slaymaker and Alan Hannamid);

Don Wells and Dave Browm(ao);

Gary Wright connix);

John Wroclawskirit);

Cliff Young and Brad Karpffarv); and

Lixia Zhang, Mario Gerla, and Simon Waltonc{a).

| am likewise indebted to Keith Bostic, Evi Nemeth, Rich Stevens, George Varghese,
Andres Albanese, Wieland Holfelder, and Bernd Lamparter for their invaluable help in recruiting
NPD sites. Thanks, too, to Peter Danzig, Jeff Mogul, and Mike Schwartz for feedback on the design
of NPD.

This work also benefited from discussions with Guy Almes, Tom Anderson, Robert Elz,
Teus Hagen, John Krawczyk, Kate Lance, Dun Liu, Paul Love, Jamshid Mahdavi, Matt Mathis,
Dave Mills, Pravin Varaiya, Curtis Villamizar, and Walter Willinger.

A preliminary analysis of thék; routing dataset was done by Mark Stemm and Ketan
Patel.

Often to understand the behavior of particular routers or to determine their location, |
asked personnel from the organization responsible for the routers. | was delighted at how willing
they were to help, and in this regard would like to acknowledge:

Vadim Antonov, Tony Bates, Michael Behringer, Per Gregers Bilse, Bjorn Carlsson,
Peggy Cheng, Guy Davies, Sean Doran, Bjorn Eriksen, Amit Gupta, Tony Hain, John
Hawkinson again!, Susan Harris, Ittai Hershman, Kevin Hoadley, Scott Huddle, James
Jokl, Kristi Keith, Harald Koch, Craig Labovitz, Tony Li, Martijn Lindgreen, Ted Lind-
green, Dan Long, Bill Manning, Milo Medin, Keith Mitchell, Roderik Muit, Chris My-

ers, Torben Nielsen, Richard Nuttall, Mark Oros, Michael Ramsey, Juergen Rauschen-

XiX

bach, Douglas Ray, Brian Renaud, Jyrki Soini, Nigel Titley, Paul Vixie, and Rusty
Zickefoose.

Finally, this work would never have been realized without the ongoing support provided
by the Lawrence Berkeley National Laboratory. | am deeply grateful. In particular, | would like to
thank Stu Loken and Ed Theil for their efforts and encouragement.

This work was supported by the Director, Office of Energy Research, Scientific Comput-
ing Staff, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Chapter 1

Introduction

As the Internet grows larger, measuring and characterizing its dynamics grows harder.
Part of the difficulty is how quickly the network changes. Depending on the figure of interest, the
network between 80% and 100% each year, and has sustained this growth for well over a decade.
Furthermore, the dominant protocols and their patterns of use can change radically over just a few
years, or even a few months [Pa94b, CBP94].

Another difficulty, though, is the network's incredible—and increasing—heterogeneity. It
is more and more difficult to measure a plausibly representative cross-section of its behavior. It is
this latter concern that we attempt to address in this work. In this chapter, we develop the context
for the rest of the study, by discussing different types of traffic studies, and how research efforts of
those types have addressed heterogeneity problems. Our study falls in the category with perhaps the
greatest heterogeneity difficulties, that of the “end-to-end” performance of entire paths through the
network.

Our work has two distinct parts: a study of end-to-end routing behavior in the Internet
(Part 1), and a study of end-to-end Internet packet dynamics (Part Il). These two are united by
the common measurement framework used to gather the data analyzed in each part (described in
Chapter 4). In addition, some of the results used in each part are incorporated into analysis in the
other part. However, in many ways the two parts are distinct and self-contained. A reader particu-
larly interested in one or the other topic might profitably just read the relevant part. Consequently,
we defer an overview of each part to later chapters (Chapter 2 of Part |, and Chapter 9 of Part II).
We summarize both parts, and what we perceive as the themes of the work, in Chapter 17, at the
end of Part Il. For the remainder of this introduction, we give an overview of the general problem
of measuring large networks,

We can classify measurement studies into several basic types. Each faces the problem of
heterogeneity to varying degrees, as follows.

Exhaustivestudies analyze properties of a significant fraction of the entire network.
Examples are Kleinrock's study of the ARPANET's behavior on time scales of hours to days
[KI76]; the series of “ping” experiments conducted by Mills to evaluate the effectiveness of the
TCP retransmission-timeout algorithm [Mi83]; Claffy et al.'s study characterizing traffic on the
T1 NSFNET backbone [CPB93b]; and Chinoy's study of the dynamics of routing information
within the NSFNET backbone [Ch93]. While these studies can convincingly characterize the full
range of behavior one might expect to observe from the network, they become impractical as the

network grows in size.

Sitestudies characterize the aggregate traffic patterns observed for entire sites. They fo-
cus on the connections sizes, durations, and interarrival times. An early site study, by Danzig and
colleagues, identified large heterogeneities in the traffic “mix” at each site, meaning that the pro-
portion of total traffic (total connections, total packets, or total bytes) due to different applications
varies greatly [DJCME92]. Our subsequent work extended this finding to the characteristics of the
connections made by each type of application. We found that the distributions of a particular appli-
cation's connection sizes and durations varied greatly from site to site [Pa94a], in agreement with
much earlier findings, in a different communications context, by Fuchs and Jackson [FJ70].

Another type of study focuses @erverbehavior, for services that are distributed over
the Internet. The heterogeneity issues faced by these studies vary greatly, depending on the service.
For example, Danzig and colleagues analyzed requests arriving at a “root” name server, finding a
variety of performance problems [DOK92]. However, there are only a handful of root name servers.
Because clients divide their requests between them, studying a single server yields results plausibly
representative for all of the servers. On the other hand, a recent study of World Wide Web servers
had to grapple with the issue of differences among the various servers studied [AW96], and did so
by developing its central theme around the search for behavioral “invariants” among the six Web
servers analyzed.

Related to server studies agbent studies, which analyze the different ways in which
clients access servers. From a heterogeneity standpoint, client studies are more difficult than server
studies, since usually there are many more clients than servers. One approach is to study the behav-
ior of all clients located at a particular site [CB96]. Doing so, however, incurs problems similar to
those of site studies: it is difficult to gauge the generality of the findings. These problems, however,
can be tempered based on the nature of the service. For example, we might expect request from one
site's Web clients to more closely resemble those of another site's Web clients, than for the site's
aggregate traffic to resemble that of another site.

Another type of study analyzes the aggregate traffic seen on neliwksk These studies
have focussed on the dynamics of packet arrivals on the link [FL91, LTWW94, PF95, WTSW95],
the characteristics of packet “flows” [JR86, He90, CBP95], or on traffic patterns over particularly
singular links, such as the trans-Atlantic link connecting the U.S. and the U.K. [CW91, WLC92].

For link studies ofocal areanetworks [JR86, FL91, LTWW94, WTSW95], heterogeneity
presents less of a problem than for thoswiofe areanetworks, because the latter encompass a much
broader range of traffic sources and path characteristics than the former. Some wide area link studies
attempt to address heterogeneity issues by analyzing traces from multiple links. However, gathering
link traces is difficult (and becoming more so due to security, privacy, and business concerns), and
such studies have not to date analyzed more than two dozen or so’traces.

Our work falls in still another class, that ehd-to-endstudies. These studies concern

LAt the time of the later of the first two studies, the Internet comprised about 600 hosts. As of this writing, it
comprises about 16 million hosts [Lo97]. At the time of the Claffy study, the backbone consisted of 15 nodes and two
dozen links. Today, it is much larger, though sources of accurate statistics on its size have virtually disappeared with the
commercialization of the Internet infrastructure.

ZMost site studies are conducted as link studies, too, since an extremely convenient way to capture an entire site's
Internet traffic is to monitor what is usually a single link connecting the site to the rest of the Internet. Some server
studies can also be conducted in the context of a link study, by analyzing all of the server requests seen on a highly
aggregated link [EHS92, DHS93].

how the network performs from the perspective of an end user. To users, a network like the Internet
is simply a black box that somehow forwards packets between their host and hosts with which
they wish to communicate. End-to-end studies face extreme heterogeneity problems because they
strive to characterize the behaviorpmdthsthrough the network. Not only does the Internet contain
millions of distinct paths, but the dynamics of each path reflects the concatenation of the dynamics
of each forwarding element along the path, and hence can be highly complex.

The few studies to date of end-to-end packet dynamics—Mogul's look at TCP dynamics
such as ack compression [M092], Bolot's analysis of patterns of packet loss and delay [Bo93], and
Claffy et al.'s characterization of one-way latencies [CPB93a]—have all been confined to measuring
a handful of Internet paths, because of the great logistical difficutiies also analysis difficulties
presented by large-scale measurenie@bnsequently, it is hard to gauge how representative these
end-to-end findings are for today's Internet.

As a result, even basic Internet path questions such as “how often do routes change?” and
“how often are packets dropped?” remain unanswered in any sort of general way. It is towards
answering these questions that we now embark.

3Mogul's study was actually conducted as a link study. Doing so let him observe behavior from a fairly large number
of Internet paths, albeit ones that all had the single link in common. A drawback of this approach, however, is that it is
difficult to infer from the perspective of a link the full end-to-end behavior as perceived by the endpoints, an issue we
discuss further i§ 10.4.

Part |

End-to-End Routing Behavior in
the Internet

Chapter 2

Overview of the Routing Study

The large-scale behavior of routing in the Internet has gone virtually without any for-
mal study, the exception being Chinoy's analysis of the dynamics of Internet routing information
[Ch93]. In this part of our thesis we analyze 40,000 route measurements conducted using repeated
“traceroutes” between 37 Internet sites. The main questions we strive to answer are:

1. What sort of pathologies and failures occur in Internet routing?
2. Do routes remain stable over time or change frequently?
3. Do routes fromA to B tend to be symmetric (the same in reverse) as routes #dmA?

Our framework for answering these questions is the measurement of a large sample of
Internet routes between a number of geographically diverse hosts. We argue that the set of routes is
representative of Internet routes in general, and analyze how the routes changed over time to assess
how Internet routing in general changes over time.

We begin by giving an overview of the routing literature in general and, more specifically,
how routing works in the Internet (Chapter 3). We find that while roupragocols(mechanisms)
have been heavily studied, the literature offers veryreasuremergtudies of how routingpehaves
in practice.

We then discuss our experimental methodology (Chapter 4). This includes our measure-
ment apparatus, which is tihed “network probe daemon” and theaceroute utility for measur-
ing Internet paths; the use of exponential sampling, which allows us to appBAS&A Principle
[Wo082] as the basis for the generalizations we derive from our measurements; and the use of the
Fisher's exact tediRi95] to test for significant differences between different sets of observations.
We also discuss which aspects of our measurements are plausibly representative of Internet routing
behavior in general (namely, aggregate observations of Internet paths), and which are not (those
depending on the behavior of individual sites).

In Chapter 5 we give an overview of the 37 sites participating in the study, and details of
the raw data and of the failures encountered when attempting to capture it. We also discuss how we
assigned geographic locations to all of the 1,531 routers appearing in the paths we measured.

We performed two separate sets of measurements. TheRirsgonsisted of 6,991 at-
tempted measurements of 689 different paths through the Internet (i.e., distinct source/destination
pairs). TheR; measurements were made with an average interval of 1-2 days between samples.

Upon analyzing th&, data, we realized that we could not accurately answer crucial ques-
tions regarding routing stability without higher frequency sampling, nor could we unambiguously
assess routing symmetry without simultaneous measurements of both directions of an Internet path.
To resolve these difficulties, we conducted a second set of measurefentansisting of 37,097
attempted measurements of 1,056 Internet paths. These measurements were made in two groups,
one with an average interval of about 2.75 days between samples, and the other with an average
measurement interval of 2 hours. The latter suffices for accurately assessing routing stability. We
alsopairedthe bulk (80%) of the measurements, conducting back-to-back measurements of the dif-
ferent directions of each Internet path. Pairing allows us to accurately assess routing asymmetries,
and also to reduce a source of measurement €BL].

Before analyzing the data for routing stability and symmetry, we needed to categorize any
anomalies present in order to prevent them from skewing the analysis. In Chapter 6 we classify a
number of routing pathologies:

e unresponsive routers, routing loops, routing changes in the middle of measurement, erroneous
routes, omission of TTL decrement, and infrastructure failures, all of which were rare;

e host and stub network outages, which were fairly common (but for which our samples are
probably not representative);

e and “fluttering,” in which the path rapidly alternated between two different routeszIn
fluttering was quite common, and sometimes had great impact on the routes of consecutive
packets sent by a host. But, like outages, our samples are not persuasively representative, and
fluttering was rare irRs.

BecauseR,; andR, were made a year apart, we can analyze the relative prevalence of pathologies
in each § 6.10). We find that the likelihood of encountering a major routing pathology more than
doubled between the end of 1998 () and the end of 1995R,), rising from 1.5% to 3.4%.

After removing anomalous measurements, we analyze the remainder to investigate routing
stability and symmetry. This analysis is primarily done using &edata, for the reasons given
above. We begin in Chapter 7 by reviewing the importance of routing stability for a variety of
network applications. This review reveals that there are two distinct types of stability that are of
interest. The first iprevalence whether we are likely to observe the same route in the future as
at the present. The secondpersistence whether the route we observe at the present is likely to
remainunchangedor a considerable period of time.

We show that it is easy to assess routing prevalence, and find that Internet paths are
strongly dominated by a single prevalent route. But routing persistence is much more difficult
to assess, because we haveangriori reason for assuming that observing a route at fifmend
then again at timds, tells us anything about whether it changed (and changed back) in between
those two measurements.

We tackle this difficulty by first analyzing those measurements we made that were spaced
only minutes apart. Doing so reveals that a minority of the paths have routes that persist for only
tens of minutes, while the majority persist for significantly longer. After eliminating the quickly
changing paths, we repeat the analysis at time scales of 1 hour, 6 hours, and days. We find that, at
each time scale, some paths are prone to changes and others are not. Overall, about two thirds of
the paths have routes persisting for days or weeks.

A final question concerning routing stability is how an endpoint can determine that its
route has changed. We investigate a simple method based on observing changes in the Time To
Live (TTL) field. We find that this method provides a useful heuristic, having an overall accuracy
of about 95%, but is prone to false negatives (missing the fact that the route has changed), which
limits its utility.

In Chapter 8 we turn to the question of routing symmetry. As with routing stability, we
first discuss the importance of symmetry for a number of networking applications. We also look at
different mechanisms that can introduce asymmetry into network routing. Of these, one in particular
(“hot potato” routing between different Internet service providers) is expected to grow in the future,
leading to a greater prevalence of routing asymmetry, and the differences in asymmetry between the
R andR» measurements suggest that this is happening.

Our first attempt at defining whether two routes are symmetric founders on the difficulties
of determining whether two Internet addresses do indeed correspond to the same host. In the face
of this problem, we revise our definition to consider two routes symmetric only if they visit exactly
the same cities. If two routes aasymmetri@ccording to this definition, then they visit at least one
different city. Such asymmetries amgajor because they likely imply different path characteristics,
such as propagation times and congestion levels.

We find thathalf of all Internet paths ik, contained a major asymmetry, while only 30%
in R did. About 20% of theR, paths differed in two or more cities, and about 30% differed in the
autonomous systems they visited.

The presence of pathologies, short-lived routes, and major asymmetries highlights the
difficulties of providing a consistent topological view in an environment as large and diverse as
the Internet. Furthermore, the findings that the prevalence of pathologies and asymmetries greatly
increased during 1995 show in no uncertain termsilttatnet routing has become less predictable
in major ways

A constant theme running through our study is that of widespread diversity. We repeat-
edly find that different sites or pairs of sites encounter very different routing characteristics. This
finding matches that of our previous work [Pa94a], which emphasizes that the variations in Internet
traffic characteristics between sites are significant to the point that there is no “typical” Internet site.
Similarly, there is no “typical” Internet path. But we believe the scope of our measurements gives
us a solid understanding of the breadth of behavior we might expect to encounter—and how, from
an endpoint's view, routing in the Internet actually works.

Chapter 3

Related Research

The problem of routing traffic in communications networks has been studied for well over
twenty years [Sc77, SS80]. The subject has matured to the point where a number of books have been
written thoroughly examining the different issues and solutions [Pe92, St95, Hu95].

A key distinction we will make concerning the study of routing is that between routing
protocols by which we mean mechanisms for disseminating routing information within a network
and the particulars of how to use that information to forward traffic, and robhgvior meaning
how in practice the routing algorithms perform. This distinction is important because, while routing
protocols have been heavily studied, routing behavior has not.

3.1 Studies of routing protocols

The literature contains many studies of routing protocols. In addition to the books cited
above, see, for example, McQuillan et al.'s discussion of the initial ARPANET routing algorithm
[MFR78] and the algorithms that replaced it [MRR80, KZ89]; the Exterior Gateway Protocol used
in the NSFNET [R082, Re89], and the Border Gateway Protocol that replaced it [RL95, RG95,
Tr95a, Tr95b]; the related work by Estrin et al on routing between administrative domains [BE9O,
ERH92]; Awerbuch's technique of reducing asynchronous networks to synchronous ones to simplify
routing algorithms [Aw90]; Perlman and Varghese's discussion of difficulties in designing routing
algorithms [PV88]; Deering and Cheriton's seminal work on multicast routing [DC90]; Perlman's
comparison of the popular OSPF and IS-IS protocols [Pe91]; and Baransel et al.'s survey of routing
techniques for very high speed networks [BDG95].

3.2 Studies of routing behavior

For routing behavior, however, the literature contains considerably fewer studies. Some of
these studies are based on pure analysis, such as Bertsekas' study of routing dynamics for different
topologies [Be82]; or on simulation, such as Zaumen and Garcia-Luna Aceves' studies of routing
behavior on several different wide-area topologies [ZG-LA91, ZG-LA92], and Sidhu et al.'s simu-
lation of OSPF [SFANC93]. In only a few studies do measurements play a significant role: Rekhter
and Chinoy's trace-driven simulation of the tradeoffs in using inter-autonomous system routing in-
formation to optimize routing within a single autonomous system [RC92]; Chinoy's study of the

dynamics of routing information propagated inside the NSFNET infrastructure [Ch93]; and Floyd
and Jacobson's analysis of how periodicity in routing messages can lead to global synchronization
among the routers [FJ94].

This is not to say that studies of routing protocols ignore routing behavior. But the presen-
tation of routing behavior in the protocol studies is almost always qualitative, such as the discussion
of the poor performance of the original ARPANET routing algorithm [MFR78] or the tendency for
the revised algorithm to oscillate under heavy load [KZ89]. Even [MRR80], which presents the
revised algorithm, and notes that to test it the authors subjected the network during off-hours to a
greater volume of test traffic than users generated during peak hours, discuss this stress-testing in
general terms, rather than delving into any measurement specifics.

Of the measurement studies mentioned above, [RC92] and [FJ94] are both devoted to
examining a tightly focussed question. Only Chinoy's study is devoted to characterizing routing
behavior in-the-large, and it remains the only formal measurement study of routing in wide-area
networks of which we are awatre.

Chinoy found wide ranges in the dynamics of routing information: For those routers that
send updates periodically regardless of whether any connectivity information has changed, the vast
majority of the updates contain no new information. Most routing changes occur at the edges of
the network and not along its “backbone.” Outages during which a network is unreachable from
the backbone span a large range of time, from a few minutes to a number of hours. Finally, most
networks are nearly quiescent, while a few exhibit frequent connectivity transitions.

3.3 End-to-end routing dynamics

Chinoy's study concerns how routing information propagaissle the network. It is
not obvious, though, how these dynamics translate into the routing dynamics seen by an end user.
One of the areas noted by Chinoy as ripe for further study is “the end-to-end dynamics of routing
information.”

We will use the ternmpathto denote the network-level abstraction of a “virtual link” be-
tween two Internet hosts. For example, when Internet Hogtishes to establish a network-level
connection to hosB, A need not have any knowledge of the routing infrastructure upon which the
Internet is built. As far asl is concerned, the network layer provides it with a linkpath directly
to B. Similarly, B has apathto A. We will sometimes abbreviate the notion of the path frdno
BasA = B.

At any given instant in time, the path = B is realized at the network layer by a single
route, which is a sequence of Internet routers along which packets sehidngl destined foB are
forwarded. We will refer to a singlbop of a particular route for the path @& — R», indicating
that after arriving at routeR,, packets are next forwarded ity.

The pathA = B may oscillate very rapidly between different routes, or it may be quite
stable (an issue we explore in Chapter 7). So Chinoy's suggested research area can be viewed as:

!Since publishing some of the results from this part of our thesis [Pa96b], we have learned of a very interesting study
of Internet routing, similar in spirit to that of Chinoy's, by Jahanian, Labovitz and Malan [JLM97]. We will discuss
this new work in the version of [Pa96b] presently undergoing revision for publicatidBEE/ACM Transactions on
Networking We unfortunately learned of the work too late to include discussion of it here.

10

given two hostsA and B at the edges of the network, how does the patks> B between them
behave over time? This is the question we attempt to answer in our study.

3.4 Routing in the Internet

For routing purposes, the Internet is partitioned into a disjoint satitdhomous systems
(AS's), a nation first introduced in [Ro82]. Originally, an AS was a collection of routers and hosts
unified by running a single “interior gateway protocol.” Over time, the notion has evolved to be
essentially synonymous with that aflministrative domaifiHK89], in which the routers and hosts
are unified by a single administrative authority. Within the domain or AS are one ornnaieg
domaing which are hosts and routers that communicate using the same routing protocol.

Routing between autonomous systems provides the highest-level of Internet interconnec-
tion. RFC 1126 [Li89] outlines the goals and requirements for inter-AS routing (of particular interest
for our study are the goals of infrequent loops and stable routes). [Re95] gives an overview of how
inter-AS routing has evolved.

When the NSFNET formed the “backbone” of the Internet, inter-AS routing was done
using the Exterior Gateway Protocol (EGP) [Ro82, Re89]. A major constraint of EGP, however, is
that it requires a tree-like topology between the AS's (with the NSFNET backbone at the root), and,
if the topology is violated, loops can result. EGP has since been replaced with the Border Gateway
Protocol (BGP), currently in its fourth version [RL95, RG95]. BGP is now used between all signif-
icant AS's [Tr95a)]. BGP removes the EGP topology restrictions, allowing arbitrary interconnection
topologies between AS's. It also provides a mechanism for preventing routing loops between AS's,
which we discuss if§ 6.3.1 and; 6.3.3.

The key to whether use of BGP will scale to a very large Internet lies irstitality of
inter-AS routing [Tr95b]. If routes between AS's vary frequently—a phenomenon termed “flap-
ping” [Do95]—then the BGP routers will spend a great deal of their time updating their routing
tables and propagating the routing changes. Daily statistics concerning routing flapping are avail-
able from [Me95b] (see also [C091-95]).

It is important to note that stable inter-AS routing doed guarantee stable end-to-end
routing, because AS's are large entities capable of significant internal instabilities. In our study we
focus on end-to-end routing behavior at the granularity of individual routers, though we also note
where appropriate how the behavior changes when the granularity is shifted to that of autonomous
systems (where the route for the path= B is viewed as a sequence of AS's rather than a sequence
of routers).

One final note: since the publication of Chinoy's study, the Internet has undergone a ma-
jor topological and administrative change. Inter-AS routing now uses BGP rather than EGP, as
discussed above; and the network topology is no longer constrained to a tree with the NSFNET
backbone at the root, but has switched to a number of commercial network service providers sup-
porting a potentially arbitrary interconnection topology. Our measurements spanned this transition,
with the first dataset taken at the end of 1994, before the NSFNET backbone was decommissioned
in Spring 1995, while the second was taken at the end of 1995. Thus, our measurements give us an
opportunity to determine whether Internet routing changed significantly during the year separating
them. As discussed i§6.10 and§ 8.5, we find significant increases in the prevalence of routing
“pathologies” and in routing asymmetry. These changes are not, however, necessarily due to the

11

NSFNET transition; in particular, two thirds of the routes measured in the first dataset already did
not transit the NSFNET, traversing instead commercial providers such as SprintLink and MCINET,
or networks outside the U.S.

12

Chapter 4

Methodology

In this chapter we discuss the methodology used to make our routing measurements. We
begin with the software we used: timpd network probe daemon, th&d control program
used to drive the measurements, andttheeroute utility for measuring Internet paths. We
then discuss the utility of sampling at exponentially distributed intervals, including the “PASTA
Principle,” which provides the underlying statistical validity of our measurements4la we then
address which aspects of our data are plausibly representative of Internet traffic and which are not.
In our analysis we also attempt to draw some conclusions as to which differences between
our datasets reflect significant changes in Internet conditions over time. To do so, we §i&in
an overview ofFisher's exact tedor determining whether the frequencies with which a property is
observed in two different datasets is consistent with the null hypothesis of a single underlying prob-
ability of observing the property. If the frequencies observed are inconsistent with this hypothesis,
then we conclude that the probability of observing the propeitgngedoetween the two datasets,
reflecting a corresponding change in Internet conditions. Finally, in order to use Fisher's test, we
need to make an independence assumption that is not entirely accyra discusses why this
assumption remains tenable.

4.1 Experimental apparatus

We conducted our experiment as follows. First we recruited a number of Internet sites
(detailed in Tables | and II) to participate in the study. Each site ran a “network probe daemon”
(npd) that provides measurement services, as described in the Appendix. To measure the route
from Internet host to hostB, a program calledipd _control , running on our local workstation,
would connect tonpd on hostA and request that it trace the route to hBstisingtraceroute
Thenpd on A would then do so and send the results backpgd_control . In this fashion, we
could run a single script on our local workstation to orchestrate any number of simultaneous route
measurements. The script (which we programmaticly generated) woulepbtlnontrol in the
background to conduct a single measurement, sleep until the time for the next measurement, run an-
othernpd _control in the background to conduct that measurement, and so on. Each measurement
comprised a singleaceroute from a randomly selected site to another randomly selected site.

This setup gave our experiment a single point of failure, namely our local workstation,
but also the benefit of a single point of administration, which greatly simplified the task of keeping

13

the experiment running correctly as we added new participating sites. Fortunately, during the en-
tire measurement period the workstation never crashed or required rebooting, so the measurements
proceeded uninterrupted.

For our first set of measurements, ternfeéd, we tuned the script driving the measure-
ments so that each site would measure routes at an average rate of one every two hours, to minimize
network load. Two exceptions were thestr andkorea sites. They instead made measurements
at lower rates of one every four hours and one every eight hours, in deference to the heavily loaded
trans-Pacific network links that their traffic had to cross.

While using the same rate for each site meant each site had a consistent measurement load,
as we added new patrticipating sites to our study, the sampling ratarsfof sites decreased. This
inhomogeneity, however, does not present any particular difficulties for our sampling methodology,

a point we address i§14.3.

For the second set of measuremefRs, we made measurements at two different, fixed
rates. The majority (60%) of the measurements were made with a mean inter-measurement interval
of 2 hours, while the remainder were made with a mean interval of about 2.75 days. The bulk of
the R, measurements were alpaired meaning we would measure the path= B and then
immediately measure the path = A. We discuss the reasons for these changes in methodology
in § 7.4 and§ 8.4.

4.2 Thetraceroute Utility

Traceroute is a program written by Van Jacobson to trace the different hops comprising
a route through the Internet [Jac89]. In this section we discuss the operation of the tool, as its
particulars have direct impact on our routing measurements.

42.1 The Time To Live field

All packets sent using the Internetwork Protocol (IP) contain in their head€irs& To
Live (TTL) field [Po81a]. In the original IP design, this field was meant to limit the amount of time
that a packet could exist inside the network, to prevent packets from endlessly circulating around
routing loops (and eventually clogging up the entire network). The TTL header field is 8 bits
wide and is interpreted as the time in seconds remaining until the packet must be discarded. Each
internetwork router must decrement the field by the amount of time required to process the packet
(including queueing), or by 1 second, whichever is larger. Thus, the TTL limits packets to at most
255 hops through the netwotkand a lifetime of at most 255 seconds.

If upon decrementing the TTL field a router observes that the TTL has reached zero, then
it must not forward the packet but instead discard it as being too old. When it discards a packet for
this reason, it musthen send back an Internet Control Message Protocol (ICMP; [Po81b]) message
informing the sender of the packet that it was dropped due to an expired lifetime.

'This is plenty in today's Internet. Routes of more than 30 hops are§&t&.5). But if much longer routes became
commonplace, then the limited size of the TTL field could render parts of the Internet unable to communicate with other
parts.

2This “must” is actually a very strong “should.” [Ba95] states that the router must generate the message, but can
provide a per-interface option to disable generation, provided the option defaults to generation enabled.

14

While the original IP standard states that TTL isirae [Po81a], in reality virtually all
Internet routers only decrement the TTL by 1 per hop, regardless of the processing time, often
for reasons of performance. Acknowledging ttiessfactobehavior, the current standard for Internet
routers only requires that routers decrement the TTL by 1 per hop, while allowing them the option to
decrement by more to account for processing time [Ba95]. Part of the motivation for this relaxation
of the TTL requirement is to aid the workings todiceroute

4.2.2 Howtraceroute works

The heart ofraceroute is clever exploitation of the TTL field, as follows. To trace the
route to a remote hodt, traceroute first constructs a packet witH as its destination but with
the TTL field initialized to 1. When this packet reaches the first hop in the pafh, tine router
decrements the TTL field, notices that it is zero, and sends back an ICMP message to this effect.
The ICMP message includes in its own header the address of the router sending the message, which
letstraceroute identify the hop 1 router as that address.

Traceroute then sends a packet @ with the TTL field initialized to 2, and, similarly,
gets back an ICMP message identifying the hop 2 router. It proceeds in this fashion until it receives
a reply fromH itself, and at that point it has elucidated the entire patl toNote that it hagiot
also elucidated the path frod to the host runningraceroute . The two are not necessarily the
same, as we demonstrate in Chapter 8.)

We will refer to the packetsaceroute sends with adjusted TTL's @sobes and those
with an initial TTL of n as “hopn” probes. Here is an example of the output froaceroute
tracing the path from a host at the University of Colorado at Bouldssl (, as explained in Table 1)
to one at the San Diego Supercomputing Cerdesq).

traceroute to rintrah-fddi.sdsc.edu (198.17.46.57),

30 hops max, 40 byte packets
128.138.209.2 2 ms 2 ms 2 ms
128.138.1381 14 ms 4 ms 3 ms
144.228.73.113 44 ms 39 ms 53 ms
144.228.73.82 218 ms 207 ms 147 ms
134.24.66.100 234 ms * 85 ms
198.17.46.57 85 ms 63 ms 67 ms

OO, WN P

By default,traceroute sends three probes for each hop. The probes are sent serially, each waiting
until traceroute receives an answer for the previous one. For eachtreg@route reports the
number of hop, the IP address of the corresponding router, and the time in milliseconds it took to
receive the reply. We note, however, that these times are often exceptionally noisy, because part of
the total round-trip time includes the delay incurred at the router in generating an ICMP response
to the exceptional event of an expired TTL. This delay can be quite large of the router is busy with
other, higher priority tasks.

A reply time of **,” such as shown for hop 5, corresponds tlmst packet. Either the
traceroute probe or the corresponding ICMP message was dropped by the network (or perhaps
the ICMP message was not generated—§6€el, and also below)Traceroute waits 5 seconds
for a reply before deciding that it will not be getting ohe.

3Most versions of théraceroute documentation erroneously give this time as 3 seconds.

15

The first line of the output indicate30 hops max,” meaning thatiraceroute will
stop sending probes after trying to elicit the 30th hop. This behavior is important because, as
we will see in§ 6.3.1, the Internet sometimes contains routing loops that would allow packets to
circulate all the way up to the maximum of 255 hops, wasting considerable network resources. For
our study we always used the default of 30 hops maximum (only very rarely did this prevent us
from measuring the full path between sites in our study;3s&&.5), and the default of three probes
per hop.

We can translate the IP addresses to hostnames in order to visualize the route more clearly:

cs-gw-discovery.cs.colorado.edu 2 ms 2 ms 2 ms
cu-gw.colorado.edu 14 ms 4 ms 3 ms
sl-ana-3-s2/4-t1.sprintlink.net 44 ms 39 ms 53 ms
sl-univ-ca-1-s0-tl.sprintlink.net 218 ms 207 ms 147 ms
sdsc-ucop-mci.cerf.net 234 ms * 85 ms

rintrah.sdsc.edu 85 ms 63 ms 67 ms

OO, WN P

We see that the first two hops occur inside the University of Colorado at Boulder; then the packets
are forwarded on to SprintLink, traveling first to Anaheim, CA, then up to Oakland, California
(the University of California Office of the President), and finally back down along CERFNET to
San Diego.

4.2.3 Traceroute limitations

When usingraceroute there are several limitations and measurement difficulties that
one must bear in mind. In the previous section we showed an examplé&afesoute from
Colorado to San Diego that went quite smoothly, suffering only a single packet loss. In contrast,
consider the followingraceroute , between the same two hosts:

traceroute to rintrah.sdsc.edu (198.17.47.57),
30 hops max, 40 byte packets

1 128.138.209.2 10 ms O ms O ms

2 128.138.138.1 O ms O ms O ms

3 129.19.248.61 10 ms 129.19.254.45 10 ms 129.19.248.61 30 ms
4 19252.106.1 60 ms 60 ms 70 ms

5 140.222.96.4 60 ms * 50 ms

6 140.222.88.1 70 ms 60 ms 60 ms

7 140.222.8.1 60 ms 50 ms 60 ms

8 140.222.16.1 70 ms 70 ms 70 ms

9 140.222.135.1 60 ms 70 ms 70 ms

10 198.17.47.2 4720 ms 'H * 5100 ms 'H

Here are the corresponding hostnames:

traceroute to rintrah.sdsc.edu (198.17.47.57),

30 hops max, 40 byte packets
cs-gw-discovery.cs.colorado.edu 10 ms O ms 0 ms
cu-gw.colorado.edu 0O ms 0O ms 0 ms
129.19.248.61 10 ms ncar-cu.co.westnet.net 10 ms 129.19.248.61 30 ms
enss.ucar.edu 60 ms 60 ms 70 ms
t3-3.cnss96.denver.t3.ans.net 60 ms * 50 ms

a b wNE

16

t3-0.cnss88.seattle.t3.ans.net 70 ms 60 ms 60 ms
t3-0.cnss8.san-francisco.t3.ans.net 60 ms 50 ms 60 ms
t3-0.cnssl6.los-angeles.t3.ans.net 70 ms 70 ms 70 ms
t3-0.enss135.t3.ans.net 60 ms 70 ms 70 ms
enss.sdsc.edu 4720 ms 'H * 5100 ms H

[@ (e lNeBENN6)]

1

The first thing we notice is that this route is longer than the previous one, and more circuitous, travel-
ing over ANSNET (instead of SprintLink) through Denver and Seattle before arriving in California.

We also notice that the router at hop129.19.248.61 , does not have a correspond-
ing hostname registered in the Domain Name System (DNS; [MD88]). While most routers have
hostnames associated with their IP addresses, we found that not all do. In this case, we could
identify the router's location from its network prefix20.19), as Colorado State University in
Boulder, Colorado.

Furthermore, for hop 3raceroute reports not just one IP address butltiple ad-
dresses. What happened was that the first hop 3 probe was routed via the router with IP address
129.19.248.61 , while the second one went viad#ferentrouter,129.19.254.45 (this one has
a hostnamejcar-cu.co.westnet.net). The third one went via the same router as the first one,
129.19.248.61 . Routing variation such as this can occur due to “load balancing,” in which the
upstream router (hop 2 in this case) alternates the downstream links it uses to forward packets in an
effort to spread load among them and avoid overloading either one. We investigate the effects of
such routing, which we term “fluttering,” in detail §16.6.

Hop 3 also illustrates the more general principle treatkets do not always take the same
route It also can be difficult to determine whether two routes are equivalent. For example, it may
be that129.19.248.61 is indeed an interface on the sammr-cu.co.westnet.net router,
but one that happens not to have a hostname associated with it. Or it may be a physically distinct
router.

Because Internet routes can change between successive probe packets, we need to
also realize thatwe have no guarantee that probes of different hops take the same route
as previous probes. For example, from the above we might conclude that the first hop 3

probe took the routes-gw-discovery.cs.colorado.edu — cu-gw.colorado.edu —
129.19.248.61 , and the second took the routs-gw-discovery.cs.colorado.edu —
cu-gw.colorado.edu — ncar-cu.co.westnet.net . But for all we know the upstream route

could have changed between the end of the hop 2 probes and the beginning of the hop 3 probes, and
the hop 3 packets may have been routed via Alaska at the first two hops! The only “guarantees” we
can have that the route has not changed are: (1) consistency with other measurements of the same
path (for example, in multiple measurements we always see the same routers for hop 2 and hop 3),
and (2) self-consistency within the route. For example, if we find thatrhepl is geographically

distant from hopn, and we know the network lacks a link between those two locations, then we
would conclude that a routing change occurred upstream fronnhefd. Some examples of this
behavior are given iR 6.5 and; 6.6.1.

In general, if a route appears self-consistent and shows no sign of multiple routing for
any of its hops, then we assume that it is indeed self-consistent, and treat the route as a valid
measurement of the path to the remote host.

Another anomaly to discuss in the example above is the 10th hop:

10 enss.sdsc.edu 4720 ms 'H * 5100 ms 'H

17

Here “H” indicates thattraceroute received an ICMP “Host unreachable” message from the
routerenss.sdsc.edu . This means that the router knows that the host cannot be presently reached.
Another diagnostigraceroute can generate isiN,” indicating that it received an ICMP “Net-

work unreachable,” the counterpart message indicating an entire network is unreachable (e.g., due
to a failed link). We observed only two of these in all of our measurements.

Note also that the 3rd probe packet reports a round-trip time (RTT) of 5,100 msec, even
thoughtraceroute supposedly only waits 5 seconds to receive a rephaceroute 's timer,
however, is not fine-grained, so due either to the timer's granularity, or to delays in scheduling the
traceroute process for executionraceroute received the reply before it decided to time out
the probe.

Another limitation to keep in mind is thataceroute elicits the route as seen at the
network layer Each hop reported gives the next IP router in the path from the source to the destina-
tion. Often, IP routers are connected to one another using simple “link layer” technologies such as
Ethernets or point-to-point links, with trivial topologies. Increasingly, however, the link layer tech-
nologies, for example ATM or Frame Relay, themselves have more complicated topologies, and are
capable of routing packets within a link layer mesh that itself has multiple lgpsroute can-
not measure routing at this layer, because the TTL mechafjign2.Q) is present only at the higher
(IP) layer. For example, in our second dataset we found a route with the following two successive
hops:

gwl.scll.alter.net
107.hssi4/0.gwl.mial.alter.net

The first hop is in Santa Clara, California, and the second in Miami, Florida. It turns out that there
is no direct physical connection between these two routers, but rather a Frame Relay mesh [Lid96],
a fact that we could not have surmised from tfaeeroute =~ measurement of the route.

Another potential source of measurement error arises in older (4.3 BSD-derived) routers
incorrectly setting the TTL in their ICMP replies. As explained in taeeroute documentation
([Jac89]), these routers would erroneously use for the ICMP reply the TTL of the incoming packet
that triggered the reply. Foraceroute probes, this is a disaster, because the reply being triggered
is precisely “TTL expired,” so the ICMP replies would be sent back using a TTL of 0, too (and thus
never reach us). Since such routers consistently fail to return an ICMP reply to the sender, they are
a form of “unresponsive” router, for which we analyze our measuremeijté.in

A more subtle measurement problem occurs due to routers that are configuedd to
limit generation of ICMP messages. For example, some routers will send at most one ICMP mes-
sage each second. Such behavior is specifically encouraggd3ir2.8 of [Ba95], as a means of
conserving both network bandwidth and router resources. 8r2 we analyze our measurements
for the presence of rate-limiting routers, and find that, in general, only endpoint hosts (and not
routers internal to the Internet) appear to be presently limiting their ICMP generation rate.

Another issue regardingaceroute concerns its use of the User Datagram Protocol
(UDP; [P080]). In order to associate the ICMP replies it receives with the probe packets it previously
generatedfraceroute must construct packets that manage to record identifying information in
just the first 8 bytes of the transport layer header, as that is all of the original packet returned in an
ICMP message. It does this by using for its probe a UDP packet, which it sends to a (hopefully) non-
existent port on the remote ho&t. The informationtraceroute needs to record the identifying
information is coded in the port number in the UDP header.

18

Some network sites, however, have “firewalls” in place to filter incoming network traffic
for security purposes [CB94]. These firewalls may decide that the incoming UDP packet does not
appear destined to any of the services the site wishes to make publicly available to the Internet, so
the firewall drops the packet without returning an ICMP Time Exceeded message. Thus, firewalls
can generate an effect similar to lost packetscéroute never receives a reply for a given hop,
or beyond it). It was easy to identify such sitestraseroutes to them consistently stopped short
at the same routeg 6.7.4). For our analysis of the data, we consideredtagroute reaching
a firewall router as having successfully reached the host.

Traceroute 's use of UDP packets raises another measurement issue. When
traceroute traces the route to an IP addredsit determines that it has elicited the full route
whenever it receives a “UDP Port Unreachable” ICMP replien if the reply did not come from a
router identifying itself as address Some hosts (and indeed all routers) have multiple IP addresses
associated with them, so it is possible when tracing the route to addresseceive a reply from
addressB. When this happens, it indicates thaand B are both addresses for the same host (even
though their associated hostnames might not revealhis).

It is sometimes possible to use thigsceroute feature to determine whether
two IP addresses correspond to the same host. For example, the name associated with
134.55.12.231 is lInI3-e-stub.es.net , while the name associated witl34.55.6.71 is
lInl-Ic3-3.es.net . Both of these names have DNS “A’ records for the corresponding ad-
dresses, and no extra recordsagariori we might assume that the two addresses/hostnames refer
to two separate machines. However, depending on the state of ESNET routing, it is possible for a
traceroute tdinl3-e-stub.es.net to be “answered” byinl-Ic3-3.es.net , indicating that
they are indeed the same machine. This test is not guaranteed to work, though. It depends on the
machine's algorithm for deciding what IP address to put in its ICMP reply, and on which interface
the incoming UDP probe packet arrives (which in turn depends on the current routing).

4.3 Exponential sampling

We use the term “measurement” to denote the full process of runningatiegoute
utility; that is, the attempted tracing of the entire route between a source host and a destination host.
In our experiment we devise our measurements of Internet routes so that the time intervals between
consecutive measurements are independent and exponentially distributed.

Using independent and exponentially distributed intervals between measurements gains
two important (and related) properties. The first is that the measurements correszaiditite
random samplingBM92]. Such sampling is unbiased because it samples all instantaneous signal
values with equal probability.

The second important property is that the measurement times form a Poisson process.
This means that Wolff' ®ASTA principle—“Poisson Arrivals See Time Averages"—applies to our
measurements: asymptotically, the proportion of our measurements that observe a given state is
equal to the amount of time that the Internet spends in that state [Wo82].

“Note also that sometimes the route to addrdss different than the route to addref8 For our measurements,
this only occurred fombone.ucar.edu , for which the route to one of its addresses is one hop longer (and a
strict superset) of the route to the other address. We accommodated this difference in our analysis by considering a
traceroute that reached the endpoint of the shorter route as having traveled successfully to the host.

19

Two important points regarding Wolff's theorem are (1) the observed processdbes
need to be Markovian; and (2) the Poisson arrivals need nbbbegeneods[Wo82, § 3]. This
second point is particularly important for our study, because our measurement rate varied, as dis-
cussed ir§ 4.1.

The only requirement of the PASTA theorem is that the observed process eantiont
pateobservation arrivals. For any interarrival distribution other than independent exponentials, the
process can anticipate observation times to some degree because the instantaneous probability of
an arrival changes with the length of time since the last observation. For the exponential distribu-
tion, however, the probability remains constant, a consequence of the distribution's “memoryless”
property. Thus, the theorem fundamentally requires independent exponential intervals between
measurements, which argues strongly for the use of exponential sampling in practice.

There is one respect in which our measurements fail the “lack of anticipation” require-
ment. Even though we schedule our observations to come at independent, exponentially distributed
intervals, the networkan anticipate arrivals to a certain extent. In particul@nen the network has
lost connectivity between the site runnimgd _control (§ 4.1) and a site potentially conducting
atraceroute , the network can predict thato measurement will occuiThus, while the times at
which weattemptedo measure the network satisfy the PASTA requirements, the times for which
we successfullyneasured the network do not in this regard. The effect of this imperfect sampling is
a tendency tainderestimatehe prevalence of network connectivity problems, as discussed further
in §5.2.

The main use we make of the PASTA theorem is as follows. If we makeservations of
Internet routing, of whiclt find stateS andn — k find some other state, then because of PASTA we
are on firm ground making the assumption that the unconditional probability of observing 'state
is approximatelyk/n. Furthermore, ift < n, we argue that we can consider the observations
as independent, and hence can apply a Fisher's exact #©&) (to test for significant differences
among sets of observations. We discuss this independence assumption fugthdd. in

4.4 Which observations are representative?

In this section we discuss what sort of observations we can make of the Internet for which
our samples are plausibly representative of Internet behavior in general, and those for which we
would not consider our samples representative.

37 Internet hosts participated in our routing study. This is a miniscule fraction of the
estimated 6.6 million Internet hosts as of July, 1995 [L095], so clearly the behavior we observe that
is due to the particular endpoint hosts in our study is not representative.

The 37 endpoint hosts were from 34 different networks, again a miniscule fraction of the
more than 50,000 known to the NSFNET in April, 1995 [Me95a]. So, again, any behavior we ob-
serve due to the particular endpoint (“stub”) networks in our study is not persuasively representative.

On the other hand, we argue that tleaites between the 37 hosts are plausibly repre-
sentative, because they include a non-negligible fraction oatitenomous systenfaS's) which

That is, the arrival rate can vary over time, as long as the interarrival distribution remains exponential and the arrivals
remain independent of each other and of the observed process.

SFurthermore, the sites were self-selected (usually, though not always, because someone at the site had an interest in
wide-area networking) and skewed to universities.

20

together comprise the Internet. Recall that AS's are administrative entities that manage routing for
a collection of networks, using unspecified protocol(s), and that robthgeerAS's is done using

the Border Gateway Protocol. We expect the different routes within an AS to have similar char-
acteristics (e.g., prevalence of pathologies, or routing stability), because they fall under a common
administration. We therefore argue that sampling a significant number of AS's lends representa-
tional weight to a set of measurements.

To determine the number of AS's in the Internet, we proceeded as follows. In Jan-
uary, 1996, we obtained a BGP routing table dump from the AS border rkagier.sdsc.edu ,
located at the San Diego Supercomputer Center (SBDSTe routing table lists all the destinations
(networks, more or less) known to the router, i.e., its view of the Internet. For each of those destina-
tions, the table includes a list of AS's over which routing information for the destination traveled to
kasina.sdsc.edu . The view of Internet routing given directly by this table is skewed by SDSC's
particular location in the Internet. However, virtually all of the routing reflects disparate AS's con-
necting to SDSC's network service provider, MCI, at many different points. So, if we exclude MCI
itself from our subsequent analysis, then the remainder of the routing gives us a much broader view,
namely that seen by MCI at its many interconnection points.

All in all, the routes in the table included 1,031 AS's for 33,824 distinct destinations.
From this we estimate that the Internet presently has about 1,000 active AS's. (As of August, 1995,
about 6,600 had been assigned [DISA95].) The routes in our study traversed 85 of these, or about
8%.

An important point, however, is that not all AS's are equal—some are much more promi-
nent in Internet routing than others. We devised a “weight” to associate with AS's as follows. For
each AS, we counted the number of times it occurred in the BGP table in a path to a remote des-
tination. The AS's weight then is the ratio of the number of its occurrences to the total number of
occurrences of any AS.

The weights obtained in this fashion are skewed towards the view of the Internet as seen
by SDSC, and indeed two AS's had weight 25%: AS 145 (“NSFNET-CORE") and AS 3561 (“MCI-
RESTON"), because virtually every route known to the SDSC router goes through these two. But
the next AS has a weight of only 5% (AS 1239, “SprintLink”), because the majority of the routes do
not go through it. So we adjusted for the SDSC-skewed perspective by removing the first two AS's
from the set and recomputing the weights. After this adjustment, we find that the AS's sampled
by the routes we measured represent, by weight, about 52% of the Internet routes. We take this as
an indication that we did indeed sample a significant subset of the large-scale variation in Internet
routes, and our observations of those routes are plausibly representative of Internet routing as a
whole.

4.5 Testing for significant differences

Because we have measurements taken at two points in time—the end of 1994 and the end
of 1995—we have an opportunity to assess a number of aspects of the measurements in the two
datasets for the degree to which they reflect significant differences. We can then interpret these

"Many thanks to Hans-Werner Braun of SDSC for suggesting and facilitating this.
8Better would probably be to weight by traffic volume. Unfortunately, the statistics necessary for doing so are not
available.

21

differences (or lack of differences) as indicating how the Internet changed (remained unchanged)
over the course of 1995. While having just two points in time offers only the most crude form of
trend, it is still far better than simply assuming that characteristics of the Internet do not change,
particularly given evidence of major changes over time as discussed in our previous work [Pa94b,
Pa94a].

The potential changes we will attempt to assess concern the frequency with which we
observe different Internet phenomena (for example, routing loops). Suppose that, out of two repre-
sentative samples froR; andRR 5 of n; andn, observations, respectively, we find that subsets of
sizek; andk,y exhibit some propert?. We wish to gauge whether findirig instances ofP out
of n; samples iR, is statistically consistent with finding, instances out ofi, samples inR..

If consistent, then we do not have evidence of a significant change befdieandR». But if the
findings are inconsistent, then we interpret the difference as due to a change in the prevance of
either the likelihood ofP increased during 1995, £ > lel or decreased, % < lel

To test for statistically significant differences, we #sgher's exact testThe discussion
of the test we now present follows that of Rice [Ri95]. li&t denote a random variable giving the
number of instances @ observed Nk, N; the total number of observations Ry, and K, and
N5 the same fofR,. Let K = K; + Ky andN = N; + N, correspond to the totals across both
datasets.

The key observation of Fisher's test is that, if the likelihood of obserf#ing the same
in the two datasets, then we can view the problem askfdotal instances of out of N obser-
vations, how likely is it thatK; of them would have fallen int&, given thatR, comprisesiN;
observations? With this rephrasing of the problem, we have that

(&)
The numerator of Eqn 4.1 corresponds to the number of wayskthatances ofP can be dis-
tributed, among a partition of total observations, into two setswof andn, = n—n; observations,
given that the first set of observations includgsnstances of°. The denominator corresponds to
the total number of ways that instances can be distributed ovwerobservations, not subject to
any conditioning. The ratio then gives the probability of obsendindnstances irR;, given the
size of Ry, the total number of instances B, the size of the combined sample pool, and the null
hypothesis thakR; andR, are constructed using independent draws without replacement from the
combined sample pool.

Armed with Eqn 4.1 for the probability of observing exackly instances, we can then
construct arejection regioncorresponding to values d@f; that we would be unlikely to observe
if the null hypothesis is indeed correct. We usewva-sidedregion, meaning that it includes both
values ofk; that are too low to be likely, and values that are too high. To construct the region, we
find the maximumk; and minimumk,, for which

P[Kl = k1|N1 = nl,K = k,N = n] = (41)

PIKy < kN1 =n1, K =k,N =n]

IA

P[Kl Zku|N1 :nl,K:k,N:n]

IA
D[RR

Given these values, we then have

P[Klgkl orKlzku|N1:n1,K:k,N:n] < a.

22

So, given the null hypothesigs; will fall into the rejection region by chance with probabilityor
smaller. By usingy = 0.05, using this test we will erroneously reject the null hypothesis at most
5% of the time. Consequently, K falls into the rejection region, we conclude with confidence
95% that the null hypothesis is incorrect, and indeed there was a significant change in the prevalence
of P betweeriR; andR.

All that remains to use this test is to specify how to finégndk,. For a giverx, we have

-1 P
n n n—nm
P[K1SH|N1:TL1,K:/€,N:TL] = (k) Z <i1><k—i1>’

i=max(0,k—mn2)

wherens = n — n;. So to findk; we simply carry out the summation far= 0, ..., min(n, k)
and note the largest value effor which the probability is< %.9
The procedure for finding,, is analogous.

4.6 A note on independence

The argument in the previous section assumes that our measurements are observing inde-
pendent events. This is not quite true for our measurements. Using Poisson sampling means that
the measurememtrrivals are independent. However, the observatithresnselve$what each inde-
pendently scheduled measurement observes) are not independent: any temporal correlations in the
observed process will be faithfully reflected in the observations.

However, we will be applying the methodology §r.5 torare events, such as the obser-
vation of pathological routing conditions. These rare events are genadigjustered in time, so
the approximation that observations of them are independent is a good one.

“Here and in the equation, thein andmax operators are to exclude valuesrothat are impossible because they
require more tham, instances ofP in the second set of the partition, or fewer than 0.

23

Chapter 5

The Raw Routing Data

In this chapter we discuss the sites that participated in our routing experiments, the dura-
tion of the experiments, and the preliminary reduction of the raw data we gathered.

5.1 Participating sites

The first routing experiment began the evening of Tuesday, November 8, 1994, and lasted
until the morning of Saturday, December 24. During this time, we attempted 6&®toutes
between 27 sites. We refer to this collection of measuremen®; gslataset #1). We will often
refer to a single such measurement agacéroute .”

The second experiment began the morning of Friday, November 3, 1995, and lasted until
the afternoon of Thursday, December 21. It included 37,097 attentatestoutes between
33 sites. We refer to this collection of measurement®as Details of the measurements and the
sampling intervals are discussed§id.1. BothR; andR» are publicly available from thinternet
Traffic Archive at:

http://www.acm.org/sigcomm/ITA

under the namdlPD-Routes

Table | lists the sites participating iR, giving the abbreviation we will use to refer to
each site, the site's Internet domain, the number of days it participated in the study, a brief descrip-
tion of the site, and its location. These sites also participated,inexcept forbatman , korea ,
usc, andxor . Table Il lists the additional sites participating®y. In R, all sites participated at
least a month, except fatke , which participated for 23 days, and 13 of the sites participated for
the maximum of 48 days.

The sites include educational institutes, research labs, network service providers, and
commercial companies, in 9 countries. Figures 5.1 and 5.2 show the geographic locations of the
North American and European sites.

LAt the time of this writing, the Archive is moving from its old location to the above URL. If the reader has any
difficulty accessing the Archive, send emaiMern@ee.lbl.gov

24

Name \ Domain

| Days | Description

| Location

austr mu.oz.au 24 | University of Melbourne Melbourne, Australia
batman | batman.net 11 | Experimental ATM network Boulder, CO
at National Center for At
mospheric Research
bnl bnl.gov 37 | Brookhaven National Lab | Brookhaven, NY
bsdi bsdi.com 9 | Berkeley Software Design, Colorado Springs, CO
Inc.
connix | connix.com 22 | Caravela Software Middlefield, CT
harv harvard.edu 9 | Harvard University Cambridge, MA
inria inria.fr 9 | INRIA Sophia, France
korea postech.ac.kr 36 | Pohang Institute of SciencePohang, South Korea
and Technology
bl Ibl.gov 45 | Lawrence Berkeley Lab Berkeley, CA
Ibli Ibl.gov 45 | LBL home computer con; Berkeley, CA
nected via ISDN
mit mit.edu 21 | Massachusetts Institute of Cambridge, MA
Technology
ncar ucar.edu 22 | National Center for Atmo4 Boulder, CO
spheric Research
nrao cv.nrao.edu 44 | National Radio Astronomy| Charlottesville, VA
Observatory
oce oce.nl 19 | Oce-van der Grinten Venlo, The Netherlands
pubnix | va.pubnix.com 11 | Pix Technologies Corp. Fairfax, VA
sdsc sdsc.edu 24 | San Diego Supercomputef San Diego, CA
Center
Sri sri.com 9 | SRI International Menlo Park, CA
ucl ucl.ac.uk 24 | University College London, U.K.
ucol colorado.edu 45 | University of Colorado Boulder, CO
ukc ukc.ac.uk 24 | University of Kent Canterbury, U.K.
umann | uni-mannheim.de 19 | University of Mannheim Mannheim, Germany
umont | umontreal.ca 15 | University of Montreal Montreal, Canada
unij kun.nl 9 | University of Nijmegen Nijmegen,
The Netherlands
usc usc.edu 45 | University of Southern | Los Angeles, CA
California
ustutt uni-stuttgart.de 16 | University of Stuttgart Stuttgart, Germany
wustl wustl.edu 33 | Washington University St. Louis, MO
xor xor.com 30 | XOR Network Engineering| East Boulder, CO

Table I: Sites participating in first experimeri{)

25

Name | Domain | Description | Location \

adv advanced.org Advanced Network & Services | Armonk, New York

austr2 newcastle.edu.au University of Newcastle Newcastle, Australia

mid mid.net MIDnet Lincoln, Nebraska

near near.net NEARnNet Cambridge, Massachusetts

panix nyc.access.net | Public Access Networks | New York, New York
Corporation

rain rain.net RAINet, Inc. Portland, Oregon

sandia ca.sandia.gov Sandia National Laboratories | Livermore, California

sintefl sintef.no University of Trondheim Trondheim, Norway

sintef2 sintef.no University of Trondheim Trondheim, Norway

ucla ucla.edu University of California Los Angeles, California

Table II: Additional sites participating in second experimeRs)

rain

sri
m korea

B austr2
B qustr

Figure 5.1: Sites participating in routing study, North America and Asia

26

Figure 5.2: Sites patrticipating in routing study, Europe

27

Experiment 1 Experiment 2
Status # | % # | %
Unable to contact daemon| 495 7.1%| 1,872 5.0%
Daemon configuration errgr 25 0.4% 15| 0.04%
Host lookup failure 12 0.2% 101 0.3%
Total failures 532 7.6%| 1,988 5.4%
Total successes 6,459| 92.4% || 35,109| 94.6%
Total 6,991 | 100.0%| 37,097 | 100.0%

Table Ill: Summary of routing experiment difficulties

5.2 Measurement breakdown

In the two experiments, between 5-8% of tineceroutes failed outright (i.e., we
were unable to contact the remotped, executetraceroute and retrieve its output). As shown
in Table 1ll, almost all of the failures were due to an inability of tgd _control ~ process to
contact the remote daemon. Some of these were failures invdhling; that site, due to its ISDN
link frequently being down§(6.7.4), was often unreachable. But for most of the failures we do not
a priori know whether they represent the remote host being down or an Internet connectivity failure.
It is important to note that, if the latter was frequently the case, then to some dlegi@sEsumptions
behind PASTA are invalicsince an agent at the remote site with knowledge of current connectivity
problems could reliably predict no sampling would occur in the near futude3).

For our analysis, the effect of these failures to contact the remote daepwwill lead
to a bias towardsinderestimatingnternet connectivity failures, because sometimes the failure to
contact the remote daemon will result in losing an opportunity foaeeroute experiment to
reveal the lack of connectivity between that site and another remote site that shares the same path
as used betweanpd _control and the daemon.

When taking theR, measurements, however, we somewhat corrected for this underesti-
mation bypairing each measurement of the path=- B with a measurement of the path=- A.2
If npd control ~ was unable to reach one of eithéror B, it still attempted to contact the other to
measure the reverse route. In those circumstances where it was able to measure the reverse route, it
still had an opportunity to observe the routing fault, if present in both directions.

npd _control was unable to reach one of eithdror B 1,872 times. It was unable to
contact the other host of the measurement pair, either, in only 5% of these instances. Thus, for the
most part, théR, measurements do not suffer from bias in observing bidirectional routing faults.

We could further reduce this measurement problem by introducing a “batch” design to
npd, where the daemon would accept a list of measurements it should make at future points in time,
and would email back the results when they were complete. We did not adopt this approach because
one of our goals in the design npd was to keep it simple enough that sites volunteering to run it
could with reasonable ease inspect the code to see what they were running.

2About 20% of the measurements were not paired, because they were made in conjunction with the measurements
discussed in Part II.

austr
pubnix
unij
bsdi
sri
inria
batman
korea
harv
ustutt
umann
umont
oce
ncar

connix

Destination

mit
sdsc
ukc
xor
wustl
bnl
ucl
Ibli
ucol
nrao
usc
Ibl
total

10004 6 4 9 1 4 3 8 3 9 5 3 5 2 6 4 2 5 2 3 1 1 4 1 3 2

98| 3 4 5 2 5 6 5 1 5 6 2 3 4 1 8 1 4 4 5 3 4 4 5 7 1
8210 4 3 1 2 2 2 4 6 1 6 1 6 2 2 5 1 6 1 3 5 5 3 1
87| 3 3 3 3 4 5 6 4 4 1 1 1 1 1 7 3 5 6 2 7 5 5 3 3 1
104| 8 2 5 3 3 1 4 7 5 5 4 6 6 2 4 4 8 2 5 1 4 6 3 5 1
106| 7 6 4 6 1 4 3 5 6 4 3 4 4 4 4 2 6 4 8 1 4 5 1 3 6 1
126| 5 6 4 4 1 7 7 5 5 1 3 5 8 4 5 8 6 4 4 7 9 5 4 5 4
887 10 6 8 8 5 7 6 7 3 3 2 2 1 1 1 2 1 1 1 2 2 2
119| 3 5 4 4 1 4 6 7 5 4 9 7 5 4 6 9 3 2 2 2 4 2 11 4 4 2
142| 5 4 8 8 11 7 7 8 10 4 3 13 5 9 3 7 1 1 1 6 4 1 7 1 5 3
185/12 11 6 12 4 10 9 10 9 13 4 11 11 9 7 3 8 4 2 8 3 2 5 4 4 4
168| 7 6 11 5 10 3 8 14 10 5 8 7 11 8 10 5 7 2 2 5 7 4 5 3 3 2
21620 10 11 3 8 4 17 17 8 23 9 11 10 10 13 4 6 3 4 6 2 4 2 2 2 7
225/ 9 16 15 8 10 14 13 14 16 8 16 20 7 4 5 6 5 4 2 6 5 3 5 4 2 8
222(15 17 13 12 5 7 13 14 14 10 14 11 6 9 12 8 2 8 6 5 3 2 5 4 3 4
200{14 10 13 11 8 6 9 5 10 13 10 8 6 13 7 10 11 6 2 5 5 6 4 4 2 2
233/11 16 11 14 10 9 21 10 19 16 12 16 8 10 11 9 5 5 2 4 2 4 1 6 1
228/ 14 11 13 14 13 13 16 11 10 10 16 10 16 11 5 4 8 3 4 4 5 6 3 3 3 2
302{24 20 22 19 22 16 27 21 14 14 18 11 8 11 5 9 4 4 5 6 6 3 5 4 1 3
308[25 23 27 20 16 16 20 24 17 18 14 13 14 9 11 2 4 6 5 5 3 7 4 1 3 1
374/ 34 31 30 35 26 32 32 25 16 14 9 6 13 14 9 8 3 5 7 4 3 3 1 4 3 7
43141 44 40 45 43 33 24 20 14 16 15 7 11 11 7 6 3 7 9 3 7 5 6 8 2 4
506(56 51 72 59 41 31 28 26 13 27 7 13 16 6 10 7 6 3 10 2 4 5 4 2 4 3
436| 47 53 45 45 44 26 28 14 9 16 10 13 23 6 4 8 3 6 14 5 5 2 2 7 1
454| 57 48 52 42 44 28 32 24 12 14 8 15 12 9 4 7 6 2 8 5 5 4 3 3 7 3
467| 60 49 47 52 49 37 25 18 11 17 12 13 6 11 7 9 4 4 7 4 2 5 2 5 7 4
452 56 35 50 46 37 25 40 18 12 10 10 17 13 12 8 4 11 4 11 7 2 2 4 5 7
6459501 473 456 456 396 385 382 380 319 252 251 241 220 214 192 166 145 124 115 109 109 106 103 100 93 92 79
S5 383535 L E LR8BS EEERETES
2 73 5 "o §STEELSgES ©7353

o S 5 © o
O
Source

Figure 5.3: Number of measurements made for each InternetRattiataset

28

Destination

panix es2
ukc 564

Ibli ess
nrao 8s4
ncar 84
oce 1006
harv e31
ucol e
unij o10
sdsc 1078
sandia 973
pubnix 1021
umann 1018
bnl 1031
bsdi 1043
Srj 1043
mit1o30
ustutti1o
austr 1oes
umont1o77
wust| 1063
near 1228
ucl 1210
adv 1165
rain 1260
mid 1260
inria 1282
austr2 11es
sintefl 1336
sintef2 1277
ucla 1287

Ibl 1309
connix13ss
total 3s109

total
connix

13

17

24

46

32

33

31

27

33

48

a1

35

32

37

45

43

39

36

42

26

29

81

72

52

37

53

46

51

87

57

43

51

15

27

37

21

24

30

34

34

28

32

37

57

26

28

42

35

41

36

41

24

50

46

50

50

66

64

82

49

61

59

52

23

15

36

20

28

27

30

31

26

46

30

59

48

a1

29

27

38

60

36

72

37

68

78

53

48

48

55

22

32

45

47

43

9

22

23

39

21

34

34

45

35

30

29

27

49

36

60

34

48

33

51

49

64

a4

54

26

61

54

50

45

43

46

57

36

14

38

17

28

44

37

38

29

23

54

29

45

25

49

43

19

43

33

46

34

24

48

51

52

54

49

67

42

31

32

61

17

17

30

17

14

32

30

34

50

47

38

22

86

54

31

55

39

46

20

31

42

26

67

45

46

76

61

42

26

49

32

19

21

32

30

39

a4

32

19

37

27

42

24

28

26

47

32

34

30

25

42

54

47

40

64

47

66

65

43

43

81

18

14

28

32

28

25

32

31

27

a4

19

41

40

31

28

38

82

37

35

34

18

48

52

59

45

45

53

51

44

51

54

23

23

22

33

39

38

26

13

35

33

50

47

39

23

28

34

42

39

48

38

39

51

34

33

45

64

a4

41

69

41

61

87 64 43 53 36

32

16

19

23

28

38

a4

22

32

45

32

41

37

31

43

37

40

37

37

36

a4

29

26

57

54

47

67

67

29

52

28

52

13

38

26

14

35

24

41

24

23

43

27

35

29

39

34

32

41

a4

14

47

41

57

18

37

56

61

21

37

71

16

35

25

19

32

20

46

28

34

26

47

30

40

31

32

24

39

32

39

22

60

29

51

53

47

a4

46

42

59

46

88

41

21

14

25

54

31

26

25

28

42

31

42

a4

51

42

27

51

36

43

40

43

61

48

27

34

31

34

68

36

a4

16

15

23

43

19

43

20

32

52

43

31

46

29

32

24

44

28

41

41

43

54

40

43

51

45

22

18

42

39

66

43

45

16

22

32

31

40

26

32

22

48

31

54

29

33

37

21

34

23

55

35

34

15

42

a4

38

36

a1

43

41

38

51

27

16

27

a4

26

62

23

35

26

33

33

26

34

16

39

18

17

42

62

43

43

a4

37

35

33

56

35

39

53

28

34 26 43 39

12

16

36

30

32

23

25

33

51

32

26

37

30

23

21

18

36

30

31

43

41

40

42

82

34

54

46

48

39

41

39

29

30

26

26

42

29

32

40

22

18

70

18

44

38

30

21

41

23

32

31

34

42

25

38

40

35

37

16

47

29

a7

60

16

12

28

29

33

39

37

a4

31

26

30

29

27

18

26

21

21

37

36

55

33

33

41

33

46

33

46

53

40

31

38

37

13

13

36

32

27

18

37

26

23

38

39

29

18

39

29

33

35

28

33

36

20

31

24

34

34

75

56

38

49

39

20

21

16

38

49

37

13

53

32

33

24

31

27

37

40

37

41

36

29

38

26

29

31

35

42

24

26

29

46

39

32

15

30

15

14

13

18

40

31

36

21

12

20

28

37

15

26

25

51

31

31

48

47

40

43

40

46

29

48

22

53

59

24

17

11

34

21

12

41

21

36

29

24

24

32

39

64

32

34

31

27

38

35

43

29

57

23

30

30

22

29

25

51

14

33

11

20

27

19

35

16

31

39

20

30

33

28

17

52

28

43

33

24

34

51

38

29

30

21

37

53

39

45

32

44 33 47 41 36

20

14

17

29

37

25

36

34

43

a4

34

51

22

32

28

32

40

23

59

22

25

34

30

28

18

22

30

35

48

39

13

25

28

13

19

13

31

31

23

35

19

29

33

50

24

27

40

25

37

28

31

30

40

22

22

23

29

30

23

26

31

34

18

27

20

17

27

17

33

33

36

25

10

46

30

36

22

22

32

19

17

17

31

39

25

31

47

38

27

28

30

41

19

13

27

33

26

33

15

21

15

20

29

18

39

28

15

61

38

34

40

30

20

a1

16

19

39

28

43

35

27

27

27

11

24

28

43

15

31

37

21

19

13

48

27

35

36

25

26

31

19

10

27

34

33

39

30

31

12

a4

21

28

25

23

15

24

37

13

12

28

27

32

10

36

29

27

21

33

41

28

41

22

28

22

19

26

33

16

14

23

19

21

14

11

27

19

19

30

23

18

20

17

32

29

26

15

29

8

26

9

21

20

6

13

36

44

15

15

27

40

a7

30 33 33 53 27

23

11

18

11

14

13

38

15

25

14

12

10

31

23

13

26

27

15

21

15

13

a4

27

24

14

15

11

20

24

25

16

23

16

11

11

13

18

1339 1298

1336

Ibl
ucla
sintef2
sintefl
austr2

1286 1255 1231 1215 1183
1288 1279

inria

1132

1099 1059

1237 1222 1191 1154 1131

mid
rain

adv

ucl
near
wustl
umont

austr
ustutt

=
en

1044 1006

1092 1054 1031

Source

998

989

913

905

887

883

Figure 5.4: Number of measurements made for each InternetRattiataset

29

30

| Site | Best Guess |
wvnet-wtn9-c1.sura.net Charleston, WV
128.167.205.2 Charlottesville, VA
reynolds-ctvl-cl.sura.net Charlottesville, VA
uva-ctv-c3mb.sura.net Charlottesville, VA
38.2.213.16 New York, NY
core.net218.psi.net New York, NY
leaf.net218.psi.net New York, NY
38.1.2.14 Washington, D.C.
core.net222.psi.net Washington, D.C.
137.209.1.1 College Park, MD
192.80.6.2 College Park, MD
198.25.80.1 College Park, MD
199.54.78.1 College Park, MD

Table IV: Uncertain router sites

Figures 5.3 and 5.4 summarize the numberaferoute = measurements between each
pair of sites for each of the experiments.

5.3 Geography

To understand the Internet topology traversed by the experiment, and how each router
relates to others, we undertook to identify the geographic locations of the 751 routers (distinct IP
addresses) involved iR, and the 1,095 routers iRs. The identification involved several steps:

1. Routers with an Internet hostname in the same domain as one of the participating sites (e.g.,
colorado.edu) were assumed to be located at that site.

2. Routers with a single geographic location in their name (éajlasl.tx.alter.net)
were assumed to reside at that location.

3. For still-unidentified routers, we sent email to the NIC “whois” contacts [HSF85] for the
router's domain, asking if they could identify the router's location or the naming scheme
used for routers in that domain. The various contacts proved remarkably helpful, willing
to go to considerable efforts to aid in locating the sites. We also benefited from various
“whois” servers, especially the European semébis.ripe.net and its corresponding
WAIS server, and topology maps.

4. If any still-unidentified routers only occurred as a hop between two identified sites at the same
location, we assumed the router was sited at that location too. For example, if we observed
a partial network path ot — B — C, with A andC both sited in San Diego, then we
assumed thaB was sited in San Diego too.

31

5. For the remainder, we made a “best guess,” based on the locations of upstream and down-
stream routers. Table IV summarizes the sites for which we had to guess.

Thus, of the 1,531 routers traversed during the study, we were able to identify the location
of all but 13.

After locating the routers, we reduced the topology traversed by the experiment to con-
nections between cities, listed in Table V. Having developed a geographic database for the various
routers, we then constructed maps showing the links traversed in the’ Siglyre 5.5 shows these
links from a North American perspective, where sites in Hawaii, Korea, and Australia are shown
west of California, and sites in Europe and Israel are shown in the Atlantic. Figure 5.6 show the
links from a European perspective; here, the only links extending outside of Europe were those to
sites in the U.S., which is represented as a single site west of France.

®Doing so first required analyzing ttieaceroutes for routing pathologies§(6), because “fluttering” and mid-
stream routing changes can easily introduce spurious links.

State or Country |

City |

32

California Anaheim, Berkeley, Bloomington, Hayward, Livermore, Los Angel
NASA-AMES (Moffett Field), Oakland, Palo Alto, Pasadena, Sad
mento, San Diego, San Francisco, San Jose, Santa Clara, Stockto

Colorado Boulder, Colorado Springs, Denver, East Boulder

Connecticut Hartford, Middlefield

Florida Miami

Georgia Atlanta

Hawaii Honolulu

lllinois Batavia, Chicago, Willow Springs

Maryland College Park

Massachusetts | Boston, Cambridge, Waltham

Michigan Detroit

Missouri Kansas City, St. Louis

Nebraska Lincoln

New Jersey Pennsauken, Princeton, West Orange

New Mexico Albuquerque, Los Alamos

New York Albany, Armonk, Brookhaven, Buffalo, Deer Park, Ithaca, New Yg

Syracuse

North Carolina

Greensboro, Raleigh

Ohio

Cleveland, North Royalton

Oregon

Portland

South Carolina

Greenville

Texas

Austin, Dallas, Fort Worth, Houston

Virginia

Charlottesville, Fairfax, Falls Church, Newport News, Norfolk, Vienr

Washington, D.C,

Washington Kent, Seattle

West Virginia Charleston

Australia Adelaide, Canberra, Melbourne, Newcastle, Sydney

Austria Vienna

Belgium Brussels

Canada Vancouver, Montreal, Toronto

England Cambridge, Canterbury, London, Manchester

Finland Helsinki

France Lyon, Marseilles, Montpellier, Nice, Paris, Poitiers, Sophia, Toulousg

Germany Aachen, Duesseldorf, Heidelberg, Karlsruhe, Mannheim, Munich,
Stuttgart

Italy Milan

Israel Jerusalem, Rehovot

Korea Pohang, Seoul

Netherlands Amersfoort, Amsterdam, Den Bosch, Eindhoven, Nijmegen, Venlo,

Utrecht

Norway Oslo, Trondheim
Spain Madrid

Sweden Stockholm
Switzerland Geneva

Table V: Router cities

Seoul

Pohang

Newcastle
Sydney
Canberra
Melbourne
Adelaide

HI

Israel

Figure 5.5: Links traversed duriri@, andR,, North American perspective

33

elsinki
Stockholm
Cambridge
London
Amsterdam
Paris
Duesseldorf
Munich

Figure 5.6: Links traversed duriri@,; andR., European perspective

34

Chapter 6

Routing Pathologies

We begin our analysis by classifying occurrences of routing pathologies—those routes
that exhibited either clear sub-standard performance, or out-and-out broken behavior.

6.1 Unresponsive routers

Some routers do not return the required ICMP messages in responsecioute
probes § 4.2.2), or do so with insufficient TTL's to make the return trip. We refer to these as
unresponsiveouters. If these routers are prevalent, they will add a great deal of noise to our mea-
surements, making analysis difficult. This is especially the case because an unresponsive router
looks identical to a router that had to drop all three probe packets due to congestion, a case we are
interested in analyzing.

Fortunately, unresponsive routers are easy to spot. Unlike congested routers, unresponsive
routersconsistentlyfail to answer any of théraceroute ~ probe packets. Because we measured
multiple traceroutes between sites, we can look for just such consisténcy.

Upon inspecting théraceroutes in Rq, we found 4 unresponsive routers (which be-
tween them appeared in a total of ®3ceroutes): the last two hops prior to thekc endpoint
(repaired on December 8); the last hop prior toltiie endpoint (frequently, but not always); and
the 8th hop frorusc to various destinations for traffic routed between CERFNET (hop 7) and Al-
terNet or MCINET (hop 9), consistently. This quantity of only 4 unresponsive routers contrasts with
the 751 responsive routers in the first measurement set: clearly almost all Internet routers correctly
return ICMP messages for expired TTL's. Furthermoré jrwe did not identifyany unresponsive
routers, in contrast with 1,095 responsive routers. The previously unresponsive routers found in
the first measurement set now were responsive, indicating they had been upgraded (except we were
unable to determine if those on thec paths had been upgraded sinese did not participate in
the second set of measurements).

'Recall that we use the terntraceroute " to refer to both the utility, and to an instance of a measurement made
using the utility.

%In doing this analysis foR », we encountered a strange anomaly: all ofttlaeeroutes fromadv to ustutt
were missing the hop betwe&m-dc-1-h1/0-t3.icp.net andamsterdaml.dante.net . But this hop con-
sistently appeared in oth#raceroutes toustutt , identifying itself ascm-dante-e0.icp.net . It turned
out that due to an administrative decisiaom-dante-e0.icp.net did not have a route tadv's autonomous

35

6.2 Rate-limiting routers

Some routers limit the rate at which they generate ICMP messages, to conserve resources
(§ 4.2.3). We can partially test for the presence of such routers in our measurements as follows.
Recall that, for each hop, traceroute sends three “probes” to elicit ICMP messages in reply. If
the hopn router limits its ICMP generation rate, then in general it will reply to the first probe (unless
it happens to already have been generating ICMP messages). This reply will lesxbitoute
rapidly sending another probe, one whose ICMP reply will then be suppressed by the router due
to rate-limiting. Sincaraceroute waits up to 5 seconds between probe packets, the third probe
will not arrive until 5 seconds after the second, by which time rate-limiting again allows the router
to reply. So rate-limiting routers that limit ICMP generation to on the order of one per 1-2 seconds
will show up in our measurements as having a high proportion of first and third replies received, but
no second reply received. We term such replies “R-*-R,” reflecting their pattern.

We analyzedR» to determine for each router the proportj@of “R-*-R” replies, limiting
the analysis to routers for which we had at least 5 measurements. The distribytisrasfsharply
bimodal, with 8 routers exhibiting > 50% and the remaining 701 all having < 20%. Of the
8 routers, 7 were endpointgaria , mid, nrao , sri , ustutt , ucl , andwustl . These seven
are all running the Solaris operating system, which by default is configured to do rate-limiting.
The other router wass-gw.colorado.edu , Which, according to its DNS “HINFO” record, is a
Cisco 7000. These routers support rate-limiting and apparently this one had the option activated;
but we conclude that, in general, routers deployed today do not rate-limit their ICMP generation, at
least not on time scales of one per 1-2 seconds.

Because we subsequently only undertake light analysis of drapgegloute probes
(and never endpoint drops), for simplicity we assume that all missing ICMP replies correspond
to either a droppedraceroute probe packet or a dropped reply, and not to the effects of rate-
limiting.

6.3 Routing loops

Suppose routeR;'s routing tables indicate that, to forward a packet to libsit should
send the packet along a path that eventually includes rd@gef, due to an inconsistencyg,'s
tables indicate it in turn should forward the packefiovia a path that eventually includdg,, the
network contains a loop. The packet will circulate betwégrand R, until either its TTL expires
(§ 4.2.1), never reachingy, or the loop is broken by a routing update.

In general, routing algorithms are designed to avoid loops, provided all of the routers in
the network share a consistent view of the present connectivity. Thus, loops are apt to form when
the network experiences a change in connectivity and that change is not immediately propagated
to all of the routers [Hu95]. One hopes that loops resolve themselves quickly, as they represent
a complete failure. As long as the loop persists, end-to-end communication involving the path is
impossible.

Some researchers have downplayed the significance of temporary routing loops [MRR80],
and the ARPANET was subiject to transitory looping “at the 1% level” [C090]. Assuming that this

system, so its replies were always lost.

36

means that ARPANET paths on average contained a loop 1% of the time, then from the figures
presented in this section and the next we will see that loops in the Internet occur much more rarely.
Other researchers have noted that loops can rapidly lead to congestion as a router is
flooded with multiple copies of each packet it forwards [ZG-LA92], and minimizing loops is a
major Internet design goal [Li89]. To this end, the Border Gateway Protocol (BGP) used between
autonomous systems is designed to never allow the creation of inter-AS loops [RL95, Re95], which
it accomplishes by tagging all routing information with the AS path it traversed. This technique is
based on the observation that routing loops occur only when the propagation of iatdimgation
itself is subject to loops. The tagging allows a BGP router to determine if a peer is giving it infor-
mation that the peer directly or indirectly derived from the router itself. If so, the router discards the
information.
In this section we analyze our measurements for the prevalence of routing loops. We clas-
sify these loops as two types, “persistent” if they lasted longer thamateroute measurement,
or “temporary” if they resolved within the span of thhaceroute observing them. The next two
subsections look at these two types, and the final subsection comments on the location of the loops
within the network.

6.3.1 Persistent routing loops

A persistent routing loop is easy to detect imazeroute . Here is an example of a loop
betweeribl andlbli , ordinarily 6 hops apart:

irégw.lbl.gov 1.853 ms 1.623 ms 2.358 ms
erlgw.lbl.gov 7.165 ms 2.996 ms 3.098 ms
ir2gw.Ibl.gov 4.882 ms 3.516 ms 8.371 ms
isdnlgw.lbl.gov 7.98 ms 4.393 ms 4.311 ms
ascend49.lbl.gov 36.833 ms 32.772 ms 31.428 ms
isdnlgw.lbl.gov 30.428 ms 30.502 ms 33.528 ms
ascend49.lbl.gov 69.006 ms 59.429 ms 58.82 ms
isdnlgw.lbl.gov 59.358 ms 63.734 ms 61.775 ms
ascend49.lbl.gov 85.629 ms 84.168 ms 83.397 ms
10 isdnlgw.lbl.gov 83.374 ms 83.201 ms 83.349 ms

11 ascend49.lbl.gov 110.316 ms 120.243 ms 116.84 ms
12 isdnlgw.lbl.gov 109.221 ms 108.97 ms 109.242 ms
13 ascend49.lbl.gov 135.867 ms 136.797 ms 140.849 ms
14 isdnlgw.lbl.gov 137.359 ms 138.757 ms 137.028 ms
15 ascend49.lbl.gov 171.109 ms 167.197 ms 168.027 ms
16 isdnlgw.lbl.gov 187.18 ms 177.017 ms 165.499 ms
17 ascend49.lbl.gov 199.461 ms 193.441 ms 201.067 ms
18 isdnlgw.lbl.gov 191.205 ms 198.674 ms 192.041 ms
19 ascend49.lbl.gov 228.833 ms 219.05 ms 240.464 ms
20 isdnlgw.lbl.gov 213.537 ms 214.975 ms 220.435 ms
21 ascend49.lbl.gov 249.681 ms 254.247 ms 243.089 ms
22 isdnlgw.lbl.gov 239.341 ms 239.072 ms 243.516 ms
23 ascend49.lbl.gov 268.134 ms 270.585 ms 267.982 ms
24 isdnlgw.lbl.gov 273.742 ms 274.974 ms 265.043 ms
25 ascend49.lbl.gov 297.033 ms 293.392 ms 294.328 ms
26 isdnlgw.lbl.gov 348.844 ms 303.868 ms 291.552 ms

O©CoO~NOOOUTPA, WNPEP

37

| Source| Dest. | Loop | Location \

ucol bnl 129.19.253.18 ,129.19.253.17 Col. State Univ.

austr umann | mf-0.enss145.t3.ans.net , umd-rtl.es.net FIX-East

mit umann | same

Ibli xor icm-fix-e-h2/0-t3.icp.net . FIX-East,
icm-dc-2b-h3/0-t3.icp.net Washington D.C.

Ibl Ibli isdnlgw.lbl.gov , ascend49.Ibl.gov LBL
(this loop occurred twice)

[o] inria lInl-e-lInl2.es.net , Livermore, California
[InI2-e-linl.es.net

sdsc ukc gw.ukc.ac.uk ,gw.ulcc.ja.net London, Canterbury

sdsc usc mobydick.cerf.net , drzog.cerf.net SDSC

harv ucl mf-0.cnss56.washington-dc.t3.ans.net , Washington, D.C.
mf-0.cnss58.washington-dc.t3.ans.net

Table VI: Persistent routing loops i,

27 ascend49.lbl.gov 335.637 ms 324.15 ms 322.982 ms
28 isdnlgw.lbl.gov 328.654 ms 321.418 ms 316.452 ms
29 ascend49.lbl.gov 344.561 ms 351.843 ms 346.087 ms
30 isdnlgw.lbl.gov 358.938 ms 348.781 ms 355.01 ms

isdnlgw.lbl.gov is the Laboratory's ISDN gateway, aascend49.lbl.gov is the other end
of the ISDN link tolbli . Here,ascend49.lbl.gov apparently has lost track of the notion that
Ibli resides on its side of the ISDN point-to-point link, so it forwards any packettblfor back

to the ISDN gateway.

For our analysis, we considered atwgceroute showing a loop that was not re-
solved by the end of theeaceroute (i.e., after probing 30 hops) as a “persistent loop.” Of the
6,204traceroutes in R¢,> 10 exhibited persistent routing loops. Table VI summarizes these.

Three of these loops appear to have forrdadng thetraceroute probe. In theharv
= ucl loop, for example, the probes made it to London and almost tadheendpoint before the
loop appeared in Washington, D.C., at hop 16:

glan-gw.harvard.edu 87 ms 3 ms 2 ms
wjhgwl.harvard.edu 4 ms 2 ms 2 ms
harvard-gw.near.net 8 ms 11 ms 4 ms
prospect-gw.near.net 20 ms 20 ms 12 ms
tang-gw.near.net 32 ms 6 ms 6 ms

enss.nearnet 6 ms 6 ms 3 ms
t3-3.cnss48.hartford.t3.ans.net 7 ms 9 ms 11 ms
t3-2.cnss32.new-york.t3.ans.net 9 ms 10 ms 10 ms
t3-1.cnss56.washington-dc.t3.ans.net 18 ms 16 ms 20 ms

O©CoO~NOOOUOTA,WNPE

3This number represents the 6,459 tdtaiceroutes , minus 255traceroutes originating fromwust|
which, as explained i 6.6.2, suffered from a large degree of “fluttering,” making it difficult to determine whether true
routing loops were also present.

38

10 mf-0.cnss58.washington-dc.t3.ans.net 15 ms 17 ms 16 ms
11 washington2.dante.net 20 ms 15 ms 19 ms
12 icm-dc-1-e4/0.icp.net 75 ms 58 ms 77 ms
13 icm-london-1-s1-1984k.icp.net 144 ms 218 ms 127 ms
14 smds-gw.ulcc.ja.net 230 ms 161 ms 146 ms
15 smds-gw.uclja.net 131 ms 155 ms 138 ms
16 cisco-pb.ucl.ac.uk 1566 ms

* mf-0.cnss58.washington-dc.t3.ans.net 53 ms
17 mf-0.cnss56.washington-dc.t3.ans.net 58 ms 58 ms 55 ms
18 mf-0.cnss58.washington-dc.t3.ans.net 66 ms 61 ms 60 ms
19 mf-0.cnss56.washington-dc.t3.ans.net 62 ms 68 ms 68 ms
etc.

In thesdsc = usc loop, the loop formed just one hop from the SDSC source, after the probe had
already made it from San Diego to Los Angeles:

drzog.cerf.net 163 ms 2 ms 2 ms
134.24.120.102 7 ms 8 ms 7 ms

* ucla-la-smds.cerf.net 66 ms 19 ms

* losnet.ucla.edu 16 ms 16 ms
isi-ucla-gw.In.net 57 ms 20 ms 18 ms
* * mobydick.cerf.net 9 ms

drzog.cerf.net 13 ms 9 ms 7 ms
mobydick.cerfnet 9 ms 10 ms 9 ms
drzog.cerf.net 10 ms 11 ms 21 ms
mobydick.cerf.net 13 ms 32 ms 11 ms

QOoUo~NOOU~WNE

D =
—
o

The presence of packet loss' ¢) prior to the loop forming at hops 6—7 may indicate connectivity
deteriorating prior to a routing change (which led to an inconsistent state). A similar loss can be
seen in thénarv = ucl example above, at hop 16.

Thelbl =-inria loop entailed two separate loops:

1 irégw.lbl.gov 1.858 ms 1.66 ms 1.546 ms

2 erlgw.bl.gov 3.68 ms 2423 ms 2.244 ms

3 Ibl-lc2-1.es.net 3.252 ms 2.618 ms 2.645 ms

4 linl-Ibl-t3.es.net 5.892 ms 4.634 ms 3.985 ms

5 lanl-linl-t3.es.net 34.728 ms 29.444 ms 30.195 ms

6 snla-lanl-t3.es.net 61.712 ms 60.392 ms 60.347 ms
7 pppl-fnal-t3.es.net 78.807 ms 79.19 ms 77.252 ms

8 pppl-nis.es.net 79.454 ms 785 ms 78.166 ms

9 umd-pppl.es.net 85.851 ms 105.744 ms 89.141 ms
10 icm-fix-e-fO.icp.net 129.442 ms 86.567 ms 88.157 ms
11 * % %

12 * * lInl-lanl-t3.es.net 321.099 ms

13 lanl-linl-t3.es.net 577.496 ms 199.259 ms 134.383 ms
14 linl-lanl-t3.es.net 134.854 ms 135.204 ms 134.909 ms
15 lanl-lInl-t3.es.net 160.895 ms 160.312 ms 162.187 ms
16 lInl-lanl-t3.es.net 161.882 ms 315.869 ms *

17 * * %
18 * * %

39

19
20
21
22
23 * %
24 lInl2-e-linl.es.net 17.051 ms 26.225 ms 22.082 ms
25 lInl-e-linl2.es.net 21.823 ms 15.619 ms 21.804 ms
26 lInl2-e-linl.es.net 16.693 ms 22.776 ms 26.126 ms
27 lInl-e-linl2.es.net 23.758 ms 19.809 ms 22.475 ms
etc.

* F X
E o
L

The first sign of trouble is at hop 11, where, after having made it to FIX-East in Maryland at hop 10,
the network begins dropping probe packets (or their responses). At hop 12, a temporary routing
loop forms between the ESNET routers in Livermore, California, and Los Alamos, New Mexico.
This loop appears to lead to further problems at the end of hdpvillere subsequent packets are
lost for nearly 2 minutes (recall that each represents a lost response, including a 5-second wait).
Finally, at hop 24 the network comes back, but in an inconsistent state, with a consequent routing
loop. Most likely the routing inconsistency leading to the first loop was propagated through ESNET
to form the second loop.

In Ro, 50 traceroutes ~ showed persistent loops. Due ®,'s higher sampling fre-
quency, for some of these loops we can place bounds on how long they persisted, by looking for
surrounding measurements between the same hosts that do not show the loop. In addition, some-
times the surrounding measuremeatsshow the loop—these allow us to put lower bounds on the
loop's duration, too.

Table VII summarizes the loops seenfy. The first two columns give the source and
destination of tharaceroute , the next column the date, and the fourth column the number of
consecutiveraceroutes that encountered the loop. The fifth and sixth columns give the routers
involved in the loop and the geographic location. Note that only one of the loops spanned multiple
cities (and multiple continents!), the last in the table.

The final column gives the bounds we were able to assess for the duration of the loop.
Upper bounds indicate the difference in time between the two non-loagiogroutes brack-
eting the loop, if this difference was less than 1 day (otherwise the upper bound is potentially so
lax that we omit it). Lower bounds, when present, indicate the difference in time between the first
traceroute in a sequence observing the loop, and the last. For loops only observed during a sin-
gle traceroute , this bound is omitted. Loops for which we were unable to assign any plausible
bounds have their bounds marked as “?".

The loop durations appear to fall into two modes, those definitely under 3 hours (and
possibly quite shorter), and those of more than half a day. The presence of persistent loops of
durations on the order of hours to tens of hours is quite surprising, and suggests a lack of good tools
for diagnosing network problems: neither the NOC's (Network Operation Centers) responsible for
the looped routers, nor the customers, apparently discovered and repaired the loops for considerable
periods of time, despite the total connectivity outage due to the loop.

We also note a tendency for persistent loops to come in clusters. Geographically, loops
occurred much more often in the Washington D.C. area (MAE-East and College Park are only a

S0 the loop persisted for about 2.5 seconds, as indicated by summing the return times for each of the probe packets.

40

[Source | Dest. Date | # [Loop | Location [Duration |

inria adv Nov. 6 1 | icm-dc-1-f0/0.icp.net , Washington ?
icm-dc-2b-f2/0.icp.net

inria near Nov. 11 1 | same as above Washington <3hr

wustl inria Nov. 24 1 | same as above Washington ?

inria pubnix Nov. 12 1 | icm-dc-3-f2/0.icp.net , Washington ?
icm-dc-2b-f2/0.icp.net

inria austr2 Nov. 15 1 | same as above Washington ?

sintefl adv Nov. 12 1 | icm-pen-1-h1/0-t3.icp.net , Washington ?
icm-dc-2b-h0/0-t3.icp.net

pubnix sintefl Nov. 8 1 | sl-ana-1-f0/0.sprintlink.net , Anaheim ?
sl-ana-2-f0/0.sprintlink.net

ustutt ucl Nov. 11 | 16 | stuttgartl.belwue.de , Stuttgart 16-32 hr
stuttgart4.belwue.de

connix bsdi Nov. 14 1 | sl-dc-8-h1/0-t3.sprintlink.net MAE-East > 10 hr
sl-mae-e-h2/0-t3.sprintlink.net

ustutt austr Nov. 14 1 | same as above

pubnix sintefl Nov. 14 1 | fddi0/0.crl.dcal.alter.net , Washington | <5.5hr
ciscol.washington.dc.ms.uu.net

austr nrao Nov. 15 1 | cpk8-cpk-cf.sura.net , College Park ?
cpk9-cpk-cf.sura.net

many oce Nov. 23 | 12 | amsterdam.nl.net ,wgmO1.nl.net Amsterdam | 14-17 hr

ucol ustutt Nov. 24 1 | borderx1-hssi3-0.sanfrancisco.mci.net San Francisco ?
pacbell-nap-atm.sanfrancisco.mci.net

ucol inria Nov. 27 1 | stamandl.renater.ft.net , Paris <14 hr
stamand3.renater.ft.net

mid bsdi Nov. 28 1 | sl-dc-6-f0/0.sprintlink.net , Washington <3hr
sl-dc-8-f0/0.sprintlink.net

mid austr Dec. 6 1 | sl-chi-6-h3/0-t3.sprintlink.net Chicago <3hr
sl-chi-nap-h1/0-t3.sprintlink.net

mit wustl Dec. 10 1 | starnet2.starnet.net , St. Louis ?
starnet8.starnet.net

umann nrao Dec. 13| 1 | heidelbergl.belwue.de , Heidelberg ?
heidelberg2.belwue.de

ucl mit Dec. 14 1 | mci-its.near.net , Cambridge <3hr
w91-rtr-external-fddi.mit.edu

near ucla Dec.16| 1 | In-gw.cs.ucla.edu , ucla-isi-gw.In.net Los Angeles ?

Sri near Dec. 17 | 1* | su-a.bbnplanet.net , su-b.bbnplanet.net Palo Alto ?

near Sri same 1* | barrnet.sanfrancisco.mci.net , San Francisco ?
borderx1-hssi2-0.sanfrancisco.mci.net

bsdi sintefl Dec. 21 1 | icm-pen-2-h2/0-t3.icp.net , Pennsauken,| <10 hr
icm-uk-1-h0/0-t3.icp.net London

Table VII: Persistent routing loops iR»

41

few miles away), perhaps because the very high degree of interchange between different network
service providers in that area offers ample opportunity for introducing inconsistencies.

Loops involving separate pairs of routers also are clustered in time. piitivex =
sintefl loop, involving two AlterNet routers sited in Washington D.C., was measured at the same
time between theonnix =- bsdi andustutt = austr observations of a SprintLink loop, at
nearby MAE-East. Thari = near andnear = sri loop observations were made back-to-
back. They daot observe the same loop, but rather two separate loops between closely related
routers (the typical path fromear tosri proceeds from MCINET in San Francisco immediately
to BARRNET at Stanford (Palo Alto), and then at the next hop to BBN Planet at Stanford). Thus,
it appears that the inconsistencies that lead to long-lived routing loops are not confined to a single
pair of routers but also affect nearby routers, tending to introduce loops into their tables too. This in
turn suggests that any persistent loop encountered in the network is very serious, as it may reflect a
substantially larger outage than just the two looped routers initially observed.

6.3.2 Temporary routing loops

Fortunately, routing loops do not always persist for long periods of time. In addition
to analyzing theraceroute data for persistent loops, we also looked for temporary loops. We
define a temporary loop as one during which a router was visited at different hops, yet eventually
the traceroute probe traveled beyond the loop. This definition requires manual inspection of
the candidates, to remove spurious “loops” that are in reality due instead to other factors, such as
“fluttering” (rapidly-variable routing§ 6.6.2) or midstream route chang€ss(5).

Thelbl =-inria example in the previous section shows both a temporary loop and a
permanent loop, both involving ESNET routers. In addition tolthe = inria example above,
R exhibited one other case of a temporary routing loop, occurring betugeandwustl :

cisco.cs.uclac.uk 12 ms 5 ms 5 ms
cisco-pb.uclac.uk 11 ms 4 ms 4 ms
cisco-b.uclacuk 5 ms 4 ms 5 ms

gw.lon.janet 20 ms 22 ms 19 ms

eu-gw.ja.net 60 ms 21 ms 19 ms

icm-lon-l.icp.net 20 ms 25 ms 37 ms
icm-dc-1-s3/2-1984k.icp.net 177 ms 191 ms 168 ms
* sl-dc-7-f0.sprintlink.net 1174 ms 183 ms
sl-starnet-1-s0-t1.sprintlink.net 220 ms 216 ms 233 ms
10 * % %

11 * % %

12 stl2-eO.starnet.net 506 ms 775 ms 262 ms

13 stl3-e0.starnet.net 218 ms * *

14 stl2-e0.starnet.net 919 ms * 237 ms

15 * stl3-eO.starnet.net 193 ms 191 ms

* *

O©CoO~NOOOTA,WNPE

*

*

*

* F * X

*

tango.cs.wustl.edu 260 ms *

=
(]
* Ok Xk X F

42

Here, at hops 12-15, the STARnet routers engage in a short-term routing loop that evidently is
resolved during hops 16-20 (an outage of about 80 secdnds).

While in Ry we only observed two temporary loops, R, we found 23. We confine
ourselves here to a look at two of the more seriously pathological, as these illustrate the degree to
which routing can degrade.

The first of these was fromain to inria

rO.pdx.rain.rg.net 3.212 ms 2.903 ms 2.348 ms
borderl-serial2-5.seattle.mci.net 8.119 ms 7.509 ms 8.303 ms
core-fddi-0.seattle.mci.net 10.255 ms 11.472 ms 9.087 ms
core2-hssi-3.denver.mci.net 42.005 ms 45.637 ms 41.765 ms
corel-aip-4.denver.mci.net 180.353 ms 210.453 ms 222.771 ms
core2-hssi-2.westorange.mci.net 192.796 ms 224.263 ms 257.99 ms
core2-hssi-2.washington.mci.net 96.183 ms 90.611 ms 90.897 ms
borderx2-fddi-1.washington.mci.net 88.917 ms 98.286 ms 99.512 ms
mae-east-plusplus-two.washington.mci.net
95.96 ms 111.302 ms 121.937 ms
10 icm-dc-e-f0/0.icp.net 91.077 ms 102.348 ms 95.265 ms
* * %
1; * * %
13 * * borderx2-fddi-1.washington.mci.net 269.431 ms
14 mae-east-plusplus-two.washington.mci.net
440.782 ms 293.266 ms 166.355 ms
15 mae-east-plusplus.washington.mci.net
89.681 ms 94.609 ms 90.987 ms
16 borderx1-hssi2-0.washington.mci.net 91.661 ms 89.673 ms 96.562 ms
17 core2-fddi-0.washington.mci.net 137.351 ms 174.362 ms 204.639 ms
18 borderx2-fddi-1.washington.mci.net 95.169 ms 90.19 ms 94.371 ms
19 mae-east-plusplus-two.washington.mci.net
97.839 ms 91.079 ms 97.236 ms
20 mae-east-plusplus.washington.mci.net 92.483 ms 91.213 ms 91.38 ms
21 Dborderx1-hssi2-0.washington.mci.net 92.318 ms 92.662 ms 95.358 ms
22 * % %
23 rO.pdx.rain.rg.net 3.343 ms H * *
24 * t8-gw.inria.fr 779.58 ms *
25 tom.inria.fr 657.659 ms * *

O©CoO~NOOOUTA,WNPEP

The traceroute begins without any problems, traveling to ICP (the Sprint/NSF International
Connectivity Project) in Washington via Seattle, Denver, West Orange (New Jersey), Washing-
ton, and MAE-East. At hop 11, however, we observe a 40 second outage. Evidently the outage
was due to the loss of the link betwemrae-east-plusplus-two.washington.mci.net and
icm-dc-e-f0/0.icp.net , because when the outage finished, we find ourselves in a routing loop
between five different routers:

borderx2-fddi-1.washington.mci.net
mae-east-plusplus-two.washington.mci.net
mae-east-plusplus.washington.mci.net

5As discussed if 6.6.2 below, these STARnet routers also suffered from route “fluttering,” though that problem was
apparently fixed on December 12, and this trace is from December 15, after the repair.

43

borderx1-hssi2-0.washington.mci.net
core2-fddi-0.washington.mci.net

This is one of only two times in eithé®, or R, that we observed a loop involving more than two
routers. (The other is discussedsi®.4.) The loop persists from hop 13 to hop 21 (at least). At
hop 22 we suffer a 15 second outage, and when it resolves we find ourselves all the way back to
where we started at hop 1. The router there has returned an “ICMP unreachable” message (the
IH), indicating it is convinced that it cannot reaithia , presumably because it has lost its link
to borderl-serial2-5.seattle.mci.net . After another 15 second outage, however, we sud-
denly find ourselves in France, atia 's doorstep: either both of the previous problems had
resolved themselves, or an alternate path was discovered.

The second seriously pathologigedceroute ~ was fromucol to umann:

cs-gw-srl.cs.colorado.edu 3 ms 3 ms 2 ms
cu-gw-fddi.colorado.edu 5 ms 2 ms 4 ms
ncar-cu.co.westnet.net 13 ms 4 ms 8 ms
ml-t3-gw.ucar.edu 11 ms 24 ms 34 ms
border2-hssil-0.denver.mci.net 73 ms 141 ms 87 ms
core-fddi-1.denver.mci.net 80 ms 22 ms 24 ms

* core2-hssi-2.westorange.mci.net 47 ms 64 ms
core2-hssi-2.washington.mci.net 58 ms 63 ms 59 ms
borderx2-fddi-1.washington.mci.net 73 ms 98 ms 111 ms
10 mae-east-plusplus-two.washington.mci.net 60 ms 64 ms 60 ms
11 icm-dc-e-f0/0.icp.net 112 ms 99 ms 91 ms

12 icm-dc-1-h1/0-t3.icp.net 81 ms 94 ms 105 ms

13 icm-dante-eQO.icp.net 115 ms 150 ms *

14 * amsterdaml.dante.net 205 ms *

15 nl-sl.dante.bt.net 177 ms 166 ms 151 ms

16 nl-f0-O.eurocore.bt.net 172 ms 190 ms 176 ms

17 de-sl-l1.eurocore.bt.net 206 ms 247 ms 227 ms

18 de-fO0.dante.bt.net 251 ms 181 ms 227 ms

19 * % %

20 * % %

21 * icm-dc-2b-f2/0.icp.net 151 ms 138 ms

22 icm-dc-1-f0/0.icp.net 97 ms 86 ms 64 ms

23 icm-dc-2b-f2/0.icp.net 98 ms 85 ms 107 ms

24 icm-dc-1-f0/0.icp.net 109 ms 92 ms umd2-pppl2.es.net 251 ms
25 * mae-east-plusplus-two.washington.mci.net 178 ms 251 ms
26 pppl2-umd2.es.net 702 ms * *

27 core-hssi-3.sanfrancisco.mci.net 158 ms IH *
core-fddi-1.denver.mci.net 34 ms 'H

O©CoO~NOOOUTA,WNPEP

Everything is fine up until hop 18, with the path traversing from Boulder to Denver, in Col-
orado; then over MCINET to West Orange and down to MAE-East, then across to Amsterdam
and over to Duesseldorf—almost there! But a 35 second outage at hops 19-21 is the begin-
ning of trouble. When the network begins responding again, we have fallen back to a tem-
porary loop betweeitm-dc-1-f0/0.icp.net andicm-dc-2b-f2/0.icp.net in Washing-

ton, D.C., a position similar to that we had achieved at hops 11-12 earlier. At hop 25 we again visit
mae-east-plusplus-two.washington.mci.net , already visited at hop 10. Note two things

44

about this hop. First, we have now backtracked twice, onéentalc-2b-f2/0.icp.net , and

then again to MAE-East, which is an earlier hop than ICM in Washington. Second, we have ac-
quired an additional5 hopsto our routeupstreamof MAE-East, so along with the routing loop in
Washington, there is also a major change closerctd . At hop 26 we find ourselves on ESNET,

but at hop 27 we initially are rerouted to San Francisco on MCINET, indicatimgherupstream
change (since ESNET does not have a link from Princeton to MCI in San Francisco). This router
indicates that it knows of an immediate outage by flagging the hop tsinBut only five seconds

later we lose connectivity even to San Francisco—we are back in Denver again, as we were at hop 6,
and unable to make any further progress (the router flayis

Clearly at least two different major failures occurred in this example, one the routing
loop aticm-dc-2b-f2/0.icp.net , and the other the rapidly changing (and lengthening) path
upstream from MAE-East. In the previous example, the same applies: we observed both a routing
loop in Washington, and a connectivity outage between Portland and Seattle. A very interesting
question is whether these failures were actually reflections of a single underlying catastrophe that
propagated through the network at large.

All in all we observed 20 instances of multiple large-scale changes such as illustrated in
this example, suggesting that either the propagation of a single fault's effects through the network
sometimes leads to widespread, temporary instability, or that a mechanism separate from the ex-
change of routing information is producing widespread faults. Determining which of these is the
case and how the fault propagates would make for interesting future work.

6.3.3 Location of routing loops

We analyzed the routers involved in temporary and persistent loops to see whether any of
the loops involved more than one AS. As mentioned above, the design of BGP in theory prevents
any inter-AS loops, by preventing any looping of routing information. We found that only three of
the R loops spanned more than one AS, and only two of thog@,inWe also learned that at least
one of the inter-AS loops iR, occurred due to the presence of a static route, and thus clearly was
not the fault of BGP. It may be that the others have similar explanations. In any event, it appears
clear from our data that BGP loop suppression virtually eliminates inter-AS looping.

6.4 Erroneous routing

A final example of a routing loop occurred duringannix = ucl traceroute , which
also exhibitserroneousrouting, where the packets clearly took the wrong path:

mfd-01.rt.connix.net 8 ms 4 ms 3 ms
sl-dc-5-s2/0-512k.sprintlink.net 39 ms 39 ms 39 ms
sl-dc-6-f0/0.sprintlink.net 39 ms 38 ms 50 ms
psi-mae-east-1.psi.net 48 ms 66 ms *

* * core.net218.psi.net 90 ms

192.91.187.2 1139 ms 1188 ms *

* % %

biu-tau.ac.il 1389 ms * *

tau.man.ac.il 1019 ms * *

* * %

QOowo~NOOUDWNE

=Y

45

11 * cisco301sl.huji.ac.il 1976 ms *

12 * % %

13 * % %

14 * * ciscolOle5.huji.ac.il 1974 ms

15 * * %

16 * ciscol03e2.gr.huji.ac.il 1010 ms 1069 ms

17 ciscol01leO01.cc.huji.ac.il 2132 ms * *

18 ciscol02e13.huji.ac.il 888 ms 976 ms 2005 ms
19 ciscol03e2.gr.huji.ac.il 1657 ms * *

20 * * ciscol0leOl.cc.huji.ac.il 1349 ms

21 * * %

etc.

Recall thatconnix is sited in Middlefield, Connecticut, andcl in London, England. Yet

at hop 6, instead of routing towards London, the route winds up visit®®91.187.2 as

the next hop—292.91.187.2 is sited at the Weizmann Institute in Rehovot, Israel! (As can

be seen by the long latency to hop 6, a satellite link is involved here.) Not surprisingly, the

bewildered Israeli routers do not really know what to make of the London-bound packet: it

enters a routing loop betweatisco101e01.cc.huji.ac.il , Cisco102e13.huji.ac.il ,

and cisco103e2.gr.huji.ac.il prior to being discarded. The lack of any response to

traceroute probes beyond hop 20 may be due to the route being terminated further upstream,

or because growing congestion on the US—Israel link led to subsequent probes getting dropped.
There is a security lesson to be considered here, too: one really cannot make any safe

assumptions about where one's packets might travel on the Internet. If the Israeli routers had an

alternate path to London available to them, it is possible that this highly circuitous route would have

succeeded (cf 6.9).

6.5 Connectivity altered mid-stream

In 10 of the R, traces we observed routing connectivity reported earlier in the
traceroute later lost or altered, indicating we were catching a routing failure as it happened:

1 netlabl-gw.usc.edu 3 ms 3 ms 3 ms
2 rtrluscedu 3 ms 2 ms 2 ms

3 isi-usc-gw.n.net 5 ms 4 ms 5 ms
4 ucla-isi-gw.In.net 121 ms 230 ms *
5 * % %

6 * % %

7 * % %

8 * *x %

9 * rtrlusc.edu 2 ms !H *

10 * % %

11 rtrlusc.edu 2 ms 'H * *

12 * % %

13 rtrlusc.edu 2 ms 'lH* 2 ms 'H

46

In this trace fromusc to ucol , by hop 4 the packets have made it frost out to the UCLA/ISI
Los Nettos gateway. The large round-trip times reported at hop 4 indicate trouble, hévemebr,
after the second hop 4 reply, connectivity is lost for about 70 seconds. When it returns, connectivity
is only present to the hop 2 router, which reports that the destination host is unreachable (the “
flag). Because the recovery only extends to the 2nd hop, we infer that the problem occurred not at
the hop 4 router but rather at hop 3, the gateway between USC and ISI.

In the other traces, a connectivity loss was followed by a recovery, as shown in this
traceroute betweerbnl andusc :

1 cerberus.90.bnlgov 2 ms 2 ms 2 ms
2 nioh.bnlgov 3 ms 2 ms 4 ms

3 1921215224 3 ms 2 ms 2 ms

4 pppl-bnl.es.net 11 ms 11 ms 14 ms
5 * % %

6 * 192.12.15224 4 ms 'H *

7 * 1921215224 3 ms 'H *

8 * 1921215224 5 ms 'H *

9 * % %

10 * % %

11 * 192.12.15.224 4 ms 'H *

12 * 192.12.15.224 84 ms 'H *

13 * * %

14 * usc-cit-gw.In.net 563 ms 257 ms

15 rtr5.usc.edu 283 ms 317 ms 242 ms
16 catarina.usc.edu 282 ms 102 ms 211 ms
17 escondido.usc.edu 199 ms 306 ms 392 ms

Router 192.12.15.224 is located at thebnl site. At hop 5, it clearly loses its link to
pppl-bnl.es.net , and the link does not return for two minutes. Once it doestriveroute
probes are able to continue all the wayte .

Three additionaR, traces revealed similar high-delay recoveries, incurring outages rang-
ing from about 1 minute to almost 5 minutes. One striking example is fvastl to ucol :

1 jer-166.cswusthedu 5 ms 2 ms 2 ms

2 ncrc-eng.wustl,edu 3 ms 2 ms 2 ms

3 1282525120 3 ms 3 ms 2 ms

4 12825212 4 ms 4 ms 3 ms

5 sl-dc-7-s7-tl.sprintlink.net 30 ms 28 ms 28 ms
6 sl-dc-6-f0/0.sprintlink.net 81 ms 27 ms 33 ms
7 sl-dc-8-f0/0.sprintlink.net 106 ms 37 ms 30 ms
8 * % %

9 * * g|l-dc-8-f0/0.sprintlink.net 32 ms !'H

10 * * %

11 * * %

12 * * %

13 * % %

5Betweenusc anducol this hop usually had a latency of 5-10 msec. We did not, however, undertake any rigorous
evaluation of hop latencies, because of the potentially large noise associated with these times, as digcéss@dand
as illustrated above.

a7

14 * * %
15 * * %
16 * * %
17 * * %
18 * * %
19 * * %
20 * * %
21 * * %
22 * * %
23 * * %
24 * * %

25 clark.cs.colorado.edu 128 ms 106 ms 105 ms

Here, connectivity was lost for between 15-17 hops. At first it might appear fronrahisoute
that the route upon recovery consisted of 25 hops, but that is instead a measurement artifact. by
the time the network had recovered, threeeroute hop-count had ratcheted so high that the first
successful probes following the outage made it all the way taitbe endpoint. They no doubt
would also have done so if they had been transmitted with somewhat lower TTL's.

Two other traces revealed different, quite quick recovery behavior:

netlabl-gw.usc.edu 3 ms 3 ms 3 ms
rtrl.uscedu 4 ms 3 ms 3 ms

cit-usc-gw.ln.net 8 ms 3 ms 4 ms
cerfnet-cit-gw.In.net 17 ms 23 ms 6 ms
sdsc-cit.cerfnet 84 ms 39 ms 21 ms
mobydick.cerf.net 30 ms 37 ms 35 ms
ucop-sdsc-2.cerf.net 85 ms 43 ms 50 ms
sl-ana-3-s2/6-tl.sprintlink.net 68 ms 86 ms 84 ms
sl-ana-1-f0/0.sprintlink.net 94 ms 72 ms 53 ms
10 sl-fw-6-h2/0-t3.sprintlink.net 100 ms 99 ms 62 ms
11 sl-fw-2-f0.sprintlink.net 120 ms 130 ms 132 ms
12 sl-colorado-1-sO-tl.sprintlink.net 146 ms 151 ms 172 ms
13 * t3-0.cnss56.washington-dc.t3.ans.net 121 ms 140 ms
14 t3-0.enssl45.t3.ans.net 132 ms 127 ms 120 ms
15 icm-fix-e-fO.icp.net 155 ms 129 ms 306 ms

16 icm-dc-2b-h3/0-t3.icp.net 370 ms 137 ms 148 ms
17 sl-dc-8-f0/0.sprintlink.net 127 ms 144 ms 145 ms
18 * sl-fw-5-h4/0-t3.sprintlink.net 334 ms 211 ms

19 sl-fw-2-fO.sprintlink.net 156 ms 183 ms 157 ms
20 sl-colorado-1-s0-tl.sprintlink.net 202 ms * 199 ms
21 gw2.boulder.co.coop.net 179 ms 193 ms 189 ms
22 bandicoot.xor.com 237 ms 199 ms 210 ms

O©CoOoO~NOOOUTPA~,WNPEP

The path here is fronusc to xor . It looks fairly straight-forward, suffering only three iso-

lated losses, but observe that hop 11 and hop 19 are identicall (As are hops 12 and 20.)
The sl-colorado-1-s0-t1.sprintlink.net router is only two hops from the destination,
bandicoot.xor.com , SO apparently thigaceroute ~ was on the verge of reaching its destina-

tion at hop 14 (and indeed two of the othait =- xor traceroutes took only 14 hops) when a
routing change occurred upstream, forcing the packets to detour all the way to the East coast of the
U.S. on their trip from California to Colorado. In contrast to the examples in the previous section,

48

in this case the routing change occurred quite smoothly, with only a single packet loss at hop 13
indicating a 5-second outage during the switch-over.

By inspecting othewsc routes involvingt3-0.cnss56.washington-dc.t3.ans.
net at hop 13, we conclude that the change occurred at hop 10, where instead of routing from
Anaheim, California to Fort Worth, Texas, as shown above, and staying inside Sprintlink, the switch
was made to route to Houston, Texas, using ANS.

Another example, acl =- wustl traceroute , is even more striking:

cisco.cs.uclac.uk 13 ms 5 ms 5 ms
cisco-pb.uclac.uk 14 ms 4 ms 4 ms

cisco-b.uclacuk 5 ms 4 ms 4 ms

gw.lon.janet 48 ms 36 ms 81 ms

eu-gw.ja.net 71 ms 58 ms 72 ms

icm-lon-l.icp.net 56 ms 120 ms 119 ms
icm-dc-1-s3/2-1984k.icp.net 162 ms 137 ms 175 ms
sl-dc-7-f0.sprintlink.net 160 ms 197 ms 189 ms
sl-starnet-1-s0-t1.sprintlink.net 166 ms 122 ms 634 ms
10 ncrc-acn.wustl.edu 457 ms 127 ms 119 ms

11 ncrc-eng.wustl,edu 140 ms 237 ms 174 ms

12 cisco-b.ucl.ac.uk 488 ms !'H jcr.ecl.wustl,edu 244 ms 232 ms
13 tango.cs.wustl.edu 228 ms * 151 ms

O©CoOoO~NOOUITA,WNBE

Note that the first hop 12 routetjsco-b.ucl.ac.uk , is the same as the hop 3 router! This
router also reports!H”, indicating it could not forward the packet, and yet the second and third
traceroute probe packets for that hop make it all the waywastl . Thistraceroute appears

to reflect a 500 msec outage, quickly repaired.

We thus see that the distribution of recovery times from routing problems is at least
bimodal—some recoveries occur quite quickly, on the time scale of congestion delays, while others
take on the order of a minute to resolve. The latter type of recovery presents significant difficulties
to time-sensitive applications that assume outages are short-lived.

Sometimes the presence of a connectivity change is more subtle, such as Ry this
traceroute from korea toucol :

fpls.postech.acckr 2 ms 1 ms 1 ms
fddicc.postech.ac.kr 3 ms 2 ms 2 ms
ktrc-postech.hana.nm.kr 30 ms 30 ms 51 ms
gateway.hana.nm.kr 31 ms 31 ms 31 ms
hana.hana.nm.kr 33 ms 44 ms 32 ms
bloodyrouter.hawaii.net 1152 ms 1275 ms 968 ms
bloodyrouter.hawaii.net 744 ms 336 ms 325 ms
arcl.nsn.nasa.gov 384 ms 491 ms 691 ms
jplé.nsn.nasa.gov 791 ms 772 ms 1082 ms

10 jpl3.nsn.nasa.gov 876 ms * 1641 ms

11 ncarl.nsn.nasa.gov 1117 ms 1225 ms 848 ms
12 * cu-gw.ucar.edu 1280 ms 805 ms

13 cu-ncar.co.westnet.net 774 ms 884 ms *

14 cs-gw.colorado.edu 1079 ms 897 ms 603 ms
15 lewis.cs.colorado.edu 283 ms 383 ms 899 ms

O©Coo~NOOOUTA~, WNBE

49

In this example, hop 6 and hop 7 were bothbtoodyrouter.hawaii.net . The subsequent

route shown above is exactly the route taken by every dibvela =- ucol traceroute , except

each hop is delayed by one (e jgl6.nsn.nasa.gov is hop 9 here instead of hop 8 as usual).
Duplicate hops such as this one are most likely due to upstream route chrg2s3)

which, in this example, added an extra hop upstreabiotalyrouter.hawaii.net . The change

would have had to occur just between the end of the probes for hop 6 and the beginning of those for

hop 7. We considered all such duplicated hops to be midstream route changes.
In contrast with the rarity of connectivity changes7 (10 total), inR» we observed

155 instances of a change, a fact we comment upon furtte8.ih0.

6.6 Fluttering

We use the term “fluttering” to refer to rapidly-variable routing. On the time scale of a
singletraceroute (seconds to minutes) we would expect the path we are measuring to remain
stable, yet surprisingly often our data showed that the packets belonging to atsingteute
took multiple paths through the Internet.

6.6.1 A simple example

Route fluttering can be detected fraraceroute output by the presence of more than
one host listed for a single hop, as in this exampleBf araceroute betweerkorea andaustr .

fpls.postech.ackr 2 ms 2 ms 2 ms
fddicc.postech.ac.kr 3 ms 2 ms 2 ms
ktrc-postech.hana.nm.kr 57 ms 123 ms 30 ms
gateway.hana.nm.kr 31 ms 31 ms 31 ms
hana.hana.nm.kr 33 ms 140 ms 32 ms
bloodyrouter.hawaii.net 825 ms 722 ms 805 ms
usa-serial.gw.au 960 ms 922 ms 893 ms
national-aix-us.gw.au 1039 ms * *

* rbl.rtr.unimelb.edu.au 903 ms rb2.rtr.unimelb.edu.au 1279 ms
10 itee.rtr.unimelb.edu.au 1067 ms 1097 ms 872 ms
11 * * mulkirrics.mu.oz.au 1468 ms

12 mullala.cs.mu.oz.au 1042 ms 1140 ms 1262 ms

O©CoO~NOOOUTPA,WNPEP

Here, the 9th hop shows two different hosts (as well as no reply for therficstoute packet),
rbl.rtr.unimelb.edu.au andrb2.rtr.unimelb.edu.au . Thus, it appears that for the sec-
ond packehational-aix-us.gw.au routed the packet td1.rtr.unimelb.edu.au ,and for
the third packet tab2.rtr.unimelb.edu.au . (This change occurred most likely for purposes
of load-balancing—se§6.6.2 and; 7.4.)

It is important to keep in mind, though, that the actual route flutter could have occurred
upstreamfrom national-aix-us.gw.au , and that for the hop ®aceroute packets, the 8th
hop was actually a different router altogethge(2.3).

"In the example we have shown hostnames rather than IP addresses, as this aids in placing the router's location and
service provider. It is possible for two different IP addresses to translate to the same hostname (indeed this is very
common for routers). But inspecting the résaceroute reveals the same IP address for both hop 6 and hop 7.

50

For subsequent hops, we cannot tell which rbfl.rtr.unimelb.edu.au or
rb2.rtr.unimelb.edu.au was used (indeed, it could have been all of one or the other, or a
continuation of switching between the two, or still a third router; the path was consistent with others
we observed from the two routers).

6.6.2 A more dramatic example

The preceding example is straight-forward and demonstrates only minor fluttering, which
presumably has no significant effect on the characteristics of the Internet path béwesn
andaustr . A more dramatic example comes frorfka traceroute betweernwustl andumann:

128.252.166.249 11 ms 29 ms 8 ms

128.252.123.254 3 ms 2 ms 2 ms

128.252.5.120 3 ms 3 ms 14 ms

128.252.1.135 6 ms 3 ms 3 ms

199.217.253.1 19 ms 35 ms 199.217.253.3 64 ms

144.228.73.17 56 ms 144.228.27.5 26 ms 28 ms

144.228.20.101 29 ms 38 ms 144.228.70.2 55 ms

144.228.10.25 69 ms 65 ms 192.157.65.74 57 ms

144.228.8.233 217 ms 117 ms 194.41.0.17 118 ms

10 144.228.10.22 107 ms 193.172.4.8 122 ms 114 ms

11 192.203.230.253 68 ms 193.172.4.12 130 ms 192.203.230.253 70 ms
12 193.174.74.94 194 ms 140.222.8.4 72 ms 193.174.74.94 192 ms

13 193.174.74.29 192 ms 189 ms 192 ms

14 140.222.112.2 108 ms 129.143.6.16 222 ms 216 ms

15 140.222.64.1 128 ms 153.17.62.105 236 ms 140.222.64.1 141 ms
16 129.143.61.2 238 ms 284 ms 140.222.104.2 162 ms

17 134.155.48.125 242 ms 140.222.72.1 164 ms 134.155.48.125 263 ms

O©CoO~NOOOUTPA, WNPEP

Here we show the route using untranslated IP addresses, since showing the names of all of the
various routers would make for messy reading. However, consider hop 10:

10 icm-fix-w-h2/0-t3.icp.net 107 ms amsterdam6.empb.net 122 ms 114 ms

The first packet visited FIX-West at NASA AMES Research Center (Moffett Field, San Francisco
Bay Area), while the second and third made it to Amsterdam!
The divergence begins at hops 4-5:

4 128.252.1.135 6 ms 3 ms 3 ms
5 stll-eO.starnet.net 19 ms 35 ms stl3-e0.starnet.net 64 ms

The WUSTL border router18.252.1.135) picks two different STARnet routers for the next
hop, each of which presumably has a different notion of the best path to Europe. The confused
traceroute shown above can be reduced to two separateroutes at this split. First, the
“successful” path—the one that first reaclesann:

5 2

6 sl-dc-7-s7-tl.sprintlink.net
7 icm-dc-1-f0/0.icp.net

8 icm-dante-e0.icp.net

51

9 amsterdaml.dante.net
10 amsterdam6.empb.net
11 duesseldorf2.empb.net
12 ipgate2.win-ip.dfn.de
13 duesseldorf2.win-ip.dfn.de
14 heidelbergl.belwue.de
15 mannheim.belwue.de
16 belwue-gw.uni-mannheim.de
17 eratosthenes.informatik.uni-mannheim.de

Geographically, this route traverses: St. Louis, Missouri; Washington, D.C.; Amsterdam, the
Netherlands; and Duesseldorf, Heidelberg, and Mannheim, in Gerfnany.
The second route instead criss-crosses the United States:

5 ?
6 sl-ana-3-s3/1-t1.sprintlink.net
7 sl-ana-2-f0/0.sprintlink.net
8 sl-stk-6-h2/0-t3.sprintlink.net
9 144.228.8.233
10 icm-fix-w-h2/0-t3.icp.net
11 t3-0.enssl144.t3.nsf.net
12 t3-3.cnss8.san-francisco.t3.ans.net
13 ?
14 t3-1.cnssll2.albuquerque.t3.ans.net
15 t3-0.cnss64.houston.t3.ans.net
16 t3-1.cnssl04.atlanta.t3.ans.net
17 t3-0.cnss72.greensboro.t3.ans.net

Geographically, this route traverses: St. Louis, Missouri; Anaheim, Stockton, FIX-West, and
San Francisco, California; Albuquerque, New Mexico; Houston, Texas; Atlanta, Georgia,;
and Greensboro, North Carolifa. From other traceroutes that includedt3-0.cnss72
.greensboro.t3.ans.net , we can determine that eventually this route would also have made it
to the destination, albeit with many more hops. For example, from a tracesfionto umann, we

have:

12 t3-0.cnss72.greensboro.t3.ans.net

13 t3-0.cnss56.washington-dc.t3.ans.net
14 t3-0.enss145.t3.ans.net

15 umd-rtl.es.net

16 umd2-e-stub.es.net

17 pppl2-umd2.es.net

18 ipgate2.win-ip.dfn.de

®Hop 5 is marked as?” because from the trace it is not clear which of the two STARnet routers picks this route (by

forwarding tosl-dc-7-s7-t1.sprintlink.net), and which picks the longer route.

Hop 13 is missing because, in the raw trace, all three replies to the hoprat®route probe
were returned byduesseldorf2.win-ip.dfn.de , which clearly is not the next hop following
t3-3.cnss8.san-francisco.t3.ans.net , but rather represents hop 13 from the first route.

By inspecting othetraceroutes from wustl to umann, it is evident that hop 13 for the second route is
t3-0.cnssl6.los-angeles.t3.ans.net , SO we can add Los Angeles to the list of California cities tra-

versed by the route.

52

Amsterdam
Duesseldorf

Figure 6.1: Routes taken by alternating packets froustl (St. Louis, Missouri) toumann
(Mannheim, Germany), due to fluttering

19 ipgate2.win-ip.dfn.de

20 duesseldorf2.win-ip.dfn.de

21 heidelbergl.belwue.de

22 mannheim.belwue.de

23 belwue-gw.uni-mannheim.de

24 eratosthenes.informatik.uni-mannheim.de

Thus, it appears that the secondstl =- umann route would also succeed in delivering packets,
though using 29 hops instead of 17.

The wustl fluttering occurs over very small timescales, essentially the time between
successivéraceroute probes, which are spaced out by the amount of time it takes for each reply
to the previous probe packef 4.2.2). One routing mechanism that can lead to such small-scale
fluttering occurs when a router alternates between multiple next-hop routers in order to split load
among the links to those routers. Such behavior is explicitly allowed in [Ba95, p.79], though that
document also cautions that there are situations for which it is inappropriate, and so it should at
most be a configurable option for a router. It turns out thawthst! fluttering was indeed due to
load-splitting: STARnet had two T1 links for its access to Sprintlink, one to Anaheim and the other
to Washington, D.C. (as shown above), and would alternate packets “round-robin” between them in
order to balance load [My95].

Figure 6.1 shows the two routes that packets can takevinasti to umann. The dramatic
difference in the lengths of the two routes highlights the great impact an early routing discrepancy
can make.

Of the 380traceroutes initiated bywustl , 255 exhibited fluttering, all but one oc-
curring before 12PM PST, December 13. After this point, the Anaheim link apparently became
unavailable, and the routing was no longer split. This change however was not due to a decision to
eliminate fluttering, but, apparently, simply due to an outage along the Anaheim link. On Decem-

53

ber 20 the Anaheim link again became operational, and led to an interesting pathology:

1 128.252.166.249 4 ms 2 ms 3 ms

2 128.252.123.254 3 ms 2 ms 4 ms

3 128.2525.120 3 ms 2 ms 2 ms

4 12825212 5ms 3 ms 3 ms

5 199.217.253.2 4 ms 3 ms 4 ms

6 199.217.253.1 4 ms 11 ms 199.217.253.3 6 ms

7 199.217.253.2 4 ms 144.228.73.17 58 ms 56 ms

8 144.228.70.1 56 ms 199.217.253.3 4 ms 5 ms

9 144.228.10.29 85 ms 144.228.73.17 74 ms 63 ms

10 144.228.30.5 102 ms 217 ms 218 ms

11 144.228.10.29 81 ms 144.228.10.17 93 ms 92 ms

12 144.228.206 84 ms 131 ms 125 ms

13 192.157.65.227 85 ms 144.228.10.29 80 ms 192.157.65.227 81 ms
14 144.228.20.6 137 ms 144.228.30.5 264 ms 144.228.20.6 165 ms
15 144.228.10.17 70 ms * *

16 144.228.30.5 90 ms * 144.228.20.6 74 ms

17 * 192.157.65.227 105 ms *

18 137.39.128.7 120 ms * *

19 * 192.157.65.227 84 ms *

* *
*

137.39.128.7 202 ms

*

L B S R R T
* 0%k X Xk X X F

* 0% ok kX

The fluttering begins at hop 6:

5 stl2-eO.starnetnet 4 ms 3 ms 4 ms
6 stll-eO.starnet.net 4 ms 11 ms sti3-e0.starnet.net 6 ms

Here, packets again alternate betwetih-e0.starnet.net and stl3-e0.starnet.net
Hop 7, though, shows that the routing is further confused:

7 stl2-e0.starnet.net 4 ms sl-ana-3-s3/1-tl.sprintlink.net 58 ms 56 ms

It appears that eithestl1-e0.starnet.net or stI3-e0.starnet.net forwarded the packet
back to stl2-e0.starnet.net , while the other forwarded the packet $bana-3-s3/1
t1.sprintlink.net in Anaheim, California. In the next hop:

8 sl-ana-1-f0/0.sprintlink.net 56 ms stl3-e0.starnet.net 4 ms 5 ms

one of the packets makes it to the next Anaheim hop, while the other is forwarded (apparently from
stl2-e0.starnet.net) to stI3-e0.starnet.net

At this point, the packets proceedusdi but with some making one (or even more!) vis-
its from stl2-e0.starnet.net to the non-forwarding STARnNet router (it is difficult to determine
whether this istl1-e0.starnet.net or stl3-e0.starnet.net). Viewed geographically:

9
10
11
12
13
14
15
16
17
18
19

54

Fort-Worth-6 85 ms Anaheim 74 ms 63 ms
Fort-Worth-5 102 ms 217 ms 218 ms

Fort-Worth-6 81 ms Washington-DC-8 93 ms 92 ms
Washington-DC-6 84 ms 131 ms 125 ms

Boone-VA 85 ms Fort-Worth-6 80 ms Boone-VA 81 ms
Washington-DC-6 137 ms Fort-Worth-5 264 ms Washington-DC-6 165 ms
Washington-DC-8 70 ms * *

Fort-Worth-5 90 ms * Washington-DC-6 74 ms

* Boone-VA 105 ms *

Dallas 120 ms * *

* Boone-VA 84 ms *

TheFort-Worth-5 router at both hop 10 and hop 16 indicates that one of the hop 16 packets made
threetrips to the non-forwarding STARnNet router prior to getting forwarded to the working router.
Most likely this pathology occurred due to a set of inconsistent routing tables introduced by the
reactivation of the Anaheim link.

O~NO O WNPER

For reference, a flutter-free route fromustl to bsdi is:

jer-166.cs.wustledu 5 ms 2 ms 2 ms
ncrc-eng.wust,edu 3 ms 2 ms 2 ms
128.252.5.120 4 ms 3 ms 2 ms

128.252.1.2 6 ms 6 ms 3 ms
sl-dc-7-s7-tl.sprintlink.net 29 ms 28 ms 25 ms
sl-dc-6-f0/0.sprintlink.net 156 ms 26 ms 64 ms
boonel.va.alter.net 30 ms 35 ms 28 ms
dallasl.tx.alter.net 80 ms 67 ms 69 ms

where thel28.252.x.y routers are local to WUSTLtraceroutes to bsdi stop in Dallas, as
explained irg 6.7.4).

wustl

The STARnet routing remained split for many more months. Here is a traceroute from
to umann, taken on July 2, 1995:

128.252.166.249 3 ms 2 ms 2 ms

128.252.123.254 4 ms 2 ms 2 ms

128.252.5.120 4 ms 2 ms 2 ms

128.252.41.2 4 ms 3 ms 3 ms

199.217.253.1 4 ms 6 ms 11 ms

144.228.73.17 71 ms 144.228.27.5 41 ms 144.228.73.17 166 ms
144.228.20.8 30 ms 144.228.70.1 151 ms 56 ms

144.228.10.29 87 ms 144.228.10.42 61 ms 144.228.10.29 90 ms
144.228.30.5 143 ms 258 ms 192.41.177.252 35 ms
144.228.10.17 91 ms 134.55.12.161 81 ms 67 ms
192.188.33.10 138 ms 159 ms 144.228.10.42 74 ms
192.41.177.252 79 ms 73 ms 74 ms

153.17.200.105 198 ms * 220 ms

192.188.33.10 202 ms * *

193.174.74.141 224 ms 134.155.48.125 245 ms 214 ms

Fluttering occurs downstream of the hop 5 router:

5
6

stll-e0.starnetthet 4 ms 6 ms 11 ms
Anaheim-3 71 ms Washington-DC-7 41 ms Anaheim-3 166 ms

55

and continues from there. This example is slightly different from the previous ones we looked

at, in that the STARnNet routersi2-e0.starnet.net andstl3-e0.starnet.net no longer
appear. Instead, it looks likstl1-e0.starnet.net is doing its own load-splitting between
sl-ana-3-s3/1-t1.sprintlink.net andsl-dc-7-s7-tl.sprintlink.net , 0N opposite

sides of the country.

STARnNet has since switched to a single connection (via MCI), so this pathology no longer
occurs [My95].

In § 13.1.3 we analyze the effects that the split-routing had upon TCP performance. Sur-
prisingly, it was generally quite minor. Whileustl packets very often arrived out of order, they
only very rarely arrived so far out of order as to trigger a spurious fast retransmission, as discussed
in § 6.6.5 below.

6.6.3 Fluttering at another site

Putting asideraceroute probes initiated atvustl , of the remaining 6,07®; probes,
295 (about 5%) exhibited fluttering. None of these sites suffered such extreme fluttewnstlas
all of the flutters affected either a single hop or at most two hops. Here is an example of a two-hop
flutter, betweemcar anducol , both sited in Boulder, Colorado:

north-gw.scd.ucaredu 3 ms 2 ms 2 ms

server-gw.ucarredu 3 ms 2 ms 2 ms

cu-gw.ucaredu 4 ms 3 ms 3 ms

129.19.248.62 5 ms cu-ncar.co.westnet.net 5 ms 129.19.248.62 6 ms
cs-gw.colorado.edu 6 ms 6 ms 5 ms

lewis.cs.colorado.edu 8 ms 19 ms 9 ms

OO~ WN P

The 4th hop shows a flutter frorte9.19.248.62 (at Colorado State University) teu-ncar
.co.westnet.net and back again. We note that the problem occurred during a hop to Colorado
State University, which suggests that those routers may be prone to fluttering. Indeed, of the 295
remaining flutters, 277 involvedcol . For all but 6 of these, the fluttering occurred immediately
downstream from either thi-gw.colorado.edu router (for traffic outbound fromcol) or the
cu-gw.ucar.edu (traffic inbound taucol). It appears that these routers were splitting load just as
did the STARnet router in the previous section, but both downstream routers they alternated between
had the same view of subsequent wide-area routing, so the effect remained localized.

Neither the ucol nor the wustl fluttering was present inR,. The only re-
peated pattern we found was that every route originatingsdsic that passed through
nynap-sdsc-atm-ds3.cerf.net suffered from downstream fluttering. Here is an example,
from atraceroute toadv:

tigerfish.sdsc.edu 8 ms 8 ms 8 ms

mobydick.cerf.net 85 ms 246 ms 18 ms
nynap-sdsc-atm-ds3.cerf.net 475 ms 380 ms 71 ms
sprintnap.ans.net 73 ms t3-3.cnss32.new-york.t3.ans.net 75 ms 77 ms
cnss33.new-york.t3.ans.net 76 ms 77 ms 76 ms
enss240.t3.ans.net 80 ms 80 ms 79 ms

enss240.t3.ans.net 173 ms betelgeuse.advanced.org 81 ms 87 ms

No b~ wNE

There were only 7 of these, however, so their overall impact on routing performariee \ias
insignificant.

56

6.6.4 Skipping

When analyzing the traces for fluttering, we notice an interesting anomaly in which
routers were visited “prematurely.” Here is an example, taken fromoan=- ucl traceroute

1 xor-gw.xor.com O ms 0 ms 10 ms

2 gwl.boulder.co.coop.net 0 ms 0 ms 0 ms

3 sl-fw-2-s9-tl.sprintlink.net 30 ms 30 ms 30 ms

4 sl-fw-5-f1/0.sprintlink.net 30 ms 20 ms 40 ms

5 sl-dc-8-h3/0-t3.sprintlink.net 60 ms 60 ms 60 ms

6 icm-dc-1-f0/0.icp.net 1520 ms
icm-london-1-s1-1984k.icp.net 160 ms
icm-dc-1-f0/0.icp.net 60 ms

7 icm-london-1-s1-1984k.icp.net 150 ms 140 ms 150 ms

8 smds-gw.ulcc.ja.net 140 ms 150 ms 140 ms

9 smds-gw.ucl.ja.net 150 ms 150 ms 140 ms
10 cisco-pb.ucl.ac.uk 160 ms 160 ms 160 ms
11 cisco.cs.ucl.ac.uk 150 ms 160 ms 160 ms
12 neptune.cs.ucl.ac.uk 160 ms 160 ms 170 ms

At hop 6, we see flutter betwedom-dc-1-f0/0.icp.net and icm-london-1-s1-1984k
dcp.net . But hop 7 then reveals thaim-london-1-s1-1984k.icp.net is actually the next
hop!

All told, 11 traceroutes in Ry and 22 inR4 (at a number of different routers) showed
this “skipping” effect. Furthermore, very often the packet return time just prior to the skip was
unusually high (note in the example above the return time of 1,520 msec, much larger than any
other in thetraceroute). It appears that the router was under a period of stress during the time
of the skip, and (perhaps due to a forwarding bug only exhibited under high load) a packet was
erroneously forwarded without decrementing and checking its TTL. The downstream router then
decremented the TTL, noted it had expired, and returned an ICMP message. The upstream router
subsequently recovered from the error condition and continued to correctly forward packets, as is
shown for the third probe of hop 6 above.

If the source of the router load were network traffic, then the response from the down-
stream router should have been heavily delayed too, but, as shown above, it was not. Another
explanation is that the load was instead due to the upstream router processing a routing update. This
agrees with the fact that the router recovered quickly from the load condition: all that was needed
was a single packet's worth of time (about 160 msec above) for the load to disappear.

That a router might, under stress, forward a packet without decrementing its TTL raises
a possibility of network instability. If the router stress was due to a routing loop, packets might
circulate around the loop indefinitely because their TTL's would not correctly expire, which might
in turn maintain the router stress.

We consideredraceroutes exhibiting “skipping” as reflecting a pathology separate
from “fluttering,” since the underlying mechanisms (load-balancing vs. an apparent packet forward-
ing error) are quite different.

57

6.6.5 Significance of fluttering

While fluttering can provide benefits as a way to balance load in a network, it also creates
a number of problems for different networking applications:

1. A fluttering network path presents the difficulties that arise frorstablenetwork paths, as
discussed iy 7.1: difficult-to-predict behavior, potential inconsistencies in state information
created in the routers on behalf of connections, and problems with constructing consistent
measurements of the network's condition. However, if fluttering occurs only at a larger gran-
ularity than individual packets—for example, per connection or per end-to-end “flow’—then
these problems are ameliorated.

2. If the fluttering only occurs in one direction (as it doesfiarstl , but not forucol), then
the path is necessarilyartially asymmetric too, suffering from the problems discussed in
§ 8.1: difficulties in computing unidirectional latencies for protocols such as NTP, difficul-
ties in using “sender-only” measurement techniques, and inefficiencies in keeping state for
bidirectional flows.

3. Constructing reliable estimates of the path characteristics, such as round-trip time and avail-
able bandwidth, becomes potentially very difficult, since in fact there mawobelifferent
sets of values to estimate.

4. When the two routes have different propagation times, such as many of those frousthe
site, then packets will often arrive at the destination out-of-order, depending on whether they
took the shorter route or the longer route. At a minimum, this can lead to extra processing at
the receiver to reassemble the out-of-order data stream.

It can lead to a more serious problem for TCP connections, however. Whenever a TCP end-
point receives an out-of-order packet, the receipt triggers the sending of a redundant acknow-
ledgement in reply, as a mechanism for informing the sender that the receiver has a hole in its
sequence space. If three out-of-order packets arrive in a row, then the receiver will generate
three redundant acknowledgements. These are enough in turn to trigger “fast retransmission”
by the sender§(9.2.7), leading it to needlessly retransmit data. Thus, out-of-order delivery
can result in redundant network traffic, both due to the extra acknowledgements, and due to
possible data retransmissions. We explore this phenomenon furthégid.3.

These problems all argue for eliminating large-scale fluttering whenever possible, where
we define fluttering as large-scale if it leads to significantly different routes (as it doesigor).

On the other hand, when the effects of the flutter are confined, ascébr, or invisible at the
network layer (such as split-routing used at the link layer, which would not show up at all in our
study), then these problems are all ameliorated.

Finally, we note that “deflection” and “dispersion” routing schemes that forward packets
along varying or multiple paths have many of the characteristics of fluttering paths [BDG95, GK97].
While these schemes can offer benefits in terms of simplified routing decisions, enhanced through-
put, and resilience, they bring with them the difficulties discussed above. From the discussion of
dispersion routing in [GK97], it appears that the literature in that area to date has only considered
the problem of out-of-order delivery, which is addressed simply by noting that the schemes require
a resequencing buffer.

58

| Failure mode | # Failures| Notes |

Host down 81 (65 %) | umann, sdsc , andinria accounted for 93%
Stub network outage 31 (25 %) | ustutt accounted for 74% of these
Infrastructure failurel 13 (10 %)| no dominant pattern

Table VIII: Failure modes for unreachable hostS$iin

| Failure mode | # Failures | Notes |
Host down 277 (45 %) | panix accounted for 61% of these
Stub network outage 170 (27.5 %)| nrao accounted for 57% of these
Infrastructure failure| 170 (27.5 %)| no dominant pattern

Table IX: Failure modes for unreachable host&in

6.7 Unreachability

In addition totraceroute failures due to persistent routing loops and erroneous routing,
125 of the’R, traceroutes and 617 of theR, traceroutes failed to reach the destination
host for other reasons. We analyzed these failures to determine the corresponding failure modes,
summarized in Tables VIl and IX.

6.7.1 Host down

We concluded that a host was down (first row) if theceroute to it terminated at
one of the routers which in anotheaceroute proved to be the penultimate hop to that host.
In R4, this occurred 81 times out of a total of 6,468ceroutes , giving us an unconditional
probability that a site participating in our study was down during an experimentof.25%. This
probability corresponds to an availability of 98.75%, Similarly, for R, we get an availability of
~ 99.2%. These values are a bit higher than the median availability of 97.2% reported in [LMG95],
though our “polling” frequency is lower than theirs (a mean of 10 minutes), which could explain
the discrepancy. Also, as noted§mt.4, our sites damot plausibly constitute a random sample of
Internet hosts (while [LMG95]'s sites are much closer to such), so disagreement between the two
figures is not particularly significant. Finally, note that most of the failures were due to just a few of
the sites, as indicated in the tables.

6.7.2 Stub network outage

We classified an Unreachability failure as a “stub network outage” (second row) if the
final router reached during theaceroute was sited inside the same institute as the endpoint (but
not a penultimate hop), or at the border between the institute and the remainder of the Ifternet.

105ych a failure could also occur at ttr@ceroute source's institute. One might think we would never observe
this in our traces because, in order to generdt@eeroute , thenpd _control site had to be able to connect to

59

The numbers of observations of such failures correspond to availabilities of 99.5% fofRhoth
and R, though again we cannot draw a general conclusion about connectivity to Internet sites
because our collection of participating sites might not be representative. We also need to be wary
about generality given the strong dominance of this type of failure by routes tastt¢e and
nrao !! sites.

On the other hand, the prevalence of network outagesttat gives us an opportunity
to assess how quickly a router learns that the next-hop router has crashed. If a router does not have
aroute to a packet's destination, the router is required to generate some form of ICMP “Destination
Unreachable” message [Ba95]. However, a roatay not knowhat it has no route to the packet's
destination, because it is unaware that the next-hop router has crashed. These two cases result in
different traceroute ~ behavior: the first elicits a!lfi” (or “IN™) response in theraceroute
output, while the second will simply show a dropped packet. Consider the follavéogroute
from ukc to ustutt

rtcomp.ukc.ac.uk 2 ms 2 ms 2 ms
brtcomp.ukc.acuk 2 ms 2 ms 2 ms
brtsj.ukc.acuk 3 ms 3 ms 3 ms
smds-gw.ulcc.janet 7 ms 7 ms 6 ms
eu-gw.ja.net 8 ms 8 ms 6 ms
londond.empb.net 12 ms 11 ms 8 ms
duesseldorf2.empb.net 33 ms 31 ms 38 ms
ipgate2.win-ip.dfn.de 91 ms 52 ms 46 ms
duesseldorf4.win-ip.dfn.de 70 ms 44 ms 32 ms
10 stuttgartd.belwue.de 67 ms 68 ms 56 ms
11 stuttgartl.belwue.de 84 ms 85 ms 74 ms
12 belwue-gw.uni-stuttgart.de 63 ms 57 ms 69 ms
*

* *

O©CoOo~NOOOThA~,WNEE

elwue-gw.uni-stuttgart.de 68 ms !'H

N

N
L R R R R R
R T I T
L I T o R T N

belwue-gw.uni-stuttgart.de 64 ms 'H

the source in the first place. However, some sources have multiple connections to the Internet, and we did observe several
instances where we were able to connect to a source but it was unable to advance packets to any routers outside of its site.
We include these instances in the tables as stub network outages.

Lt turns out that the entirarao site was intentionally disconnected from the Internet from November 28 through
December 6, 1995, following a serious break-in by a network cracker.

60

Hop 12 makes it tdelwue-gw.uni-stuttgart.de , ustutt 's border router. Normally the

next hop would be t@iscol.rus.uni-stuttgart.de , inside theustutt site, and hop 12

gives no indication of an impending problem here. But the next 36 packets are dropped, re-
flecting an outage of 3.5 minutes. At hop 2Bglwue-gw.uni-stuttgart.de again re-
sponds, but this time includes an ICMP unreachable message. Thus, it appears that it took
belwue-gw.uni-stuttgart.de at least 3.5 minutes to learn that the next hop had crashed.

What follows, from hops 24-30, remains a puzzhelwue-gw.uni-stuttgart.de
apparently forgets that the next-hop router has crashed and only relearns the fact after another
100 seconds. At this point theaceroute terminates because it has reached the 30-hop limit.

Of the 23R, stub network outages involvingstutt , 19 exhibited this patteri?. For
those 19, the learning periods range from 0 seconds (the router immediately knew that the next hop
was unavailable) to 170 seconds, with a median of 30 seconds and a mean of 50 seconds (distributed
roughly exponentially—se#6.8 for the significance of this). For the other fagtutt outages, the
router failed to learn the unavailability of the downstream hop beforéréleeroute terminated
due to the 30-hop limit. These failures spanned between 105 and 225 seconds, so those give lower
bounds on the learning time.

Clearly, forbelwue-gw.uni-stuttgart.de , the router does not quickly learn about a
next-hop crash. If this slow response is typical (we lack enough data to know if it is), then Internet
traffic is subject to outages on the order of a minute whenever a router crashes. This finding is
consistent with the BGP specification, which recommends that routers wait for 90 seconds’ worth
of unanswered polls before deciding that a peer is unreachable [RL95]. The higher this figure is, the
less prone a network is to routing oscillations; but high delays in detecting unreachable peers also
present serious difficulties for real-time protocols that need to quickly adapt to such faults [GR95].

6.7.3 Infrastructure failure

The final type of failure (third row in each table) reflects a problem inside the Internet
infrastructure: the terminating router in ttraceroute ~ was in the middle of the network, not at
the source or destinatidn. In this case, wean make a general statement about availability, since
the basis for our study is the assumption that the collection of routes between ois RfEESseEn-
tative of Internet connectivity as a wholg4.4). A total of 13 failures out of 6,458, observations
corresponds to an Internet infrastructure availability of 99.8%, whiléfgthis percentage drops
to 99.5%. The difference is significant using the methodology discussged.t If we add to these
failures the instances of persistent routing lodp6.8.1) and erroneous routing §.4), then thek,

12l of the ustutt outages occurred between the early morning of Saturday, December 10th and the early morning
of Monday, December 12th (Stuttgart time), indicating that the crashed router was down for the weekend.

3In some cases, such a termination can still reflect an unreachable host or a stub network outage, if the unreachability
information has been propagated into the interior of the network. However, in these cases we would expect that the
information is not propagatedeeplyinto the network, since the need to “aggregate” routing information means that
information pertaining to individual host or stub network outages cannot be propagated beyond the point at which it is
aggregated with information for other, reachable hosts or networks.

We inspected the points in the terminating routers for the infrastructure failures and found that in the vast majority of
cases, the router was sited far from the unreachable destination. For example, we observed several infrastructure failures
for traceroutes going frombnl to European sites, each of which terminatecames-linl.es.net in
California. Such a termination is much more likely to reflect loss of general connectivity to Europe, than an outage of a
single European site being propagated all the way to a router in California.

61

availability falls to 99.6%, and that foR, to 99.35%. We must bear in mind, however, that these
numbers will be skewed by the fairly large proportion of our attempted measurements that failed
due to an inability to contact the remated site § 5.2); some of these failures could be due to
infrastructure problems, making these availability numbers overestimates.

A solid figure for Internet infrastructure availability is important for network service
providers wishing to provide a form guaranteed servici which the guarantees carry legal (con-
tractual) obligations [Fe90, PaFe94]. We do not claim that the availabilities given in the preceding
paragraph are such solid figures, but they are a step in that diréttion.

6.7.4 Consistently unreachable hosts

Several hosts in our study were either always or frequently unreachable. Those always
unreachable-bsdi in R, andoce anducol in R,—all reside behind firewalls that drop incom-
ing, unidentified UDP packets (such as usedtiageroute ; § 4.2.3), sotraceroutes to it
always showed connectivity lost after the hop prior to the firewall. We adjusted for this behavior by
considering anyraceroutes that made it to that hop as making it all the way to the host.

The other frequently unreachable hdsti , is connected to the Internet via an ISDN
circuit. This circuit disconnects after any idle period during whidh did not use the circuit for a
configurable amount of time (typically 10-20 minutes). Thus, mageroutes tolbli found
the circuit down, and terminated at the Internet side of the ISDN link. As with the firewall hosts, we
considered thesgaceroutes as having successfully reach tiné host.

The net effect of these adjustments is to introduce possible underestimation into our as-
sessment of the prevalence of stub network outages and hosts being down. Most likely, this intro-
duced bias is quite slight, given how our stub network outages and downed hosts statistics were
dominated by just a few sites anyway.

6.7.5 Unreachable due to too many hops

Asnoted ing 4.2.1 traceroute by default probes up to 30 hops of the route between two
hosts. This length sufficed for all of the; measurements, and all but 6 of tRe measurements.
The fact that it failed occasionally iR,, however, indicates that the operational diameter of the
Internet has grown beyond 30 hops, and argues for using large initial TTL values when a host orig-
inates an IP datagram. In informal studies of the link connecting the Lawrence Berkeley National
Laboratory to the rest of Internet, we have found that most hosts send IP datagrams with TTL's well
above 30, but a non-negligible proportion of the datagrams (10% in one dataset) appear to have been
sent with TTL's of around 30.

While routes of more than 30 hops were not correctly measureachbsroute in our
experiment, they were so rare as to not present any significant source of error.

A final note concerning large hop counts: it is sometimes assumed that the hop count of
a route equates to its geographical distance. While from our data this appears roughly the case, we

M Naturally, a network service provider will keep detailed statistics on their own network, and not need a figure such
as that we have computed. But if they must deal with other providers for portions of the end-to-end route, such a figure
as a rule-of-thumb will prove useful.

155 of the 6 were to or froninria . Routing within France (and international routing in general) often has many
hops. The other was betweamont andumann, also international in scope.

62

noticed some remarkable disagreements, both in terms of a few hops corresponding to large dis-
tances, and many hops corresponding to little distance. For example, the shortest route we observed
fromncar , in Colorado, tasdsc , in southern California (about 1,500 km distant), was three hops:

cs-vbns.ucar.edu
cs-atm0-0-3.sdsc.vbns.net
rintrah.sdsc.edu

This route traveled over the VBNS ATM backbone (recall from.2.3 thattraceroute elicits
paths at thenetwork layer and does not measure any “hops” made at the link layer). We also
observed ik, a 5 hop route fronpubnix to bsdi , about 2,000 km distant.

On the other hand, all of the routes we observed betwd@erandharv (in either direc-
tion), sited about 3 km apart, were 11 hops, and we observed 14 and 17 hop routes keitween
andlbl , about 50 km apart.

6.8 Temporary outages

The final pathology we studied was temporary network outages. When a sequence of
consecutiveraceroute probes are lost, the most likely cause is either a temporary loss of net-
work connectivity, or very heavy congestion lasting 10's of seconds. Forteaehoute , we
examined its longest period of consecutive probe losses (other than consecutive losses at the end of
atraceroute when, for example, the endpoint was unreachable).

The resulting distribution of the number of probes lost appears trimodakI(Rz),
about 55% (43%) of theaceroutes had no losses, 44% (55%) had between 1 and 5 losses, and
0.96% (2.2%) had 6 or more los$és

Of these latter, after eliminating thoseukc in R, (because these “outages” are actually
unresponsive routers; s@e6.1), the distribution of the number of probes lost in e data is
quite close to geometric. Figure 6.2 plots the outage duration om-pds vs. the probability
of observing that duration or larger on theaxis (logarithmically scaled). The outage duration is
determined by the number of probe losses multiplied by 5 seconds per lost probe. The line added
to the plot corresponds to what would be expected for a geometric distribution with probability
p = 0.92 that a probe beyond the 5th is dropped. (The line appears straight due to the logarithmic
y-axis scale and the fact that the geometric distribution is the discrete counterpart to the exponential
distribution.) As can be seen, the fit is fairly good, especially in the tail.

From the above evidence it is reasonable to argue that long outages are well-modeled
as persisting for 30 seconds plus an exponentially distributed random variable with mean equal to
about 40 seconds. This finding would be convenient, since the exponential distribution often makes
for tractable analysis.

If we turn to theR, data, however, we find that the geometric tail with= 0.92 is still
present, but only for outages more than 75 seconds long, as illustrated in Figure 6.3. For outages
between 30 and 70 seconds, the duration still exhibits a geometric distribution, buyt with62,
suggesting two different recovery mechanisms, one operating on time scales of 30 seconds to a
minute or so and the other on significantly longer time scales.

16Recall from§ 4.2.3 that probe “losses” can also be due to ICMP rate-limiting, which we do not differentiate. We
analyze true packet losses in much greater detail in Chapter 15.

= X)

P(X>

0020 0040 0070

:)()

P>

0200 0400 0.700

0007

0200 0400 0800

0020 0.040 0080

0007

T T T T T T
50 100 150 200 250 300

Duration of Outage (sec)

Figure 6.2: Distribution of longk, outages

T T T T T T
50 100 150 200 250 300

Duration of Outage (sec)

Figure 6.3: Distribution of longR, outages

63

64

Figure 6.4: Circuitous route frofmmsdi to usc

Note that§ 6.7.2 provides separate evidence that the time taken for routers to recover from
the loss of a next-hop router is exponentially distributed, with a mean of 50 seconds (shorter than
the R, fit, but in agreement with th&, data).

6.9 Circuitous routing

Since the inception of the Internet Protocol, one of its main goals has been resilience in
the presence of network failures [CI88]. In this section we document some of the more circuitous
routes the network found in order to maintain connectivity in the presence of failures. These routes
do not represent pathologieer sebut rather triumphs of robust routing, or, sometimes, simply the
lack of the necessary infrastructure to take advantage of more direct routes.

Figure 6.4 shows a route used frdmadi , in Colorado Springs, Colorado, tsc, in
Los Angeles, California. The route is perhaps three times longer thaisdheroute tosri (located
in Northern California), which also makes a first hop to Dallas, Texas, but from there travels to
San Jose, California, rather than to the East coast.

Figure 6.5 shows one of the routes used filbin , in Berkeley, California, tacol , in
Boulder, Colorado. Here the packets travel all the way to the East coast, then back to the West
coast, and finally over to Colorado. A more direct path, also present in our data, travels straight
from New Mexico to Colorado. Presumably this link was unavailable during the time of the longer
route.

Figure 6.6 shows a route fromrao , in Charlottesville, Virginia, tavustl , in St. Louis,
Missouri. This route increases the distance of the more direct route we also observed (via Washing-
ton, D.C., and then straight to St. Louis) by roughly a factor of five.

Figure 6.7 shows an even more tortuous routeustl , this time fromlbl . The packets

66

Figure 6.7: Circuitous route frofbl to wustl

first travel to Livermore, California, and then Los Alamos, New Mexico, via ESNET. They continue
up to lllinois and across to Washington, D.C., via Princeton, New Jersey, and College Park, Mary-
land. They next take a southern route all the way back to northern California (!), back to southern
California, and finally across to St. Louis. Figure 6.8 shows the 29 hops making up this path. One
might be tempted to conclude that the path must have been the product of some sort of one-time
glitch, but it showed up 5 different times in th&, data.

In Figure 6.9 we see an illustration of the difficulties sometimes encountered even when
going a very short distance. This route was the only one we observedhémto xor (8 observa-
tions total).ncar is located in Boulder, Colorado, amdr in East Boulder, Colorado, a few miles
to the east. Yet the route between them visits the Gulf of Mexico and the East coast before crossing
those few miles.

Circuitous routing is not limited to the United States. Figure 6.10 shows the route from
inria , located in Southern France,doe , located in the Netherlands, a few hundred kilometers to
the North. The routing takes the packets across the Atlantic ocean to Vienna, Virginia (and nearby
Falls Church), before crossing the Atlantic again to Amsterdam. The return patlbdéeoto inria
also follows this path, except in one instance the routing went from Amsterdam to Paris via Vienna,
Austria (shown with a dotted line), rather than Vienna, Virginia. We speculated that perhaps the
trans-Atlantic routing was due simply to accidental misconfiguration based on the similarities of
the names; but we learned from EUnet personnel that much more likely the trans-Atlantic routing
was intentional, due to its low-cost and higher available capacity compared to the underprovisioned
intra-European links [Bi95].

Persistent circuitous routing might strike us as pathological, and unexpected in a well-
run network. Because we do not know the underlying reasons for the routing configurations, we
are unable from our data to answer why circuitous routing exists. We speculate, however, that

irégw.lbl.gov (Berkeley, CA)
erlgw.lbl.gov

Ibl-lc2-1.es.net

lInl-1bl-t3.es.net (Livermore, CA)
lanl-linl-t3.es.net (Los Alamos, NM)
fnal-lanl-t3.es.net (Batavia, IL)
pppl-fnal-t3.es.net (Princeton, NJ)
pppl-nis.es.net

umd-pppl.es.net (College Park, MD)

mf-0.enss145.t3.ans.net
t3-2.cnssb6.washington-dc.t3.ans.net (Washington, DC)

t3-1.cnss72.greensboro.t3.ans.net (Greensboro, NC)
t3-0.cnss104.atlanta.t3.ans.net (Atlanta, GA)
t3-2.cnss64.houston.t3.ans.net (Houston, TX)
t3-0.cnssl112.albuquerque.t3.ans.net (Albuquerque, NM)
t3-1.cnssl6.los-angeles.t3.ans.net (Los Angeles, CA)
t3-2.cnss8.san-francisco.t3.ans.net (San Francisco, CA)
t3-0.enss144.t3.ans.net (Moffett Field, CA)
fix-w.icm.net

sl-stk-5-h2/0-t3.sprintlink.net (Stockton, CA)
sl-stk-6-f0/0.sprintlink.net

sl-ana-2-h4/0-t3.sprintlink.net (Anaheim, CA)

sl-ana-3-f0/0.sprintlink.net
sl-starnet2-1-s0-t1.sprintlink.net (St. Louis, MO)
stl2-e0.starnet.net

ncrc-acn.wustl.edu

ncrc-eng.wustl.edu

jer.ecl.wustl.edu

tango.cs.wustl.edu

Figure 6.8: Individual routers comprising circuitous path fribin to wustl

67

Figure 6.9: Circuitous route

Figure 6.10: Circuitous route

69

| Pathology | Probability | Trend | Notes |

Unresponsive routers 0.00-0.53% Rare enough to not present a mea-
surement problem.

Failure to decrement TTL 0.18%_1 0.06% | better | Downstream router visiteq
prematurely.

Persistent routing loops 0.13-0.16% Some lasted for hours.

Temporary routing loops 0.055-0.078%

Erroneous routing 0.004-0.004% Packets inR; visited Israel! No

instances ink».

Connectivity altered mid-stream0.16% 1. 0.44% | worse | Suggests rapidly varying routes.
Infrastructure failure 0.21%1 0.48% | worse| No dominant link.
Temporary outage 30 secs 0.96%.1 2.2% | worse| Outage duration distributed o
constant plus exponential. Th
distribution inR > is bimodal.

n un

Total user-visible pathologies | 1.5% 1 3.4% worse

Table X: Summary of representative routing pathologies

it may be an inevitable consequence of the structure of today's Internet: the network is so vast
and heterogeneous, and so under-instrumented for purposes of diagnosing end-to-end ailments, that
errors inexorably arise and persist for long periods of time.

6.10 Summary

Table X summarizes the routing pathologies we studied in this section. The table is con-
fined to those pathologies for which we claim our samples are representadivl.((So, for exam-
ple, we omit the “fluttering” pathology, which was heavily dominated by a pair of sites in our study;
and also “host down,” and “stub network outage.”) The first part of the table reflects pathologies
that arenotin general visible to an end-to-end user of the network; that is, their presence does not
significantly impact most network users. The second part of the table summarizes pathologies that
are user-visible.

The second column gives the probability of observing the pathology, in two forms. When
the probability is given as a range, such as for “persistent routing loops,” then the proportion of ob-
servations of the pathology iR, was consistent with the proportion Ry (using the methodology
in § 4.5). The range reflects the values spanned by the two datasets.

When the table lists two probabilities separated ly' ‘then the proportion ofR, obser-
vations wasnconsistentwith 95% confidence, with the proportion &, observations. The first
probability applies to th&; measurements, and reflects the state of the Internet at the end of 1994,
and the second to the, measurements, reflecting the state at the end of 1995.

For those pathologies with inconsistent probabilities, the third column assesses the trend
during the year separating tfi&, andR, measurements. A trend of “better” indicates that the situ-
ation improved, and “worse” that it degraded. One pathology improved significantly: the likelihood

70

of a router failing to decrement the TTL decreased. This change likely reflects upgraded and more
stable router software.

Note though that this pathology is of no interest to end-to-end users of the network—
improvements in the pathology do not reflect any significant gains in network service for the user.
On the other hand, of the pathologies given in the second part of the table, avhichinterest to
usersnone of them improvedanda number became significantly worse

The final row summarizes the total probability of observing a user-visible pathology. We
note that:During 1995, the likelihood of a user encountering a serious end-to-end routing problem
more than doubled, to 1 in 30The most prevalent of these problems was an outage lasting more
than 30 seconds.

This finding raises concerns regarding the long-term stability of the Internet. Clearly, if
the trend continues, then network service will degrade to unacceptable levels. Unfortunately, from
only two points in time it is impossible to assess the actual likelihood of the trend continuing.

Finally, we note that, for reasons givergib.2, our estimates of the prevalence of patholo-
gies are biased towards underestimation; the true figures are most likely somewhat higher.

71

Chapter 7

End-to-End Routing Stability

One key property we would like to know about an end-to-end Internet routesistgity:
do routes change often, or are they stable over time? In this section we analyze the routing measure-
ments to address this question. We begin by discussing the impact of routing stability on different
aspects of networking, to motivate our study, and summarizing the reasons why routes change. We
then present two different notions of routing stability, “prevalence” and “persistence,” and show that
they can be orthogonal (i.e., a route can be considered “stable” by one definition independently of
whether it is stable by the other definition).

It turns out that “prevalence” is quite easy to assess from our measurements, and “persis-
tence” quite difficult. In§ 7.5 we characterize the “prevalence” stability of the routes, and then in
§ 7.6 we tackle the problem of assessing “persistence.”

We finish by evaluating a method fdetectingroute changes based on observing changes
in hop count (TTL). We find this method makes a decent heuristic, but generates enough “false
negatives” that it should not be trusted if accuracy is crucial.

7.1 Importance of routing stability

One of the stated goals of the Internet architecture is that large-scale routing changes (i.e.,
those involving different autonomous systems) rarely occur [Li89]:

The Inter-AS Routing scheme must provide stability of routes. It is totally unac-
ceptable for routes to vary on a frequent basis. This requirement is not meant to limit
the ability of the routing algorithm to react rapidly to major topological changes, such
as the loss of connectivity between two AS's. The need for adaptive routing does not
imply any desire for load-based routing.

This point has been argued by others as well [BE9QO, Tr95b]. Routing instability sets the foremost

limit on how use of BGP can scale to a very large internet, because CPU utilization required by BGP

routers increases directly in proportion to the frequency of routing changes (but not, otherwise,

in proportion to the overall size of the network) [Tr95b]. Hence, the key concern is that routing

instability can in turn lead to general network instability (i.e., loss of packet-forwarding function).
There are a number of aspects of networking affected by routing stability:

72

1. Some of the most important properties of a network—Ilatency, bandwidth, congestion levels,
packet losses—are atbute properties. If the route through the network changes, so might
some or all of these properties. Therefore, the degree to which a network's behavesr is
dictableis directly related to the stability of its routes. This is not to say that, even if the
route remains stable, these properties will too. Rather, routing stabilitycessaryut not
sufficientfor predictable network behavior.

One patrticular example affected by routing stability isphedictive servicscheme proposed

for real-time network traffic [CSZ92]. Predictive service attempts to satisfy the performance
requirements of real-time traffic by only admitting new real-time flows if recent traffic mea-
surements suggest the network has sufficient capacity for them. If routes are unstable over
short time scales, however, then these predictions become considerably difficult to make.

2. The degree to which endpoints can benefit frmanhinginformation of previously encoun-
tered path conditions is limited by (among other factors) whether the route observed in the
past is likely to be the same as the present route.

3. New network protocols supporting “real-time” applications such as audio and visual flows
generally require establishing state in routers in order to assure that the flows receive the nec-
essary performance. Real-time flows will often be long-lived, existing for time spans on the
order of human interactions (minutes to hours) rather than computer interactions (millisec-
onds to seconds). If routing changes occur frequently, then these long-lived flows will be
prone to losing the state they have established in the routers in the network, and will suf-
fer outages or degraded service while they attempt to find alternate routes with sufficient
resources.

Some protocols use “hard state” in the routers, meaning that, if state information for a
given flow is not present in the router, then the router will not forward the flow's packets
[DB95, FBZ94]. Other protocols use “soft state” schemes in which, even if a router has no
corresponding state information for the flow, it will forward a flow's packets, though with
possibly degraded performance [ZDESZ93, BCS94, DEFJLW94]. Hard state and soft state
schemes trade off performance guarantees versus flexibility in the face of errors. Part of the
question of evaluating the flexibility gain of soft state schemes concerns the degree of route
stability. If routes do not tend to change frequently, then the soft state gain in flexibility is
minor, but, if routes change frequently, then the gain will be larger.

For an overview of the difficulties of dealing with routing changes in real-time protocols, see
[GR95]. We do not attempt here to evaluate the flexibility gain of soft state versus hard state
schemes. Indeed, the question is much more complex than stated .aBaveve do attempt

to characterize the stability constants that could then be used in such an evaluation.

4. Another form of router state arises from schemes for suppogth@nce reservationsn
which the network allows resources to be reserved for future use [FGV95]. If the state con-

LFor example, both types of schemes often use “route pinning,” in which the route available when a flow is established
remains the route used by that flow for its lifetime. If a route is pinned, then only route changes duésitutb®f a
router used by the flow affect the flow; not those due to the discovery of improved réutey.(
Similarly, some hard state schemes have explicit recovery mechanisms for when a flontoesta# ((Ba94, DB95,
GR95]), so these schemes do not necessarily stop working in the presence of route changes.

73

cerning these reservations is stored in the network's routers (a logical choice, to avoid cen-
tralized bottlenecks), then frequent route changes may lead to reservations failing because
the routers used to establish the reservations are no longer the routers relevant to the real-
time path.

5. If routes change frequently, then network measurements face difficult consistency problems.
For example, several studies of end-to-end network behavior rely on repeated measurements
of a network path made over the course of hours to days [Mi83, CPB93a, B093, SAGJ93,
Mu94, BCG95]. Whether these measurements all observe the same path significantly affects
the accuracy of the studies.

Similarly, distributed algorithms for analyzing the network's state also face consistency prob-

lems if routes change frequently. For example, recent theoretical work has developed “tomog-
raphy” techniques for inferring end-to-end network traffic intensities using just measurements
of aggregate traffic intensities along the network's links [Va95]. The work assumes stable
routing (an extension explores Markovian routing). If routes change frequently, then it may

prove extremely difficult to capture a consistent global snapshot of any significant portion of

the Internet for purposes of operational monitoring.

We now look briefly at why routes change, and then introduce two different notions of
routing stability, to encompass the different stability concerns discussed above.

7.2 Why routes change

There are several different reasons why a route might change:
1. If alink or routerfails, then the network must reroute traffic using that link or router.

2. If a link or routerrecovers then the networknayelect to route previously redirected traffic
back to using that link or router. If routes are “pinned,” however, then they will not be changed
due to recoveries.

3. If a link degradesor improves where such notions might for example be measured by con-
gestion levels, then the network mighdaptby changing routes to account for the altered
view of the cost of the link. For example, the ARPANET routing algorithms were designed
to route around congested areas of the network. As experience with the ARPANET showed,
such adaptive routing is tricky to get right: the initial routing scheme reacted “very quickly
to good news, and very slowly to bad news” [MFR78], and the first revision of the algo-
rithm [MRR80] also exhibited oscillations under heavy load [KZ89]. Because it is difficult
to achieve stable adaptive routing, in which routes are not subject to rapid oscillation in re-
sponse to transient congestion, adaptive routing is not widely used [M095], and a number of
researchers argue for caution in its use [ERH92, RG95].

4. A router might cycle between different routes to the same destination in ordelance
load. We analyzed this sort of route “flutter” §16.6, where we found that often its effects
are confined to a single hop in an Internet path, but sometimes the split routes fail to rejoin,
leading to drastically different path characteristics.

74

We would hope to observe four different time constants associated with these four reasons,
of decreasing durations. Link failures should occur only rarely, hopefully on the time scale of days.
Link recoveries should occur significantly quicker (i.e., shortly after the link failure), on the time
scale of minutes (if a reboot or restart is all that is required) to hours (if human intervention and
repair is required). If adaptive routing is used, then changes should occur on the time scales of
congestion epochs (unfortunately not well characterized in the literature), which one presumes is on
the order of seconds to minutes; adaptive routing algorithms gendgatiprapid changes, though,
to avoid oscillations, so we would expect this time constant to be more on the order of minutes.
Finally, load balancing is generally done on very small time scales (such as every other packet), on
the order of milliseconds.

7.3 Two definitions of stability

As suggested il 7.1, there are two distinct views of routing stability. The firstis: “Given
that | observed route at timet, how likely am | to observe again at timet + s?” We refer to
this notion agrevalence A route's prevalence directly affects the first two motivations discussed
above, namely predictability of service, and our ability to learn from past conditions. In general, the
degree of route prevalence will dependsriror larges, however, we would expect the observation
at timet + s to be (nearly) independent of the observation at time this study, for simplicity we
focus on the unconditional probability of observing a route, confining our analysis-fox, i.e.,
the steady-state probability of observinggain at a point far in the future. We leave the interesting
guestion of how prevalence evolves for different intervalsr future work.

A second view of stability is: “Given that | observed routat timet, how long before
that route is likely to have changed?” The likelihood of routes changing in the near future has
implications for the latter three motivations, namely hard and soft router state, resource reservations,
and network measurement consistency. We refer to this notiperastence

Intuitively, we might expect these two notions to be coupled. Consider, for example, a
sequence of routing observations made eénnits of time. If the routes we observe are:

R17R17R17R17R17R17R17R17R17R17R17R27R17R17R1 s

then clearly routeR; is much more prevalent than roui®. We might also conclude that route
R is persistent, because we observe it so frequently; but this is not at all necessarily the case. For
example, supposE is one day. If the mean duration &% is actually 10 days, and that & is one
day, then this sequence of observations is quite plausible, and we would be correct in concluding
that R; is persistent and prevalent~urthermore, depending on our concern, we might also deem
that R; is persistent, since on average it lasts for a full day (if its lifetime were much shorter, then we
would have been unlikely to observe it from measurements made only once a day). If we consider
a route that last for more than a few hours as persistent, then from the above observations we could
argue thatR, is persistent but not prevalent.

But suppose instead that the mean duratioRpfs 10 seconds and the mean duration of
R, is 1 second, and that alterations between them occur as a semi-Markov prodess, state 1

2Such processes consist of a set of states. Eachistateassociated with it a distribution of duratio@s, The distri-
bution depends on the state numbdput not on anything else. Upon entering statea duration is drawn independently

75

of the process corresponds By, state 2 toR,, andP,» = P = 1 (i.e., whenever a change
occurs, it is a change to the other route). Then a well-known result from the theory of stochastic
processes states that the proportion of time the system spends in state 1 is equal to the mean duration
of state 1 divided by the sum of the mean durations of states 1 and 2 [Ro83]. For our example, we
have that the proportion of time spent in st&teis % reflecting thatR; is prevalent. Similarly, the
proportion of time spent in statg, is 1—11 Given these proportions, the sequence of observations is
again plausible even though each observation®f is actually of a separate instance of the route.
In this case R, is prevalent but not persistenaind R, is neither prevalent nor persistenin other
words, we very likely are missing instancesif between observations &f;, and henceR; is not
persistent.

This example shows that the notions of “prevalent” versus “persistent” stability are or-
thogonal, in the sense that the presence or absence of one does not necessarily indicate anything
about the presence or absence of the other.

7.4 Reducing the data

To begin our analysis, we first need to reduce the more than 4@Ax&0outes mea-
surements iR, andR, to those relevant for assessing stability. Before we had gatherelsthe
measurements, we performed an initial stability analysis ofRhelata. Doing so, we concluded
that the inter-measurement spacing of etraceroutes , on average about one day, was too
large to allow any assessment of routing stability in terms of persistence, because of the ambiguities
discussed in the previous section. Consequently, we confine our routing stability analigsis to
which contains the bulk (85%) of the 40,000 measurements. 60% of these were taken with a 2-hour
inter-measurement spacing. As shown in the remainder of this chapter, this granularity is sufficient
to resolve the persistence ambiguities.

Of the 35,109R, measurements, we began by excluding those exhibiting the patholo-
gies discussed in Chapter 6, because they reflect connectivity difficulties distinct from routing
instabilities> (We did not exclude “circuitous” routes, however, because, as mentiong .9
these are not true pathologies.) Doing so eliminatedt&@sroutes

We also omittedraceroutes for which one or more hops were completely missing (all
three of the probe packets unanswered). These measurements are inbenbiglyousbecause we
could not tell if the route was the same as that observed at other instances. This decision eliminated
another 2,595 measurements, leaving us with a total of 31,709 measurements.

We next made a preliminary assessment of the patterns of route changes by seeing which
changes occurred the most frequently. We found the pattern of changes dominated by a number of

from G;. The process remains in stdtantil the duration elapses. At this point, a new state chosen based on a set of
probabilities fixed for staté

3An exception is the pathology of a routing change duridgegeroute . Including these pathologies, however,
can lead to overestimating the frequency of route changes. Suppose we make three route measurements of a particular
path, yielding routesi, A/B, andB, whereA/B indicates d&raceroute that included a change from routeto
route B. If we included the second, pathological measurement, we would conclude that over the three observations two
changes occurred{(to A/B and A/B to B), whereas in reality only one change occurrddd B).

Itis possible that instead the sequence we obsenteis/ B, A, because routB was short-lived; in this case, omitting
the pathologicatraceroute underestimates the frequency of changes. But this becomes an issue®mgsf quite
short-lived, and we account for such routes separately, as discuss@dbii.

76

Routers | Notes |

asd0l.nl.net , amfOl.nl.net These routers are located in different cities, tut
provide equal bandwidth and latency to their peers
[Lin96].

icm-dc-1.icp.net ,
icm-dc-2b-s4/0-1984k.icp.net
rgnet-b1-serial2-3.seattle.mci.net ,

rainnet-inc.seattle.mci.net
rb1.rtr.unimelb.edu.au ,
rb2.rtr.unimelb.edu.au
unit-gw.unit.no , Both at the University of Trondheim.
sintef-gw.sintef.no

Table XI: Tightly-coupled routers

single-hop differences, at which consecutive measurements showed exactly the same path except for
a single router. Furthermore, the names of these routers often suggested that the pair were adminis-
tratively interchangeable For example, many of the routing changes todstr - site only differed
in whether the University of Melbourne border router in the routenvastr.unimelb.edu.au
or rb2.rtr.unimelb.edu.au . Which of these two routers provides the route todhstr host
depends on the distribution of load within other parts of the University, but the two routers are under
the same direct administration and would indeed be one machine if a single router with sufficient
capacity had been available at the time of acquisition [EI96].

It seems likely that many route changes differing at just a single hop are due to shifting
traffic between two tightly coupled machines. For the stability concerns givgn7id, such a
change is likely to have little consequence, provided the two routers are co-located and capable of
sharing state. We decided that, if a single pair of routers with like names were responsible for more
than 200 routing transitions, then we would classify them as “tightly coupled,” and merge them
into a single router for purposes of evaluating stability. Table XI summarizes these routers. After
merging those responsible for 200 changes, the remaining pairs were all responsible for 80 or
fewer changes. We left these as separate routers, as changes between them did not dominate the
data, and we would like to minimize assumptions about which routers are tightly coupled.

Finally, we reduced the acceptable routes to three different levejsaollarity. First,
we considered each route as a sequence of Internet hostnames. We ¢adkthignularity. We
then reduced the routes to sequencesitds as outlined irg 5.3. Note that a route change at host
granularity mightnot be a route change atty granularity, though the converse always holds. The
motivation behind the distinction of host granularity vs. city granularity is to introduce a notion of
“any change” vs. “major change.” A route change at city granularity will likely have considerably
more repercussions than a change visible only at host granularity. For example, the latency of the
route will often be different. Overall, 57% of the route changes at host granularity were also route
changes at city granularity.

‘Sometimes the routergere identical. For example, IP addred$92.157.65.130 , which translates to
icm-paris-1-s0-1984k.icp.net ,is actually also an interface graris-ebs2.ebone.net

77

The third level of granularity waAS path—the sequence of autonomous systems visited
by the route § 4.4). A change aASgranularity reflects a possible change in the intermediate routing
algorithms and policies, and as such is another form of major change. Overall, 36% of the route
changes at host granularity were also changes at AS path granularity. Note that a change at AS path
granularity is not necessarily a change at city granularity, nor vice versa, though overall we found
AS path granularity coarser (i.e., comprising fewer changes) than city granularity.

7.5 Routing Prevalence

In this section we look at routing stability from the standpoinpadvalence how likely
we are, overall, to observe a particular route (¢.7.3). We can associate with prevalence a pa-
rameterr,, the steady-state probability that a path at an arbitrary point in time uses a particular
router.

We can assess, from our data as follows. We suppose that routing changes follow a
semi-Markov process. In this model, each route's duration has a fixed distribution (but different
routes can have different distributions), and the duration of each instance of a route is independent
of all previous route durations. Furthermore, the probability that reute followed by router; is
fixed and independent of past events.

We then use the result that, for a semi-Markov process, the steady-state probability of
observing a particular state is equal to the average amount of time spent in that state’[[Ra83].
thermore, because of PASTA, our independent exponential sampling gives us an unbiased estimator
of this time average§(4.3). Suppose we makeobservations of a path arig of them find state:

(i.e., router). Then we will estimater, as@, = k,/n.

We proceed as follows. For a particular patifand for a given granularity), let, be
the total number ofraceroutes ~ measuring that path, antj the number of distinct routes seen.
We will denote the most commonly occurring route asdbeinantroute, and others aecondary
routes. Thus, there are always — 1 secondary routes. L&, be the number of times we observe
the dominant route. We then confine our analysis to:

Tdom p= kp/npa

the prevalence of the dominant route.

Figure 7.1 shows the cumulative distribution of the prevalence of the dominant routes over
all of the paths in our study (i.e., all 1,054 source/destination pairs), for the three different granular-
ities. For example, at host granularity, nearly half (49%) of the pattexis) were dominated by a
route with a prevalence of at least 80%dxis).

There is clearly a wide range, particularly for host granularity. For example, for the path
betweerpubnix andaustr , in 46 measurements we observed 9 distinct routes at host granularity,
and the dominant route was observed only 10 times, leadifigstp = 0.217. On the other hand,
at host granularity more than 25% of the paths exhibited only a single rogig & 1). For city
and AS path granularities, the spreadrifa, is more narrow, as would be expected (the figure also

5This result requires that the distribution of time spent in each stat@blattice i.e., not always an integral multiple
of some constant, so that the notion of “steady state” can be defined without reference to specifics about exactly when, in
the far future, we observe the process. For route durations, this seems like a plausible assumption.

78

O —
- —— Host granularity
""" City granularity
— — AS granularity
o
o
2
5 9 |
8 o
o
o
[
=
ks
s 3
E o
>
O
N
o
o
o

0.0 0.2 0.4 0.6 0.8 1.0

Prevalence of dominant route

Figure 7.1: Fraction of measurements observing the dominant route, for all paths, at all granularities

79

shows how route changes at city or AS path granularity do not necessarily imply changes at the
other granularity, since neither is strictly below the other).
A key figure to keep in mind from this plot, however, is that, while there is a wide range
in the distribution ofryom Over different paths, itmmedianvalue at host granularity is 82%; 97% at
city granularity, and 100% at AS path granularity. The clustering of many paths only ever exhibiting
a single route (i.e., prevalenee100%) reflects the finding we develop below §r7.6 that many
routes are long-lived. (If we had data gathered over periods of time exceeding several weeks, we
would doubtless find that the spike at prevalerc&00% would spread out to values in the upper
90%'s.) Thus, we can concludie: general, Internet paths are strongly dominated by a single route.
Our previous work, however, has shown that many characteristics of network traffic ex-
hibit considerable site-to-site variation [Pa94a], and thus it behooves us to assess the differences in
Tdom between the sites in our study. To do so, for eachsgjmnd for each granularity) we computed:

P . Zsrc pathss; ksi
sics= = -
sre pathss; "ts;

wherek;, is the number of times we observed the dominate route when measuring a path from
sources to destinatior, andn; is the total number of times we made a measurement of the path
from sources to destinatiory.

The aggregate estimatg.. sthen indicates the overall prevalence of dominant routes from
s to different destinations. We expect variations in this estimate for different sites to reflect differing
routing prevalence due to route changesrthe source. Route changes further downstream from
the source occur either deep inside the network (and so will affect many different sites), or near the
destination (and thus will not affect any particutaurcesite unduly).

Similarly, we can constructgys; s for all of the paths with destination. Studying g s
and7qgst s for different sites and at different granularities reveals considerable site-to-site variation,
in agreement with the general findings in [Pa94a]. Figure 7.2 shows the values computgd for
for each of theR, sites, at host granularity. We find that the prevalence of the dominant routes
originating at theucl source is under 50% (we will see in7.6.1 the main cause for this), and
for bnl , sintefl |, sintef2 , andpubnix is around 60%; while foncar , ucol , andunij , itis
just under 90%. Even at AS path granularity, tlet source has an average prevalence of 60%,
with ukc about 70%, and the remainder from 85% to 99%. At city granularity, however, the main
outlier isbnl , with a prevalence of 75% (c§.7.6.2), because thel andukc instabilities, while
spanning autonomous systems, do not span different cities.

We find similar spreads foiys; s for different destination sites. Figure 7.3 shows the
per-site values, computed for host granularity. Sometimes the sites with low overall prevalence are
the same as the sites with low prevalence #g¢ s (e.g.,ucl), and sometimes they are different
(e.g.,ukc); this variation is due tasymmetricouting, which we analyze in Chapter 8.

We can thus summarize routing prevalence as follomsgeneral, Internet paths are
strongly dominated by a single route, but, as with many aspects of Internet behavior, we also find
significant site-to-site variation.

80

~ucl |
sintef2 \
bnl \
sintefl \
pubnix |
ukc \
wustl \
umann |
oce |
ustutt |
austr2 \
bl \
sri |
inria |
umont |
mit |
Ibli \
rain |
sdsc \
connix |
near \
mid \
sandia \
ucla \
harv \
bsdi |
nrao |
adv \
austr |
panix |
ncar |
ucol |
unij |

\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0

Likelihood of Observing the Dominant Route

Figure 7.2: Fraction of measurements observing the dominant route, for different source sites, at
host granularity

81

~ucl |
sintef2 \
sintefl |
near |
wustl |
sdsc \
sandia \
umann |
bnl \
ustutt |
austr \
bl \
oce |
pubnix |
inria |
Ibli \
austr2 |
umont |
Sfi |
mit |
ncar |
adv |
rain \
connix |
harv |
mid \
ucla |
panix \

nrao \
ucol \
unij \
bsdi \

\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0

Likelihood of Observing the Dominant Route

Figure 7.3: Fraction of measurements observing the dominant route, for different destination sites,
at host granularity

82

7.6 Routing Persistence

We now turn to the more difficult task of assessing pleesistenceof routes: How long
they are likely to endure before changing. As illustrated 3, unlikeprevalencerouting persis-
tence can be difficult to evaluate because a series of measurements at particular points in time do
not necessarily indicate a lack of charggel then change badh between the measurement points.
Thus, to accurately assess persistence requires first determining whether routing alternates on short
time scales. If not, then we can trust shortly spaced measurements observing the same route as
indicating that the route did indeed persist during the interval between the measurements. If shortly
spaced measurements can be trusted in this fashion, then they can be used to assess whether routing
alternates on medium time scales.

Fortunately, we have measurements made at a number of different intervals: about 60%
of the R, measurements were exponentially distributed with a mean of 2 hours, and the other 40%
with a mean of about 66 hours (with wide variation in the actual intervals, since they were expo-
nentially distributed). While these measurements do not allow us to directly address the problem of
assessing persistence—doing so would require a way to unambiguously determine exactly when a
route changed, which could be done by tracing BGP routing information exchbhgéesiot from
end-to-endraceroutes —our strategy is to analyze the measurements with the shorter spacing to
assess the frequency of route alternations, and, in turn, to determine to what degree we can trust the
measurements with larger spacing. In this fashion, we aim to “bootstrap” ourselves into a position
to be able to make sound characterizations of routing persistence across a number of time scales.

7.6.1 Rapid route alternation

In order to reliably analyze widely-spacechceroute measurements, we must first
assess the predominance of rapidly alternating routes. We have already identified two types of
rapidly alternating routes, those due to “flutter” and those due to “tightly coupled” routers. We have
separately characterized fluttering§.6) and consequently have not included paths experiencing
flutter in this analysis. As mentioned §rv.4, we merged tightly coupled routers into a single entity,
so their presence also does not further affect our analysis of rapidly alternating routes.

We next note that inR, we observed 155 instances of a route change during a
traceroute . The combined amount of time observed by the 35,H)9traceroutes was
881,578 seconds. (That is, the mean duration &,atraceroute was 25.1 seconds.) Since
when observing the network for 881,578 seconds we saw 155 route changes, we can estimate that
on average we will see a route change every 5,687 secenti(hours). This reflects quite a high
rate of route alternation, and bodes ill for relying on measurements made much more than a few
hours apart (though s€e7.6.2); but it is not such a high rate that we would expect to completely
miss routing changes for sampling intervals significantly less than an hour.

We first looked at thoseaceroute ~ measurements that were made less than 60 seconds
apart. There were only 54 of these, but all of them were of the faRn R,"—i.e., both of the
measurements observed the same route. This provides credible, though not definitive, evidence that

6As briefly mentioned ir§ 3.2, recent work by Jahanian, Labovitz and Malan pursues this approach with very inter-
esting results [JLM97]. We became aware of this work too late to discuss it here, but will address it in the version of
[Pa96b] that we are presently revising for publicatiomEf E/ACM Transactions on Networking

83

there are no additional widespread, high-frequency routing oscillations, other than those we have
already characterized.

We then looked at measurements made less than 10 minutes apart. There were 1,302
of these, and 4@riple observations (three observations all within a ten minute interval). The triple
observations allow us to double check for the presence of high-frequency oscillations: if we observe
the patternk,, Rs, Ry or R, Ro, R3, then we are likely to miss some route changes when using only
two measurements 10 minutes apart. If we only obsétveR,, R1; R1, R, Ro; or Ry, Ry, Ro,
then measurements made 10 minutes apart are not missing short-lived routes. Of the 40 triple
observations, none were of the forRy, Ry, R; or Ry, Ry, R3, confirming the finding from the
60 second observations that there are no additional sources of high-frequency oscillation.

The 1,302 ten-minute observations included 25 instances of a route clignde§. This
suggests that the likelihood of observing a route change over a ten minute interval is not negligible,
and requires further investigation before we can look at more widely spaced measurements.

A natural question to ask concerning 10-minute changes is whether they are equally likely
to occur along paths between any two sites, or if just a few sites are responsible for most of the
10-minute changeS. This is an important consideration: if all paths are equally likely to exhibit
a change during a 10-minute interval, then from the figure above of 25 changes observed out of
1,302 ten-minute observations we could conclude that routes change, on average, 25 times per
(1,302 - 10 min), or about once every eight hours.

We test whether paths to or from particular sites are more prone to change than others as
follows. For each site, let N1 (be the number of 10-minute pairs of measurements originating
at s, and X2 . be the number of times those pairs reflectarhasition (i.e., the pair wasi;, Ry).
Similarly, defineN{d, sand X & . for those pairs of measurements with destinatiomiere we are
aggregating, for each site, all of the measurements made using that site as a source (destination), in
an attempt to see whether route oscillations are significantly more prevalent near a handful of the
sites.

For each site, we can then define:

XlO

10 __ SICS
PSI'CS_

N10

SICs

and similarly for P43 < These values then give the estimated probability that a pair of ten-minute
observations of paths with source (or destinatiewill show a routing change. We now check
the PLY ¢ (and P43) estimates for each site to determine which sites appear particularly prone to
exhibiting changes during ten minute intervals.

Figure 7.4 shows the sortedjJ estimates. We see, for example, that none of the 10-
minute measurements of paths to the destinatibnobserved a route change, but more than 12% of
those taaustr did. From the plotaustr appears to be an outlier, and merits further investigation.
Before removing it as an outlier, however, we must be careful to first look at its routing oscillations
to see what patterns they exhibit.

For the destinatioraustr , the 10-minute changes involve a number of source sites:
inria, mit , near (twice), andpubnix . All of the changes take place at the point-of-entry

"Certainly no single path (between the same source/destination pair) is skewing the count of 10-minute changes, since
the most frequently observed single path only accounted for 8 of the 1,302 observations.

austr
sandia
umann
unij
rain
connix
ucl
oce
ncar
sdsc
pubnix
harv
_inria
sintef2
~ bl
sintefl
wustl
ustutt
umont

ucol
ucla
Sfi
panix
nrao
near
mit
mid
Ibli
bsdi
bnl
austr2
adv

\ \ \ \ \ \
0.0 0.02 0.04 006 0.08 0.10

Estimated probability of observing a change

Figure 7.4: Site-to-site variation iR 3

\
0.12

84

85

into Australia® The changes are either the first Australian hopriofgw.au , in Melbourne,
oract.gw.au ,in Canberra, oserial4-6.pad-core2.sydney.telstra.net in Sydney fol-
lowed by an additional hop tosw.gw.au (also in Sydney). These are the only points of change:
before and after, the routes are unchanged. Thus, the destinasion exhibits rapid (time scale of
tens of minutes) changes in its incoming routing, and these changes are non-negligible, since they
involve different Australian cities. As such, the routitmggustr is not at all persistent.

However, for the next potential outliesandia , the story is different. Both of its changes
occurred along the path originatingsat , and reflected the following change at hops 8 and 9:

core-fddi-0.sanfrancisco.mci.net
borderx2-fddi0-0.sanfrancisco.mci.

VErsus:

core2-fddi-0.sanfrancisco.mci.net
borderx2-fddi-1.sanfrancisco.mci.net

These changes are localized to a single city. Furthermore, had this change been more prevalent, we
might have decided that the two pairs of routers in question were “tightly coupied4], except

that it turns out that they are responsible for routing changes only betwieeandsandia . Thus,

we can deal with this outlier by just eliminating the path =- sandia , but keeping the other

paths with destinatiosandia .

In addition to the destinatioaustr , a similar analysis oPslr% spoints upucl , ukc, mid,
andumann as outliers. Bothucl andukc had frequent oscillations in the routers visited between
London and Washington, D.C., alternating between the two hops of:

icm-lon-1.icp.net
icm-dc-1-s3/2-1984k.icp.net

and the four hops of:

eu-gw.ja.net

gw.linx.ja.net
us-gw.thouse.ja.net
icm-dc-1-s2/4-1984Kk.icp.net

Note that these different hops also correspond to different AS's, as the latter includes AS 786
(JANET) and the former does not. Faid andumann, however, the changes did not have a clear
pattern, and their prevalence could be due simply to chance.

On the basis of this analysis, we conclude that the sowdesandukc , and the desti-
nationaustr , suffer from significant, high-frequency oscillation, and excluded them from further
analysis. After removing any measurements originating from the first two or destiaedtto, we
then revisited the range of values % ;and P}3, . Both of these now had a median of 0 observed
changes, and a maximum corresponding to about 1 change per hour (this latter rate is computed by
dividing the number of route changes observed for the site's paths by total amount of time spanned
by the measurements of those paths). On this basis, we believe we are on firm ground treating pairs
of measurements between these sites, made less than an hour apart, both observing the same route,
as consistent with that route having persisted unchanged between the measurements.

®Note that in general the pathsaaistr andaustr2 use two different trans-Pacific links, which is waustr2
does not exhibit these rapid changes.

86

7.6.2 Medium-scale route alternation

Given the findings in the previous section that, except for a few sites, route changes do not
occur on time scales less than an hour, we now turn to analyzing those measurements made an hour
or less apart to determine what they tell us about medium-scale routing persistence. We proceed
much as ir§ 7.6.1.

Let P cand P (be the analogs aP4? cand P4% 4 but now for measurements made an
hour or less apart. After eliminating the rapidly oscillating paths identified in the previous section,
we have 7,287 pairs of measurements to assess.

The data also included 1,517 triple observations spanning an hour or less. Of these, only
10 observed the patterR;, Re, Ry or Ry, Rs, R3, indicating that, in general, two observations
spaced an hour apart are not likely to miss a routing change.

Plots similar to Figure 7.4 immediately pick out paths originating fitorh as exhibiting
rapid changes. These changes are almost all from oscillation betiviesatm.es.net and
pppl-satm.es.net . The first of these is in Livermore, California, while the other is in Princeton,
New Jersey, so this change is definitely major. ESNET oscillations also occurred on one-hour time
scales in traffic betweehl (andlbli) and the Cambridge sitesear , harv , andmit .

The other prevalent oscillation we found was between the saunaen and the destina-
tionsucl andukc . Here the alternation was:

ch-s1-0.eurocore.bt.net
uk-s1-1.eurocore.bt.net

which goes through Switzerland to reach England, versus

nl-s1-1.eurocore.bt.net
uk-s1-0.eurocore.bt.net

which goes through the Netherlands instead, also a major change.

Eliminating these oscillating paths leaves us with 6,919 measurement pairs. These paths
are not statistically identical (i.e., we find among them paths that have significantly different route
change rates), but all have low rates of routing changes. For these paths, theﬁiﬁ@iandPégts
correspond to one routing change per 1.5 days, and the maximum to one change per 12 hours.

7.6.3 Large-scale route alternation

Given that, after removing the oscillating paths discussédris.1 and; 7.6.2, we expect
at most on the order of one route change per 12 hours, we now can analyze measurements less than
6 hours apart of the remaining paths to assess longer-term route changes. There were 15,171 such
pairs of measurements. As 6 hours is significantly larger than the mean 2 hour sampling interval
(§ 7.6), not surprisingly we find many triple measurements spanning less than 6 hours. But of the
10,660 triple measurements, only 75 included a route change of theRoris, Ry or Ry, Ry, R3,
indicating that, for the paths to which we have now narrowed our focus, we are still not missing
many routing changes using measurements spaced up to 6 hours apatrt.

Employing the same analysis, we first identsiwtefl andsintef2 as outliers, both
as source and as destination sites. The majority of their route changes turn out to be oscillations
between two sets of routers. The first alternates between:

87

trd-gw2.uninett.no

in Trondheim, and

oslos-gw.uninett.no
trds-gw.uninett.no

(or the reverse of this, for paths originatingsattefl ~ or sintef2), which includes an extra hop
to Oslo. The second alternates between:

nord-gw.nordu.net
no-gw.nordu.net

(or the reverse), the first hop in Stockholm and the second in Trondheim, and

syd-gw.nordu.net
no-gw2.nordu.net
oslos-gw.uninett.no
trds-gw.uninett.no

which again adds a visit to Oslo (middle two hops).

Two other outliers at this level are traffic to or frasdsc , which alternates between two
different pairs of CERFNET routers, all sited in San Diego, and traffic originating fnin which
alternates between two MIDNET routers, both in St. Louis.

Eliminating these paths leaves 11,174 measurements of the 712 remaining paths. The
paths between the sites in these remaining measurements are quite stable, with a maximum transition
rate for any site of about one change every two days, and a median rate of one change every four
days.

7.6.4 Duration of long-lived routes

We will term the remaining measurements as corresponding to “long-lived” routes. For
these, we might hazard to estimate the durations of the different routes as follows. We suppose that
we are not completely missing any routing transitions (changes of the ®ytR,, R, where we
only observe the first and last). We base this assumption on the overall low rate of routing changes.
Then, for a sequence of measurements all observing the same route, we assume that the route's
duration was at least the span of the measurements. So if the last observation was made two weeks
after the first observation, we assume the route's duration was at least two weeks. Furthermore, if at
timet¢; we observe rout®;, and then the next measurement at timebserves rout#,, we make
a “best guess” that rout®; terminated and rout®, began half way between these measurements,

i.e., attimetdtz,

For routes observed at the beginning (end) of our measurement period, but not spanning
the entire measurement period, we assign a starting (ending) time as follows. If the next (previous)
measurement also observed the route, then we estimate that the route persisted for at least that
much time into the past (future). If the next (previous) measuremenhatidbserve the route,
then we take the lone observation of the route as its starting (ending) time. This rule will tend to
underestimate routing durations, while the rule in the previous paragraph will tend to overestimate
(due to occasionally missing a routing change), so these estimation errors will to some degree tend
to cancel.

88

015
|

Fraction of Routes

00
\

T T T T T 1
o 10 20 30 40 50

Route Duration (Days)

Figure 7.5: Estimated distribution of long-lived route durations

Figure 7.5 shows the distribution of the estimated durations of the “long-lived” routes.
Even keeping in mind that our estimates are rough, it is clear that the distribution of long-lived route
durations has two distinct regions, with many of the routes persisting for 1-7 days, and another
group persisting for several weeks. (Although not evident from the plot, about 4% of the routes
had durations under 6 hours, so we might consider the distribution as having three distinct regions.)
About half the routes persisted for under a week, but the half of the routes lasting more than a week
accounted for 90% of total persistence, meaning the integrated amount of time during which routes
remained unchanged. This means that, if we observe a path at an arbitrary point amtiimes are
not observing one of the numerous, more rapidly oscillating paths outlined in the previous sections
then we have about a 90% chance of observing a route for that path with a duration of at least a
week.

7.6.5 Summary of routing persistence

We summarize routing persistence as follows. Fnaifing changes occur over a wide
range of time scales, ranging from seconds to dayable XII lists different time scales over
which routes change. The second column gives the percentage of all of our measurement paths
(source/destination pairs) that were affected by route changes at the given time scale. (The first
two rows show “N/A’ in this field because the changes were due to a very small set of routers, so
we do not claim any sort of representative fractions.) The third column gives the section where
we discuss the changes, and the final column any associated notes. When the note mentions “in-
side the network” or “intra-network,” we mean that the changes occurred not at the stub networks
where the sites themselves connect to the Internet, but instead in what we would deem the Internet
infrastructure.

One important point apparent from the table is that routing changes on shorter time scales

89

Time scale [% Paths Affected § | Notes |

seconds N/A | §6.6 | “Flutter” for purposes of load balancing. Treated
separately, as a pathology, and not included in |the
analysis of persistence.

minutes N/A | §7.4 | “Tightly-coupled routers.” We identified five in
stances, which we merged into single routers for the
remainder of the analysis.

10's of minutes 9% | §7.6.1| Frequent route changes inside the network. In some
cases involved routing through different cities |or
AS's.

hours 4% | §7.6.2 | Usually intra-network changes.

6+ hours 19% | §7.6.3| Also intra-network changes.

days 68% | §7.6.4 | Two regions. 50% of routes persist for under 7 days.

The remaining 50% account for 90% of the total
route lifetimes.

Table Xll: Summary of persistence at different time scales

(fewer than days) happenside the networland not at the stub networks. Thukpse changes
observed in our measurements are likely to be similar to those observed by most Internet sites

On the other hand, while the changes occurred inside the network, only those involving
ucl andukc (§ 7.6.1) involved different sequences of autonomous systems. While this bodes well
for the scalability of BGP, we do not claim this finding as having major significance: one could
make a much more thorough assessment of the degree of inter-AS route flapping by analyzing the
data discussed in [D095, Me95b].

Finally, two thirds of the Internet paths we studied had quite stable paths, persisting for
days or weeks. This finding is in accord with that of Chinoy's, who found that most networks are
nearly quiescent (in terms of routing changes) while a few exhibit frequent connectivity transitions
[Chag].

7.7 Detecting route changes

Given our findings that routes change in the Internet on a wide range of time scales, we
would like to find mechanisms by which an endpoint can detect that its route to a remote destination
has changed. This knowledge has two different applications. The first is that it allows the endpoint
to flush any cached information associated with the route, such as round-trip time or available
bandwidth. The second application is for network measurement experiments. A number of Internet
experiments have been made in which a path through the network is repeatedly sampled [Mi83,
CPB93a, B093, SAGJ93, Mu94, BCG95]. For such measurements it is important to know whether
each time the path is measured, the measurement is observing the same route for that path, or
whether the route may have changed (affecting the measurement).

Whiletraceroute can be used to elicit the route currently used for a given Internet path,
its use is expensive in terms of network resources, and also slow because of the necessity to wait for
(possibly dropped) replies to many probe packets.

90

| Granularity | False positiveg False negative$ Error rate|

host 0% 25% 3%
city 4% 26% 5%
AS path 5% 10% 5%

Table XllI: Summary of TTL method for detecting route changes at different granularities

On the other hand, endpoints can easily determine whether a route's hop count has
changed by seeing whether the TTL of packets arriving from the remote destination differ from
the previously observed TTL. Because the IP TTL field is in fact a hop count and not a time-to-live
(§ 4.2.1), this measurement has no noise, provided the remote destination always sends packets with
the same initial TTL. Thus, the endpoint need receive only a single packet from the destination in
order to detect that the hop count of the path from the destination to the endpoint has changed. We
call this method the “TTL method.” To our knowledge, it was first used in [CPB93a].

While the TTL method has an attractive simplicity, it will sometimes result in “false neg-
atives”: the underlying route might have changed, perhaps drastically, but if the new route happens
to have the same number of hops as the cached one, the TTL method will report it as unchanged.
In this section, we explore the degree to which these false negatives affect the practicality of the
method.

After removing pathologies and fluttering paths, the data contained 30,145 consecutive
traceroutes for us to test. Of these, 3,380 were route changes when viewed at host granularity,
1,928 at city granularity, and 1,266 at AS path granularity.

We consider a route to have changed if and only if it did not visit exactly the same hosts
(cities; AS's) in the same order. Before determining the host visited at each hop, however, we
merged the “tightly-coupled” routers discussed in.4 into a single router.

We deem the method as generating a “false positive” if it erroneously declares that the
route changed, and a “false negative” if it fails to detect that the route did indeed change. To make
these notions more precise, suppose that, ouV afbservations K were genuine route changes
at a given granularity, but of thed€ the method only detects, and it also erroneously “detects”

b bogus route changes. Then the false positive ratg (8 — K), and the false negative rate is
(K — k)/K. We can also define an overall “error rate,” which is the proportion of time that the
method misinforms us one way or the oth@r+ K — k)/N.

Barring the remote host altering its initial TTL setting, or routers actually decrementing
the TTL field for each second they delay a packet, the TTL method will never generate a false
positive at host granularity It can do so at other granularities, however, when the underlying route
changes in the number of hops, but the same cities or AS's are still visited. At all three granularities,
the TTL method can generate false negatives.

Table XIIl summarizes the effectiveness of the TTL method for detecting different gran-
ularities of route changes. Its overall error rate is consistently low. This is mostly a reflection of
the fact that all-in-all the underlying route does not change very often. Because in the absence
of any change whatsoever the TTL method always reports “no change,” it is correct whenever the

°Provided we exclude from testing pathological routes that visit a given hop more than once, which we did.

91

underlying route has not changed.

At no granularity, however, is the false negative rate especially good, and at city and AS
path granularities the false positive rate is non-negligible, too. Thus, we conclude that the TTL
method serves as a handy heuristic, but is definitely not fool-proof. Still, it seems worthwhile to
use the TTL method to detect route changes when conducting the network measurement studies
mentioned at the beginning of this section, and the generally low false positive rate suggests that
flushing cached route information upon observing a TTL change will usually be the correct action.
One must not, however, be too complacent in accepting the absence of a TTL change as indicative
of an unchanged route.

A final note concerning the TTL method: The TTL value most easily available to an
endpoint for caching is that in packets the endpoint receives from the remote host. The TTL's in
these packets reflect the hop count for the rduta the remote host to the local hotthe routes
between the two hosts are asymmetrical, however, then this hop coumatoeressarily reflect
the hop count along the route in the other direction (local host to remote host), which is generally
the direction of interest. As shown in Chapter 8, routing asymmetry is not uncommon. Because
of this, use of the TTL method may require some additional mechanism by which the local host
can learn the TTL the remote host observed in packets it received from the local host. We do not
attempt here to offer a well thought out mechanism for doing so. We only comment that any such
mechanism must take care that, when a route changes, the network is not immediately flooded with
messages to that effect. Perhaps a solution can be found using multicasting techniques to minimize
the number of messages sent after route changes.

92

Chapter 8

Routing Symmetry

We now analyze the routes from our measurement study to assess the degree to which
routes aressymmetric We first motivate the investigation by discussing the impact of routing asym-
metry on different network protocols and measurements. We then give an overview of various mech-
anisms that can introduce asymmetry into Internet routing, including “hot potato” rougtia@),
which could result in a greater proportion of asymmetric routes in the future. We next introduce a
definition of routing symmetry, and show that practical considerations require a revision in which
we view routes as asymmetric only if they visit different cities or autonomous systems. We then as-
sess our data for these asymmetries and find that, overall, 50% of the time an Internet path includes
a major asymmetry in terms of the cities visited in the different directions, and 30% of the time it
includes a major asymmetry in terms of autonomous systems visited. We finish with a discussion of
the magnitude of the asymmetries, most of which differ at just one “hop,” but some at many hops.

8.1 Importance of routing symmetry

Routing symmetry affects a number of aspects of network behavior. When attempting to
assess the one-way propagation time between two Internet hosts, the common practice is to assume it
is well approximated as half of the round-trip time (RTT) between the hosts [CPB93a]. The Network
Time Protocol (NTP) needs to make such an assumption when synchronizing clocks between widely
separated hosts [Mi92a]. If routes are asymmetric, however, the assumption might easily lead to
error. The NTP design utilizes multiple time server peers and robust algorithms to choose among
them for the best time offset to use to account for propagation effects. Thus, routing asymmetry has
an impact on NTP only if the paths between two NTP communities are predominantly asymmetric,
with similar differences in one-way times. In that case, the two communities will keep consistent
time among themselves, but not between each dther.

Claffy and colleagues studied variations in one-way latencies between the United States,
Europe, and Japan [CPB93a]. They discuss the difficulties of measabswgjutedifferences in
propagation times in the absence of separately-synchronized clocks, but for their study they fo-
cussed orvariations which does not require synchronization of the clocks. They found that the

!Recently, however, highly accurate atomic clocks have become much more affordable than in the past (as have Global
Positioning System receivers, which also provide reliable time). These provide an independent solution to the problem
of keeping widely separated NTP servers synchronized.

93

two opposing directions of a path do indeed exhibit considerably different latencies, in part due
to different congestion levels, and in part due to routing changes, which they detected using the
TTL method § 7.7).

Along with affecting Internet protocols such as NTP, routing asymmetry can render net-
work measurement considerably more difficult. Often it is easiest to perform measurements at
a single endpoint of a network path, but in the face of routing asymmetries, such measurements
might be unable to distinguish between considerably different behavior along the forward and re-
verse directions of the path. We explore this problem at length in Part 1I5(9¢k3 for a general
discussion).

Closely related to this measurement problem, routing asymmetry also potentially compli-
cates mechanisms by which connection endpoints can infer network conditions from the pattern of
packet arrivals they observe. For example, we develop a technique in Chapter 14 for estimating the
“bottleneck bandwidth” of the network path used by a connection. The technique works by exam-
ining the timing with which packets arrive at their receiver. If routing is symmetric, then (for most
link technologies) the bottleneck bandwidth measured by this technique will be the same as that
encountered by packets sent in the other direction. Symmetry could, for example, allow the server
for a request/reply application such as the World Wide Web [BCLF+], or, more generally, T/TCP
[Br94], to determine the link bandwidth available for sending its reply, based on the bandwidth in-
ferred from the request. If routing is asymmetric, however, then the server runs the risk of inferring
an incorrect value for the bandwidth However, we show in Chapters 14 and 16 that bottleneck
bandwidths and delays are often asymmetric along the two directions of a path, and attribute the
difference at least in part to routing asymmetries.

Finally, recent work has investigated the characteristics of network tflaffisas viewed
by a router [CBP95]. That study describes a taxonomy of methodologies that can be used by routers
to define and manage flow state. One finding of the study is that a large number of flows are bidi-
rectional, due in part to request/reply transactions such as those used by the Domain Name System
(DNS; [MD88]) and the World Wide Web. When a routBrsees a flow likely to be bidirectional,
for example a DNS request fror to B, one might consider establishiagticipatory flow statén
the router for the reply coming from® to A, to avoid the overhead of two separate trips through
the “slow path” associated with flows for which there is no cached state. With prevalent routing
asymmetry, however, whil® may very likely send such a message shortly, the reply couldngell
be routed viaR, in which case the anticipatory flow state is wasted effort and resources.

Similarly, accountingused to charge for carrying network traffic is complicated by the
possibility of locally observing only one direction of a traffic flow. For example, a recently devel-
oped architecture for Internet traffic flow measurement has a basic assumption that routers observe
bidirectional flows [BMR97].

8.2 Sources of routing asymmetries

In this section we discuss several mechanisms that can lead to routing asymmetries. To
illustrate, we assume the viewpoint of a rouk&yfaced with the decision of how to forward packets
originated by hostA and destined for hogB. In addition to the upstream router from whicty

2Even if routing is symmetric, the server cannot rely on the congestion levels being symmetric. Thus, as with routing
stability, routing symmetry isecessarput notsufficientfor predicting network behavior.

94

receives packets sent by, R, is connected to two potential downstream routéts,and R,, and
the decision it must make is to which of these it forwards packets bounl.fbet us also assume
that packets fronB headed toA arrive atR, via Ry (but in generalR, does not itself know this
fact), and that these packets first pass through a r@tgewhich makes the decision whether to use
the route that ultimately delivers the packetsRg via Ry, or a different route that results in the
packets arriving aRy via R,.

In general, routing algorithms incorporate “link costs”roetricsto quantify the desir-
ability of using a particular link for a given route [Pe92, St95]. To assure reliable operation, a router
also generally knows of multiple paths available to a remote destin&jso we assume thdt,
has two metricsy; andu., associated with forwarding packetsBovia Ry or Ro. If 11 = ps, then
Ry, must somehow arbitrate between them. If it does so deterministically, by pi¢kinthen an
asymmetry is createt!.

Another way of introducing asymmetry is via configuration asymmetries or errors. For
example, if due to misconfiguratiaR, believes that using the link t&; is very expensive, buk;
does not share this view, théty will artificially inflate the cost of usingR?; to get toB, and instead
pick R,.

Network topology changes can also introduce routing asymmetries, albeit transient ones,
due to the non-negligible amount of time required for changes to propagate through the network.
For example, suppos®, learns of a better route t8; than it had before. If knowledge of this new
route propagates t8, before R3, then R, will switch from R; to R, and an asymmetry will exist
until B3 learns of the route.

Another transient mechanism for creating routing asymmetries can arise ddeptive
routing (§ 7.2), in which a router attempts to shift traffic from a highly loaded link to a less loaded
link. For example,Ry, might decide that it is sending too much traffic via the linkRo (the bulk
of this traffic might not be destined fdB), so it increases the metrics associated withto the
point where routing viaRe becomes the preferred route &2 More generally, if routing metrics
include a notion of current congestion levels, then asymmetric congestion in the network can lead
to asymmetric routing, as the network alters its routing to avoid the congested region.

A final mechanism introducing asymmetry, and one of possibly growing importance, con-
cerns “hot potato” and “cold potato” routing. In the past, Internet backbones were primarily operated
by a single entity. In recent years this has changed, with the growth of competing Internet Service
Providers (ISP's) due to the privatization of the Internet infrastructure.

Suppose host in California uses ISP 4, and hostB in New York used . Assume that
bothI4 andlg provide Internet connectivity across the entire United States. \Mreamds a packet
to B, the routers belonging th4y must at some point transfer the packet to routers belongitg.to
Since cross-country links are a scarce resource, bo#md Iz would prefer that the other convey
the packet across the country. If the inter-ISP routing scheme allows the upstreaiiy J$Paur
example) to determine when to transfer the packéitdhen, due to the preference of avoiding the
cross-country haull 4 will elect to route the packet vigg as soon as possible. This form of routing
is known as “hot potato.” In our example, it leadstptransferring the packet ths in California.

But whenB sends traffic ta4, Ig gets to make the decision as to when to forward the traffici{o
and with hot potato it will choose to do so in New York. Since the paths between California and
New York used byl 4 andIg will in general be quite different, hot potato routing thus leads to a

81f it alternates betweeR; and Ry, it createdluttering as discussed i§6.6.

95

major routing asymmetry betweehandB.

Conversely, if thedownstreamSP can control where the upstream ISP transfers packets
to it, then the result is “cold potato” routing, in whidk instructsi 4 that, to reachB, 14 should
forward packets tdg's New York network access point (NAP). Similarly, advertises tdp that,
to reachA, Iz should forward packets thy's California NAP. The result is that packets frofrto
B travel across the country vig,'s links, while those fronB to A travel vialg's links. The paths
are the opposite of those resulting from hot potato routing, but the degree of asymmetry remains the
same, and potentially large.

For further discussion of asymmetry issues, see [Che95].

8.3 Definition of routing symmetry

In this section we develop a definition for whether two routes are symmetric. We first try
the following:

Definition 1 For two hosts4 and B, letrq,. .., r, denote the routers visited in sequence by packets
sent fromA to B, andr}, ...,/ denote those visited in sequence by packets fiota A. Then
the two routes arsymmetricif and only ifn = m and:

. . . ._,
Vi,1<i<n:ri=r,,q ;.

Definition 1 presents two problems. First, for routes considered asymmetric, the definition
fails to provide a notion of thdegreeof asymmetry. For example, if a site has two Internet access
points, then we could find that traffic from to B leaves the site at the first access point for a
downstream routeR, while traffic from B to A comes to the site also frol, but arriving at the
second access point. Such an asymmetry is minor. For example, it will have minimal impact on
the accuracy of the NTP protocd} 8.1). On the other hand, if the route fromto B visits a
differentcity than does the route froii to A, then the two paths might have considerably different
properties, and the asymmetry is major.

To illustrate these differences, consider the route we observ&d iinom ucol to ucl
(where we have annotated the cities visited in parentheses), shown in Figure 8.1. One of the com-
plementary routes we observed frara to ucol is shown in Figure 8.2. This route visits the
same cities as the reverse route, though not the same routers; the asymmetry is minor. On the other
hand, we also observed a route frari to ucol as shown in Figure 8.3. In this case, the de-
tour via California is skipped, shaving perhaps 2,000 kilometers of travel from the route: a major
asymmetry.

A second problem with Definition 1 is determining whether two routgrand r;- are
indeed the same router. The difficulty arises becauaseroute provides an IP address for each
hop, but these do not uniquely identify routers. In general, routers have multiple IP addresses, one
for each network interface attached to the router. Furthermore, these IP addresses can translate to
different hostnames. Thus, for example, it is difficult to determine whether the IP address with
hostnamesl-ana-3-s2/4-t1.sprintlink.net in Figure 8.1 corresponds to the same router
as that with hostnamsl-ana-3-f0/0.sprintlink.net in Figure 8.2.

We address both these difficulties using a revised definition:

cs-gw-discovery.cs.colorado.edu (Boulder, CO)
cu-gw.colorado.edu
sl-ana-3-s2/4-t1.sprintlink.net (Anaheim, CA)
sl-ana-1-f0/0.sprintlink.net
sl-fw-6-h2/0-t3.sprintlink.net (Fort Worth, TX)
sl-fw-5-f1/0.sprintlink.net
sl-dc-8-h3/0-t3.sprintlink.net ~ (Washington, D.C.)
icm-dc-1-f0/0.icp.net
icm-london-1-s1-1984k.icp.net (London, UK)
smds-gw.ulcc.ja.net

smds-gw.ucl.ja.net

cisco-pb.ucl.ac.uk

cisco.cs.ucl.ac.uk

neptune.cs.ucl.ac.uk

Figure 8.1: Route observed fromol to ucl

cisco.cs.ucl.ac.uk (London, UK)
cisco-pb.ucl.ac.uk

cisco-b.ucl.ac.uk

gw.lon.ja.net

eu-gw.ja.net

icm-lon-1.icp.net

icm-dc-1-s3/2-1984k.icp.net (Washington, D.C.)
sl-dc-6-f0/0.sprintlink.net

sl-dc-8-f0/0.sprintlink.net
sl-fw-5-h4/0-t3.sprintlink.net (Fort Worth, TX)
sl-fw-6-f0/0.sprintlink.net
sl-ana-1-h2/0-t3.sprintlink.net (Anaheim, CA)
sl-ana-3-f0/0.sprintlink.net
sl-ucb-2-s0-t1.sprintlink.net (Boulder, CO)
cs-gw.colorado.edu

clark.cs.colorado.edu

Figure 8.2: Route observed fromel to ucol

96

97

cisco.cs.ucl.ac.uk (London, UK)
cisco-pb.ucl.ac.uk

cisco-c.ucl.ac.uk

smds-gw.ulcc.ja.net

icm-lon-1.icp.net

icm-dc-1-s3/2-1984k.icp.net (Washington, D.C.)
sl-dc-8-f0/0.sprintlink.net
sl-fw-5-h4/0-t3.sprintlink.net (Fort Worth, TX)
sl-fw-4-f0/0.sprintlink.net
sl-ucb-1-s0-t1.sprintlink.net (Boulder, CO)
cns-gw-suns.colorado.edu

cs-gw.colorado.edu

lewis.cs.colorado.edu

Figure 8.3: Second route observed fraoh to ucol

Definition 2 For two hostsA and B, letcy, . .., ¢, denote thesitiesvisited in sequence by packets
sent fromA to B, andd}, ..., ¢, denote those visited in sequence by packets feota A. Then

’rm

the two routes arsymmetricif and only ifn = m and:
Vi,1<i<n:¢ =,

This definition deals with the first difficulty of the original definition by discarding
all minor routing asymmetries—we consider a routing asymmetry interesting only if it is ma-
jor. It resolves the second difficulty because it is considerably easier to tell whether two IP
addresses are located in the same city than whether they refer to the same router, since with
a bit of effort it is generally possible to determine the city corresponding to an Internet host-
name (cf.§ 5.3). For example, we know from the Sprintlink naming convention that both
sl-ana-3-s2/4-t1.sprintlink.net and sl-ana-3-f0/0.sprintlink.net are located
in Anaheim, California.

We can make an analogous definition for routes differing in the autonomous systems they
visit, rather than the cities.

8.4 Analysis of routing symmetry

In R1, we did not make simultaneous measurements of the phaths B and B = A,
which introduces ambiguity into an analysis of routing symmetry: if a measuremeht=nfB is
asymmetric to a later measurementidt- A, is that because the route is the same but asymmetric,
or because the route changed?

In Ro, however, the bulk of the measurements weaged we first measuredl = B
and then immediately afterward measui@d= A. Barring rapid route oscillations (which we can
avoid by eliminating pathologicataceroutes from our analysis), these measurements allow us
to unambiguously determine whether the route betwéeamd B is symmetric.

The R, measurements contain 11,339 successful pairs of measurements, in which we
were able to condudtaceroutes in both directions between sitesand B, neither of the mea-
surements encountering pathologies.

98

We find that49% of the measurements observed an asymmetric path that visited at least
one different city

There is a large range, however, in the prevalence of asymmetric routes among paths
to and from the different sites. For example, 86% of the paths involwingnn were asymmetric,
because nearly all outbound traffic frammann travel via Heidelberg, but none of the inbound traffic
does. At the other end of the spectrum, only 25% of the paths involuimgnt were asymmetric
(but this is still a significant amount).

If we consider autonomous systems rather than cities, then we still find asymmetry quite
common: about 30% of the paired measurements observed different autonomous systems traversed
in the path's two directions. The most common asymmetry was the addition of a single AS in one
of the directions. This can reflect a major change, however. For example, the most common of these
additions was the presence of SprintLink routers in one direction along the path but not in the other.

Again, we find a wide range in the prevalence of asymmetry among the different sites.
Fully 84% of the paths involving thecl site were asymmetric, mostly due to some paths including
JANET routers in London and others not (unsurprising, given the rapid oscillation between JANET
and non-JANET routers discussedifi.6.1). On the other end of the spectrum, only 7.5%df's
paths were asymmetric at AS granularity.

8.5 Increasing prevalence of asymmetry

We previously analyzedz, for routing asymmetry, attempting to adjust for the non-
simultaneity of its measurements by only using measurements spaced less than a day apart. The
mismatch is likely to overestimate routing asymmetry, since if the route changes between measure-
ments that may be incorrectly regarded as an asymmetry, per our discussion at the begih8idg of
The mismatch can also introduce false symmetries, if the route happens to change to the symmetric
counterpart, but this circumstance is probably more rare than introducing false asymmetries.

In the R, measurements, we found 30% of the paths contained city-level asymmetries.
The large discrepancy between this figure and the 50% figure foRthmeasurements suggests
that over the course of a year routing became significantly more asymmetric. We surmise that the
increase of asymmetry is likely due to the “hot potato” effect discussg8.i2. If so, then the rise in
asymmetry has its roots in commercial factors, and frequent routing asymmetry may continue to be
common in the Internet in the future. From a measurement perspective, this would be unfortunate,
for the reasons givef 8.1, and further developed §9.1.3.

8.6 Size of asymmetries

We finish our study of routing symmetry with a look at the size of the different asymme-
tries. We can assign a “magnitude” to each asymmetry in terms of the number of cities different
in the two directions. We consider each “city hop” at which the two directions of a path differ as
contributing a magnitude of 1; if one direction has more “city hops” than the other, each additional
city contributes%. For example, for the paths betweetn andbnl , we observed simultaneous
measurements of the following routes:

r0.pdx.rain.rg.net (Portland)

99

sl-stk-13-s2/2-t1.sprintlink.net (Stockton)
sl-stk-5-f0/0.sprintlink.net
sl-dc-6-h1/0-t3.sprintlink.net (Washington, D.C)
sl-pen-1-h2/0-t3.sprintlink.net (Pennsauken)
sl-pen-2-f0/0.sprintlink.net

ny-nyc-2-h1/0-t3.nysernet.net (New York)
ny-nyc-6-f0/0.nysernet.net
ny-dp-1-h0/0-t3.nysernet.net (Deer Park)
ny-bnl-2-s0-t1.nysernet.net (BNL)

cerberus.bnl.gov
frog.rhic.bnl.gov

and
cerberus.90.bnl.gov (BNL)
nioh.bnl.gov
192.12.15.224
lInl-satm.es.net (Livermore)
ames-linl.es.net (Mountain View)

fix-west-cpe.sanfrancisco.mci.net (San Francisco)
borderx2-hssi2-0.sanfrancisco.mci.net
core2-fddi-1.sanfrancisco.mci.net
corel-hssi-2.sacramento.mci.net (Sacramento)
core-hssi-3.seattle.mci.net (Seattle)
borderl-fddi-0.seattle.mci.net
rgnet-b1-serial2-3.seattle.mci.net

chia.rain.net (Portland)

The paths differ at five “city hops,” Stockton/Seattle, Washington/Sacramento,
Pennsauken/San Francisco, New York/Mountain View, and Deer Park/Livermore, so we as-
sign a magnitude of 5 to this asymmetry.

Figure 8.4 shows the distribution of asymmetry magnitudes. We see that the asymmetries
typically include only one different city hop, or, even more commonly, just one additional city.
About one third of the asymmetries have magnitude 2 or greater. We should bear in mind, though,
that this corresponds to almost 20% of all the paired measurements in our study, and can correspond
to a very large asymmetry. For example, a magnitude 2 asymmetry betsleemdumann differs
at the central city hops of Amsterdam and Heidelberg in one direction, and Princeton and College
Park in the other!

In general, the presence of such asymmetries highlights the difficulties of providing a
consistent topological view in an environment as large and diverse as the Internet.

Fraction of Asymmetric Routes

0.1

0.3

0.2

0.0

\ \ \
2 4 6

Number of Different Cities (Magnitude)

Figure 8.4: Distribution of asymmetry sizes

100

101

Part |l

End-to-End Internet Packet Dynamics

102

Chapter 9

Overview of the Packet Dynamics Study

In this part of our study we present our efforts to find convincing answers to questions
about end-to-end Internet packet dynamics such as “how often are packets dropped?” As in Part I,
we devise a large-scale measurement experiment based on the “Network Probe Daemon” (NPD)
measurement framework. Our goal with this part of our study is to develop persuasive characteriza-
tions of the dynamics of Internet packet loss and delay. To do so, however, requires a great deal of
groundwork in order to assure that the resulting findings are sound.

First, we need to calibrate our basic packet measurements, detecting those that are untrust-
worthy or inaccurate so that we can discard them to avoid drawing false conclusions. We describe
how we do so in Chapter 10. Because we use TCP transfers as our basic “probes” for measuring
network paths, our probes have a complicated structure due to the particulars of TCP. In Chapter 11
we discuss our development of an analysis tocpanaly , that accounts for the details of the
various TCPs in our study, and thus can separate their effects from true networking effects. The
development ofcpanaly also gives us an opportunity to look at the differences in behavior be-
tween the TCP implementations in our study. These turn out to be quite significant, including some
sufficiently broken TCPs that, if ubiquitously deployed, would devastate Internet performance due
to congestion collapse

Because one of our goals is to characterize one-way packet delays, we must also deal with
the problem of calibrating the clocks used in our study. This proves much more difficult than we
had originally anticipated. Chapter 12 details our efforts.

In Chapter 13 we turn to examining network “pathologies,” meaning unexpected network
behavior. These include out-of-order delivery, in which packets arrive at the receiver in a different
order than that in which they were sent; packet replication, in which the network delivers multiple
copies of a single packet; and packet corruption, in which the data in the packet delivered by the
network differs from that in the packet as originally sent.

In order to then soundly evaluate packet delay and loss, we need to first determine each
connection' ottleneck ratei.e., the upper bound imposed by the network path on the connection's
throughput. This rate plays a crucial role because it determines when closely-spaced packets must
necessarily queue behind each other in the network. Network conditions observed by such packets
are correlatedand must be treated separately from uncorrelated observations. In Chapter 14 we
discuss shortcomings of the main existing technique for estimating bottleneck bandwidth, “packet
pair,” and develop a robust algorithm, PBM (“packet bunch modes”), to address these problems.

103

In addition, we characterize the range of bottleneck rates we observed among the various Internet
paths, and assess the stability of a path's bottleneck rate over time.

We then proceed in Chapter 15 to an analysis of patterns of Internet packet loss. We
look at many different facets of loss, including the differences between loss rates of data packets
and acknowledgements; correlations between loss rates along the two directions of a network path;
trends in loss rates; differences in loss rates due to geography; the duration of loss “outages”;
the location, with respect to the path's bottleneck element, where packet loss occurs; how well a
connection's observed packet loss predicts those of future connections; and how well TCP deals
with packet loss, in terms of retransmitting only when necessary.

We finish in Chapter 16 with an analysis of patterns of Internet packet delay. We look at
variations and extremes of round-trip times (RTTs) and one-way transit times (OTTs); symmetry in
OTT variation along the two directions of a network path; correlations between delay variations and
loss; how well a connection's delay variations predict those of future connections; the phenomenon
of packet timing “compression”; the time scales on which queueing occurs; and the degved-of
able bandwidthpresent along Internet paths.

Chapter 17 summarizes the findings of both Part | and Part I, and sketches the main
themes of the work.

In the remainder of this chapter, we discuss our experimental methoddl&@y¥)(those
aspects of the TCP protocol relevant to our stugl9.@); and the raw data produced by the experi-
ment § 9.3).

9.1 Methodology

In this section we discuss the methodology underlying the packet dynamics experiment.
We address two separate issues: how to make the measurements, and how to analyze them.

9.1.1 Measurement considerations

For our packet dynamics study, our measurement “probes” consisted of TCP transfers of
100 Kbyte files over different Internet paths. We discus9il.2 the reasoning behind using TCP
for the study. The transfers wewaidirectional data only flowed along one direction of the path.
Such connections are referred tokask transferqdDJCME92, Pa94a]. There are other classes of
traffic in the Internet (such as request/response, interactive, multicast, and real-time). All of these
ultimately boil down to dividing data into packets for delivery by the Internet's packet forwarding
infrastructure. Our goal is to characterize what happens to packets once they are in the hands of this
infrastructure. For this purpose, bulk transfers serve well, as they provide a fairly steady stream of
data packets traveling in one direction, and a corresponding stream of ack packets traveling in the
other. We can then analyze the fate and timing of the packets to determine how the two directions
of the Internet path performed.

Each transfer was traced using tiepdump utility [JLM89] at both the sender and the
receiver, resulting in two trace files. We term the combination of the two trace files a “trace pair.”
Our findings are all based on analyzing trace files and trace pairs.

For security reasons, the NPD transfers used fixed TCP sending and receiving “ports,” so
tcpdump could immediately filter out traffic not related to the transfer. That we did so has two draw-

104

backs. First, it means that the traces lack some network traffic relevant to the transfer, namely any
associated Internet Control Message Protocol (ICMP; [Po81b]) messages. We disgdds3r3

how we inferred the presence of a particular type of ICMP message, termed “source quench.” In
addition, using fixed ports resulted in our measurements incurrmmenum separatiofetween
consecutive measurements of the same pair of hosts, because TCP has rules governing how quickly
a pair of ports can be reused for a new connection.

As with the routing dynamics experiment, we used exponentially-spaced sampling in-
tervals in order that our measurements might observe an unbiased sample of conditions along the
different Internet pathsj(4.3). We conducted two experimental rung, and N>, detailed in§ 9.3.

For N1, source hosts were randomly paired with destination hosts, and we conducted a single mea-
surement for each pairing. The drawback of this approach is that, if we want to study how an Internet

path's characteristics change (or “evolve”) over time, then random pairing results in widely-spaced

measurements of individual pairs. For exampleMnthe mean sampling interval for a given pair

was about two days. Consequently, we cannot analyze much finer time scales of evolution.

We addressed this difficulty in the second rify, by randomly pairing source and desti-
nations intagroupsof measurements. Each measurement group consisted of two subgroups. Within
a subgroup, we conducted six measurements, separated by 180 sec plus exponentially-distributed
intervals with means 30 sec, 60 sec, 120 sec, 240 sec, and 480Tdmse spacings allow us to
analyze evolutions over short time intervals.

The two subgroups were then separated by an exponentially-distributed interval with
mean 2 hours, allowing us to characterize evolution over medium time intervals. In addition,
source/destination pairs would conduct additional groups of measurements separated from the pre-
vious group by another exponential interval with a mean of 12 hours. Finally, the pairs would be
revisited on the order of a number of days later. These last two groups of measurements allow us to
characterize relatively long time intervals, too.

9.1.2 Using TCP

Most previous end-to-end studies have used ICMP “ping” messages [Mi83, CPB93a] or
User Datagram Protocol (UDP; [Po80]) “echo” messages for their network probes [Bd&&h
have the considerable advantage of logistical ease: most Internet hosts readily reply to “ping”
messages$,and activating the UDP echo service is often a one line configuration tweak.

However, these types of probes also incur disadvantages. The most significant of these
is that of therate at which the probes are sent. To probe fine time scales requires sending closely-
spaced probe packets. Yet, if this is done blindly, say by deciding to send packets 1 msec apart,
then depending on the mismatch between the sending rate and the capacity of the network path, the
measurement traffic can grossly overload the path. Consequently, both “production” traffic sharing
the path suffers, and the measurements are skewed by the abnormal loading. Unfortunately, there
is a very wide range in network path capacity (we develop this claim in detail in Chapter 14 and

'Nominally, this minimum time is four minutes, twice the “maximum segment lifetime” of two minutes. In practice,
it varies between TCP implementations.

“The 180 sec constant interval was required to avoid problems with reusing the fixed source and destination ports,
discussed above.

3 An exception is Mogul's study of TCP packet dynamics [M092].

“This is changing, with the advent of firewallls.

105

Chapter 16), so there is r@opriori correct choice to use for the probe spacing.

Furthermore, capacitghangesover the course of a series of probes, so we cannot deter-
mine a single correct choice for a path even after studying the path a bit. Therefore, ICMP- and
UDP-based measurement must make a trade-off between possibly overloading the network path,
and probing conservatively but with no possibility of analyzing finer time scales. In general, re-
searchers have prudently chosen the latter.

One could devise a probing strategy base@ddaptingthe probe transmission rate to the
current network conditions. However, to do this properly, one essentially must implement TCP's
congestion control. At this point, it becomes easier to just start with TCP in the first place!

Another drawback with echo-based techniques is that the echo services return a full copy
of whatever packet they receive. Consequently, the measurement loads the network path both in the
forward and the return direction. If the measurement is conducted using “sender-only” techniques
(§ 9.1.3), then the reverse-path loading makes it impossible to determine which direction of the path
is responsible for what proportion of the phenomena observed. If the echoes are smsédiasuich
as are TCP acknowledgements for data packets, then the connection does not load the reverse path,
which lessens the conflation of the two directions.

Both of these considerations, particularly the first, argue favorably for using TCP transfers
as network probes, since then, by construction, our probes do not load the network any more than
does a routine file transfer. Using TCP has one other major advantage: TCP is very widely used.
Consequently, the end-to-end performance observed by TCP transfers is a much closer match to the
service Internet users actually obtain from the network than are echo-based techniques. We will also
see in Chapter 11 that one result of our using TCP is to uncover a large variation in how different
TCP implementations perform, some with major performance and congestion implications.

Using TCP, however, also brings with it some serious drawbacks. The first of these is
that the TCP protocol behavior is quite complex. When casually inspecting TCP measurements,
it can be difficult to determine which facets of the overall connection behavior were due to the
state of the network path, and which were due to the behavior of the TCP implementations at the
endpoints. If our goal is to characterize the network pathywstbe able to separate these two,
which entails understanding the nitty-gritty details of how different TCP implementations realize
the protocol. To do so, for our study we developed a progtepanaly , which has knowledge of
various TCP implementations and can analggelump traces in order to separate TCP endpoint
effects from those due to the network path. Writioganaly was a significant undertaking, much
harder than we had initially anticipated (because we had not realized the wide range of real-world
TCP behaviors). We discuss it in detail in Chapter 11.

The other major drawback with using TCP is that often it sends small groups of data
packets at rates exceeding that of the network path's cap§@tp.6). These packets necessarily
gueue behind one another at the path's bottleneck. Therefore, for measuring the network's state such
a group constitutes eorrelatedset of probes. We address this difficulty at length in Chapter 14.

SThere is one way in which small packets can contribute to load along the reverse path similarly to large packets. If a
congested router manages its buffers for queued packetpaempmackebasis, rather than allocating the number of bytes
required to queue a packet out of a shared pool, then small packets consume the same amount of resource when queued at
the router as do large packets. In this regard, small packets can push the congested router to the point of buffer overflow
as fast as large packets do. Once, however, the small packets receive service, by transmission across their outbound link,
then their contribution to the router's load immediately diminishes, since they require significantly less transmission time.

106

Furthermore, the TCP sendadaptsthe rate at which it transmits data packets based on
previously observed network conditions (in particular, packet lossg Pe2.6). Thus, even when
uncorrelated, the data packets mat reflect an unbiased measurement process, but rather one that
changes its sampling rate in order to trynbdinimizeobserved packet loss. We discuss this property
in Chapter 15.

On the other hand, for a TCP bulk transfer, both of these probtertysoccur along the
forward path The traffic along the reverse path is comprised entirely of small acknowledgement
packets. These in general dot necessarily queue behind one another at the bottleneck, and,
furthermore, their transmission rate is adapted not to conditions along the reverse path, which they
observe, but to conditions along the forward path. We show in Chapter 15 that these conditions
are generally uncorrelated. Thus, the “ack stream” along the reverse path reflects a much cleaner
measurement process.

In summary, by using TCP transfers, we get two basic types of measurements: those that
correspond to conditions that TCP data packets encounter (the forward path), and those that tell us
about general Internet path properties (the reverse path ack stream). The combination makes for
rich analysis.

9.1.3 Tracing at both sender and receiver

End-to-end measurement is often done using what we term “sender-based” or “sender-
only” measurement, meaning that probes and their replies are recorded only at the location of the
probe sender. Sender-based measurement has the enormous logistical advantage of not requiring
access to the remote site in order to instrument the probe arrivals. Such access can be difficult to
gain, for administrative and security reasons.

On the other hand, sender-based measurement carries with it the limitation that from it
one can say little about how traffic behaves along the path's two different directions. For example,
suppose a measurement consists of sending a flight of 20 ICMP “ping” packetsifton®, and
timing at A the arrival of their echoes. If only 6 echoes return, we have no way of knowing whether
B never sent the 14 others, because their corresponding pings never arti¥edrat B did send
them, but they were lost on their journey frahback toA; or if some combination of loss from
to B and loss fromB to A occurred. Consequently, it is difficult to say anything concrete about the
nature of the loss event.

This consideration becomes more subtle, but equally important, when applied to analyzing
packet delay. A sender-based scheme can only observe round-trip time (RTT) delays. These are per-
force the sum of the one-way transit time (OTT) delays in the two directions, plus the (unobserved)
delay of the receiver generating its reply. If the goal of the timing measurement is to estimate ca-
pacity along the forward path, such as for TCP Vegas [BOP94], then any delay variations incurred
on the return path are pure noise, and at best dilute the precision with which the sender can estimate
the path capacity.

Because we traced our transfers at both the sender and the receiver, we can fully separate
effects due to the forward path, the reverse path, and the processing delays at both the sender and
the receiver. Throughout our study we examine issues of path symmetry with an eye to gauging
the effectiveness of sender-only measurement. We find, overall, that such measurement is signif-
icantly less accurate than receiver-based measurement. Consequently, it behooves us to consider
mechanisms for coordinating measurement between sender and receiver.

107

9.1.4 Analysis strategies

In this section we discuss the principles underlying our analysis of the measurement data.
They are all in response to three dominant considerations. The first is that we gathered a very large
volume of data: more than 20,000 transfers recorded at both sender and receiver. Each transfer
consisted of 100—400 packets, resulting in well over a gigabyte of data. The second consideration
is that we lack separate meanscafibrating the measurements. All we have to work with are the
packet traces. It is easy wssumehat such traces accurately reflect the true number and timing
of the packets comprising the traffic we wish to measure, but no large-scale study has been made
to test the overall integrity of packet traces, so the validity of this assumption is unproven. The
third consideration is that network behavior almost inevitably includes “noise” in a variety of forms
and on a variety of scales. We observe “extreme” behavior much more often than we might expect
using a traditional statistical framework (such as one based on assumptions of normality and tame
correlations).

That we must deal with a large volume of data lies at the heart of our study: the study
is interesting precisely because the volume of data is large. By (very careful) analysis of it, we
have a hope of capturing a useful description of the immensely diverse behavior of the huge, het-
erogeneous network that is the Internet. We further argue that future Internet traffic studies must
likewise measure on a large scale, otherwise we have little hope of divining from them general re-
sults. Thus, a central contribution of our work is the set of approaches we develop to deal with this
large, uncalibrated, noisy mass of measurements.

In addition, in the hopes of abetting future studies, we will make our TCP data publicly
available via thénternet Traffic Archivesited at®

http://www.acm.org/sigcomm/ITA

The routing data analyzed in Part | is already available in the Archive, under theNiaBrdRoutes

Automated analysis

Confronted with 20,000 traces to analyze, it is clear that we cannot hope to individually
analyze each trace. We must instead turautmmated analysisThat is, we realize part of our anal-
ysis in terms of a computer program that has coded into it the different reductions and calculations
required by the analysis. We briefly mentioned this prograpanaly , above. One of its basic
tasks is to separate TCP endpoint behavior from network behavior, hence its name. Another is to
then characterize the network dynamics reflected in the trace of the connection.

tcpanaly undertakes what we might call “micro-analysis.” It is limited in its scope
to analyzing single connections. The “macro-analysis,” namely the sifting through the individual
micro-analyses in search of unifying observations and themes (much in the sense of “scientific
inference,” as discussed in [Cha95]), is then done mantaBpth forms of analysis are highly
iterative processes, and each gives insight into the other by identifying patterns that merit further
investigation.

6At the time of this writing, the Archive is moving from its old location to this URL. If the reader has any difficulty
accessing the Archive, send emaiMern@ee.lbl.gov
"We used thé statistical environment [BCW88] for the macro-analysis.

108

Self-consistency checks

To address the second problem—Ilack of separate calibration—we must turn to “self-
calibration” in the form ofself-consistencghecks: testing, to as great a degree as possible, for
any ways in which different aspects of the data contradict one another.

Calibration is all about detectingrror, whether introduced by the measurement process,
or by the subsequent analysis. Ideally, all of the effort is for naught; the data and analysis are wholly
free of error. Consequently, it can sometimes be tempting to skip calibration or treat it lightly,
since it only provides negative results. Doing so, however, undermines the entire validity of the
measurement process. Furthermore, our experience in conducting both this study and several other
large-scale studies [Pa94a, Pa94b, PF95] is that, when the scale becomes sulfficiently large, errors are
inevitable, since even rarely observed problems have sufficient opportunity to manifest themselves.
Thus, we discuss self-consistency checks throughout our study. (For example, Chapter 12 is almost
entirely about developing self-consistency checks for calibrating the timing measurements recorded
in our traces.) The degree to which these checks prove persuasive is the degree to which one might
accept our findings as well-grounded.

Robust statistics

The final problem we must address with our analysis strategies is that of widespread noise.
For example, if we wish to summarize a connection's round trip times (RTTs), we might at first think
to express them in terms of their sampteanandvariance(or standard deviationthe square root
of variance). However, in practice we find that often a connection observes one or two RTTs that are
muchhigher than the remainder. These extreme values grellythe sample mean and variance,
so that the resulting summaries do not accurately reflect “typical” behavior.

To address these sorts of problems, statisticians have developed the fabd<ifstatis-
tics [HMT83]. These are statistics that remain resilient in the presence of extremes, or “outliers.”
One example is use of theedian or 50th percentile, as a statistic for summarizing a distribution's
central location, rather than the mean. Unlike the mean, the median is virtually unaffected by the
presence of outliers.

In our study, we make heavy use of medians as robust estimates of central location. To
compute a median of points,z; = z1, ..., z,, We sort the points to obtairy,), . .. , z(,), and then
use:

medianz;) = T(nt1),

if n is odd, or:

. 1
median{z;) = 5(36(%) + :E(n+1)),

if n is even.

A robust statistic for measuring variation is tmerquartile range or IQR [Ri95]. The
IQR is the difference between a distribution's 75th percentile and its 25th percentile. Thus, it char-
acterizes the distribution's “central variation.” It is likewise virtually unaffected by the presence of
outliers, since these by definition fall outside of the range of the values used to compute the IQR.
We likewise in our study often make use of IQR rather than standard deviation.

One other technique we borrow from robust statistics is that of fitting a line to a series
of (x,y) points. Techniques such as least-squares can be heavily skewed by trying to minimize the

109

distance between the fitted line and any outliers. The technique we use, taken from [HMT83], is to
first estimate the slope of the line as the median of all of the pairwise slopes between the different
points, and then estimate the intercept as the median of the offset gfadwardinates from a line

with the given slope and zero-intercept.

9.2 Anoverview of TCP

In this section we give an overview of how the Internet's TCP protocol works. We make
numerous references to its operation in subsequent chapters. Our presentation is not exhaustive, but
confined to those aspects of TCP relevant to our later discussion.

The main protocol used in the Internet for reliable data delivery is the Transmission Con-
trol Protocol, or TCP. TCP is specified in [Po81c], with updates and clarifications given by [Br89],
as well as several other documents specifying optional extensions [BJ88, BBJ92, Br94, MMFR96].
Stevens gives an excellent, detailed description of how TCP works [St94], and [WS95] analyzes an
entire TCP implementation line-by-life TCP is implemented on top of the Internet Protocol, or
IP, described in [Po81a]. The combination is often referred to as “TCP/IP.”

9.2.1 Data delivery goals

TCP is a complex protocol, since it was designed to accomplish a number of objectives:

e In-order delivery, meaning that data is presented to the receiving application in the same
sequence as transmitted by the sending application.

e A byte-streanmodel, in which the sender and receiver view the data simply as a series of
bytes, with no apparent boundary points (such as those introduced by packetization).

¢ Reliabledata delivery, meaning that all of the data transmitted ultimately arrives at the re-
ceiver with its original contents (i.e., undamaged).

Accomplishing these objectives in an environment where packets can be delayed, dropped, re-
ordered, duplicated, or corrupted is quite challenging. TCP achieves in-order, byte-stream data
delivery by assigning each byte of datas@guence numbecorresponding to its offset from the
beginning of the byte stream. It does so efficiently by associating with each data packet a beginning
sequence number (i.e., the sequence number of the first byte in the payload) and a length, which
then gives the packet's upper sequence number. In subsequent discussion, we will adopt the con-
vention of using upper sequence numbers to distinguish between different data packets. When this
identification is not unique, we will also give the time at which the packet was sent or received, to
disambiguate.

TCP achieves reliability by having the data receiver reagknowledgementsr “acks,”
to the data sendér. Each ack includes an acknowledged sequence number, which inditates
of the in-order data that the receiver has successfully received. For example, if data packets with
sequence numbers 1, 2, 3, 5, and 6 arrive at the receiver, then it can acknowledge up to sequence

#Both books also discuss other Internet protocols in depth.
%It also uses a 16-bithecksunto verify data integrity, a point we return to §n11.4.2.

110

number 3. It cannot acknowledge 5 or 6, since they are not (yet) in-order. When the receiver
subsequently receives sequence number 4, then it can acknowledge all the way up to 6. Such acks
are termed “cumulative,” since receipt of any ack serves to acknowledge all of the data correctly
received so far. [MMFR96] describes a TCP extension for “selective acks” (SACKSs), which allow
more detailed feedback of exactly which out-of-order packets have arrived at the receiver so far.
In Chapters 13 and 15 we study some aspects of the efficacy of this extension, finding that it has
considerable merits.

If a TCP sender does not eventually receive an ack for data it has sent, then it concludes
that the data packet was lost (“dropped” or “discarded”) during its journey through the network, and
it retransmits the data in a new packet. Such a retransmission is termed a “timeout retransmission,”
because it occurs when a timer expires indicating that enough time has elapsed that the packet was
presumably lost, since an ack should have been received by now. The amount of time to wait before
retransmitting is termed the retransmission timeout (RTO). Choosing a good value for RTO is a
major problem, which we discuss in more detail below. We discuss another form of retransmission
in§9.2.7.

9.2.2 Achieving high performance

Achieving these objectives would be considerably simpler if TCP did not have another
goal, namelyperformance Without performance considerations, one can achieve in-order, reliable
byte-stream delivery by simply sending one packet at a time until the receiver acknowledges it, and
then advancing to the next packet (“stop-and-go”). Stop-and-go can be tremendously inefficient
in terms of the performance achieved. If packetstabytes and the round-trip time (RTT; the
interval between when a packet is sent and when the corresponding acknowledgement arrives) is
AT seconds, then even if the network path is completely unloaded and does not suffer from any
undue loss or delay, the maximum achieved throughput is:

b

A typical value forb is 512 bytes, and a typical cross-country path in the U.SAiEs= 100 msec,
sop = 5,120 bytes/sec, even though the path might be capable of transferring megabytes per
second.

TCP addresses performance issues in several ways. First, it sends packets that are as
large as possible. Each Internet path has a Maximum Transmission Unit (MTU), which is the
largest IP packet that can be transmitted along the path without incurring potentially expensive
“fragmentation” into smaller packets. An end-to-end path's MTU is the minimum of the MTUs
of the various links that comprise the path. When a connection is established between two TCP
endpoints, they negotiate a Maximum Segment Size (MSS), which is the largest amount of data each
TCP is prepared to receive in a single packet transmitted to it by the other TCP. In general, the MSS
is less than the MTU, since the MTU must also include the overhead associated with each packet,
namely its protocol header informatidh.Given these considerations, TCP implementations strive
to transmit “full-sized” data packets, meaning those that carry MSS bytes of user data. They cannot
always do so, if the sending application has not provided them with enough data to completely fill

1050me TCPs confuse MSS and MTU, as describeglih.5.4.

111

a data packet. For our bulk-transfer connections, however, this is generally not a problem, and the
TCPs usually sent full-sized data packets.

Using full-sized data packets helps increase Eqn 9.1, but never beyond MSS. Gener-
ally, MSS values are on the order of 512 bytes or sometimes 1460 bytes or 4 Kbytes, so this increase
alone does not suffice for achieving good performance along a high-speed path. The much larger
performance gain comes from havingltiple packets in flight at one time. If a TCP hagackets
in flight, then the potential throughput is:

kb

p:Ea

which can in principle match any available path speed (“bandwidth”) by using a suitablyklarge

The problem then becomes how to choésel'here are two separate concerns: how fast
the receiver can accept data, and how fast the network can accept data. The first problem is referred
to as “flow control,” and the second as “congestion control.”

TCP addresses flow control by including in the receiver's acks an “offered window” (also
referred to as “advertised window”, “receiver window,” and, in some contexts, as simply the “win-
dow”). The offered window specifies how much new data the receiver promises to accept from the
sender. It reflects the buffer available at the receiver, which is used to absorb discrepancies between
the rate at which new data arrives at the receiver, and the rate at which the receiving application con-
sumes that data from the receiving TCP. When the available buffer changes, the receiving TCP may
send “window updates,” which are acknowledgements with revised values for the offered window.

The offered window is expressed in terms of a “credit” beyond the packet acknowledged
by the ack. For example, suppose the MSS is 512 bytes and the receiver has 4,096 bytes of buffer
available. If data packets with sequence numbers 512, 1024, 2048, and 2560 'athies, the
receiver can acknowledge up to 1024, since the first two packets arrived in sequence. It cannot
acknowledge 2048 or 2560 because they arrived “above sequence.” So far, the receiving application
has not consumed any of the data, even though it could read the first 1,024 bytes if it wished. So
the receiving TCP needs to hold the data from all four of the packets in its buffer. Because it has
4,096 bytes of buffer, it can accommodate additional data up to sequence 4096, so in the ack it
includes an offered window of 4,094,024 = 3,072 bytes, instructing the sender that it can ac-
commodate 3,072 bytes beyond what is has now acknowledged receiving. Note that it advertises
3,072 bytes even though it has already committed 4 packets worth of buffer, or 2,048 bytes, leav-
ing it with 2,048 bytes of uncommitted buffer. This works because the sender can only use the
3,072 byte credit as a window beyond the acknowledgement point (“ack point”). So it can only
transmit 2,048 bytes' worth of data not already buffered, namely those corresponding to sequence
numbers 1536, 3072, 3584, and 4096.

Suppose now the receiving application reads the 1,024 bytes that have been acknow-
ledged. (It cannot yet read the data in the later packets, since they are presently “above sequence,”
so they cannot be read in-sequence yet.) Now the receiving TCP no longer needs to buffer the first
two packets, so it can accommodate an additional 1,024 bytes from the sender. It may at this point
send another acknowledgement for sequence 1024, but this time with an offered window of 4,096,
allowing the sender to transmit all the way up to sequeii@d + 4096 = 5120.

'where we are using the conventions that the sequence number refers to the upper sequence number carried in the
packet, and that data packets are always full-sized.

112

When sequence 1536 arrives, then up to sequence 2560 may be ack'd, since the data up
to there can now be delivered in-sequence. When the sender receives the ack of 2560, its window,
meaning the range of data it can now send, “advances.” As part of this advance, the “upper edge”
of the window, meaning the largest sequence number the sender can transmit (equal to the ack point
plus the offered window), “slides” to a new maximum. Consequently, transport protocols using this
form of flow control are termed “sliding window” protocols.

In this fashion, the receiving TCP can (if it wishes) assure that it is always able to accom-
modate data arriving from the sender. If, for example, the receiving application ceases to consume
data, then eventually the TCP's buffer will fill. When it does, the TCP will advertise a window of
0 bytes, requiring the sender to cease transmission.

9.2.3 Congestion control

Quite separate from flow control is the vital performance isswmofestion controlThe
limitation on how fast the sender should transmit may derive not from limited buffer at the receiver,
but limited capacity inside the network. Originally, TCP dealt with congestion control by setting the
RTO (retransmission timeout) to a multiple of the estimated mean RTT (round-trip time). When the
RTO expired, unacknowledged packets were retransmitted, and the RTO was doubled (“exponential
backoff”), so that during periods of high congestion, the connection would progressively lower its
sending rate.

In a landmark paper, Jacobson described the shortcomings of this form of congestion con-
trol: in particular, its excessive consumption of resources due to retransmitting multiple packets at
one time, and the instability that occurs because it does so precisely when the network has been over-
loaded to the point of packet loss. He also identified inadequacies in the RTO algorithm, which used
only the estimated mean RTT, without including an estimated RTT variance [Ja88]. He addressed
these problems by introducing a second window,athiegestion windovor, cwnd), and a modified
RTO algorithm that includes the estimated RTT variance, both of which have been incorporated into
the TCP specification [Br89, St97]. It is no exaggeration to say that the Internet works today only
because of these changes. Without them, the network would inevitably devolve into “congestion
collapse” (discussed below). Thympper TCP congestion control igtal to the Internet's stability
a point we return to in Chapter 11, where we find that some TCP implementations fail to follow
these requirements.

We will focus on the first of Jacobson's changes, the congestion winteadis com-
pletely separate from the receiver's offered window. At any time, a TCP sender must not send
beyond theminimumof the two windows. The offered window governs how much in-flight data
the receiver's buffer can accommodate, ewtidgoverns how much the buffers along the network
path can accommodate. The networking infrastructure, however, does not provide this latter infor-
mation explicitly (nor can it, for scalability reasons). Jacobson's insightful observation was that the
network path does, however, provideiawplicit signal that its buffer resources are scarce: namely,
it drops packets. Thus, packet loss is interpreted as a sign of congestion (also observed by Jain in
[Jai89]). Such losses are termed “congestive losses.” While packet loss can occur for other reasons,
the presumption is that most losses occur due to congestion, and so merit a response by the sending
TCP: diminishing the rate at which it transmits packets. It does so by redoasind

113

6000

4000

Sequence #

2000

0
\

Figure 9.1: Sequence plot of a TCP connection during its “slow start” phase

9.2.4 Slow start

Jacobson discussed two different issues in managimgd The first is what value to
use for it initially, which we address in this section. The second is how it should be cut upon
detecting loss, to adapt to congestion, which we addregs9r2.6. His scheme addresses the
first issue by initializingcwndto one packet (more precisely, to MSS bytes), so connections begin
by transmitting just one packet and waiting for an acknowledgement. Each ack that arrives then
increasexwnd by one packet (again, actually by MSS bytes). Thus, if the receiving TCP sends
an ack for every in-sequence packet it receives, then in the absence of loss the congestion window
will be 1 packet, 2 packets, 4 packets, 8 packets, and so on, where each increasecveifidatter
the packets in the previous “flight” have been acknowledged. (We use the term “flight” to refer to
a set of packets transmitted within a single RTT's worth of time.) Thus, in the absence of loss,
cwndincreases exponentially quickly. It continues to do so until either it is limited by the receiver's
offered window; or the connection suffers a loss, indicating that a network-imposed congestive limit
has been reached; or the connection completes before either of these occur.

This form of window increase is called “slow start,” since the window starts at a small
value, and hence the TCP transmits slowly at first. Figure 9.1 shows a “sequence plot” of the
packets sent and received by a TCP sender during its slow-start phase. We will make extensive use
of such plots and so describe them here in detail. i#Hagis gives time since the connection was
established. Thg-axis gives sequence numbers: these are either upper sequence numbers for data
packets (shown as solid squares), or acknowledged sequence numbers for acks (hollow squares).

Sequence plots are highly informative illustrations of what happens during a connection.
Here, the solid square 8 = 0 sec with sequence number 1 corresponds to the “initial SYN”
packet. Each connection begins with the originator transmitting a packet with the “SYN” flag set
in the header to request establishment of a connection (“SYN” is short for “synchronize sequence

114

numbers”). If the connection request is accepted, then the responder replies with a SYN acknow-
ledgement (“SYN-ack”) packet. If the sequence numbers in the SYN-ack accord with those that
the originator sent, then the sender acknowledges the SYN-ack and the connection has been es-
tablished. Because establishment entails exchanging three packets—the initial SYN, the SYN-ack,
and the final ack of the SYN-ack—it is referred to as a “three-way” handsRak&€P terminates
connections in a similar fashion, using an exchange of “FIN” (“finish”) packets and a final ack, for
another three-way handshake.

The initial SYN carries a sequence number of 1 because the SYN flag conceptually oc-
cupies the first sequence position of the byte stream. At aBbogt 0.07 sec, the plot shows the
arrival of an acknowledgement for sequence number 1. This is the SYN-ack packet. Shortly after,
the sender begins transmitting. It sends a single packet carrying 512 bytes (and with sequence num-
ber 513), becausawvndhas been set to one packet due to slow start. This data packet also carries the
ack for the SYN-ack packet, and hence completes the three-way handshake. When 513 is ack'd at
T = 0.17 sec, the congestion window opens to two packets, and these are promptly sent (sequence
numbers 1025 and 1537). Both of these are acknowledged by a single’Bck 8t23 sec, which
openscwndby an additional packet, and three new packets are'dent.

At T = 0.30 sec, an ack arrives for the first two of the three packets in this flight. It
opens the window to four packets. Since one of these four is already in flight, the TCP only trans-
mits the three new ones. At = 0.36 sec an ack arrives for the third packet of the earlier flight
(sequence 3073). This isdelayedack, one that the receiver momentarily refrained from sending
in hope that more data would arrive and it could ack two packets at once. (The receiver employs an
“ack-every-other” policy for sending its acknowledgements, as do many TCPs.) Very shortly after
this ack arrives, so does another one, for sequence 4097, corresponding to the first two packets of
the most recent flight. Each of these acks advaoegslby one packet, so after both arriveynd
is 6 packets. One of these is already in flight (and not yet unacknowledged), so the TCP sends the
other five.

Note that we can read the RTT directly from the plot: it is #haxis distance between the
transmission of a packet and its acknowledgement, in this case about 70 msec.

The sending TCP continues to openaygenduntil loss occurs. IEwndreaches the point
where it exceeds the size of the offered window, then the connection becens@ger-window
limited. Figure 9.2 shows a sequence plot of the same connection later in its transmission, when
this has occurred. We have added circles to the plot indicating the upper “edge” of the window,
that is, the sum of the offered window and the sequence number acknowledged by the ack (the “ack
point”). We see that the sending TCP closely tracks the upper edge, sending packets up to that limit
every time the edge advances.

9.2.5 Self-clocking

Another effect shown in Figure 9.2 is the important phenomenosetifclocking In
the figure, each flight of data packets elicits in response an ack “echo” that preserves the temporal

12TCP uses a three-way handshake for reliability concerns that we will not describe further here; see [St94] for a
detailed discussion.

130ne might expect thatwndwould open by two additional packets, since the received ack acknowledges receipt of
that many packets. However, the TCP standard governing congestion window management [St97] specifies that, during
slow start, each ack for new data increases the window by one packet, regardless of how much new data has been ack'd.

115

Sequence #
34900 36900 38900 40900
LI I T §

32900

30900

28?00

Figure 9.2: Sequence plot of a “window-limited” TCP connection

structure of the flight. When the flight of acks arrives at the sender, the window advances in step
with the echo, because the receiving application is consuming the data as fast as it arrives, and hence
the offered window remains constant—4,096 bytes, in this case. Because the connection is receiver-
window limited, the sending TCP then transmits new data whose temporal structure reflects that of
the window advances, and thus ultimately reflects that of the previous flight of data packets, so the
cycle continues.

The term “self-clocking” is also due to Jacobson. It comes from the observation that a
window-limited TCP connection will over time naturally pace out its data packets to exactly match
the bandwidth available along the network path. Figure 9.3, reproduced from [Ja88], illustrates
this property. The top “pipe” represents that network path from the sender to the receiver, and
the bottom pipe that from the receiver back to the sender. The thickness of each component in a
pipe reflects the bandwidth available at that part of the pipe, and horizontal distances correspond
to differences in time. Each packet occupies a portion of the pipe, shown as a shaded region. The
width of these regions indicates how long it takes the packet to traverse that portion of the pipe, and
the height reflects that the packet consumes the region's available bandwidth during the traversal.
In the figure, the sender has sent a number of packets back-to-back into the local, high-speed end
of the path. These packets travel through the network closely spaced, until they reach the path's
bottleneck(thin central region), where the available bandwidth sharply diminishes. At this point, it
takes much more time to transmit each packet, so they spread out in time.

The key observation underlying self-clocking is that once the packets have been spaced
out to a distanceP, by the bottleneck, thegemainspaced out. That iy, in the figure is equal
to P,. There is no mechanism for subsequently recovering their initial spatirfurthermore,
such recovery is not desirable: the distard¢es in fact the optimal spacing for the connection's

Y7o first order. Se§ 16.3.

116

- Pr—

Sender Receiver

Figure 9.3: TCP “self-clocking.” Reprinted with permission from [Ja88], copyrigio88 Asso-
ciation for Computing Machinery.

packets. If they are transmitted any closer together, they will simply hawsitdn a queue at the
bottleneck anyway, because it cannot accommodate a faster rate. \Banigackets ideally to be
transmitted with a distanc®, between them. Any less and they cause queueing without any gain
in performance. Any more and the connection underutilizes the available bandwidth.

The very nice property of window-based flow control is that, as the data packets arrive
at the receiver with a spacing &f. = P, between them, the receiver generates acks for them and
thesealsohave a spacing\, = P, = P, between them. Furthermore, the ackssaralland arenot
spaced out by the bottleneck along the return path, even if it is smaller than that along the forward
path. Consequently, the acks arrive at the sender with a spagirgptween them, and because
the timing has not been perturbed; = P,. Finally, these acks then advance the window, and the
sender transmits new packets in response to them. The timing of the new packets, however, reflects
that of the acks, and hence they have a spacing,pfust as we desire. Thus, the connection
settles into a state in which it “clocks out” new packets at exactly the proper rate for the available
bandwidth.

Receivers that employ ack-every-other policies, such as that shown in Figure 9.2, perturb
self-clocking in only a minor fashion. Instead of generating acks with a spating P, between
them, they generate acks with a spacingipf= 2P,. Consequently, in the absence of extra delays
along the return path, they arrive at the sender with that same spacing. Note, however, that these
acks advance the window liwo packets each instead of one packet, so the sender then transmits
two packets that are spaced a distaRce= 2P, apart from the previous group of two packets. Thus,
over intervals o2 P,, the connection transmits at exactly the bottleneck rate. On finer time scales,
it can transmit faster, but the excess is only one additional packet, so very modest buffer space at

117

the bottleneck can accommodate the bursg 14.6.1 we will see other acking policies that involve
acking large numbers of packets with single acks. These can lead to highly bursty arrivals at the
bottleneck.

Self-clocking is an idealized state. In practice, connections might not self-clock due to
delay variations along the network paths in either direction, discussed in depth in Chapter 16. One
particular form of delay variation that defeats self-clockingrnsng compressionwhich we discuss
in§ 16.3.

Connections also do not self-clock when in the slow-start phase, since arriving acks do
not simply advance the window, but widen it also. Consequently, the average spacing between
the packets transmitted by the sender during slow start will be lessRhaiVhen the network
is unloaded, this behavior is not only acceptable but desirable, because our goebnginoally
send packets with intervals d?, between them (“filling the pipe”). If we can accomplish this,
then the connection sustains transmission at the full available bandwidth, and we have achieved the
maximum performance possible along the given path. However, a TCP sender does not know in
advance the proper value B (and the proper value might change over the course of a connection).
Slow start is a mechanism fbuntingfor the correct spacing, by continually opening up the window
until the connection finds itself in the self-clocking regime corresponding to the currently available
bandwidth. The difficulty with this hunt is knowing when to stop. TCP currently determines the
stopping point when it has driven the network to the point of packet loss (see below). But this point
corresponds to having exceeded the available bandwidth by a factor proportional to the available
buffer spacetoo, since Internet routers today only drop packets when their buffers are exhausted.
Thus, when beginning a connection, using slow start will offeme the network to the point of
loss which is excessive, since we instead want therdriee the network to the limit of available
throughput

There are proposals for modifying either TCP [WC91, WC92, BOP94] or the drop policy
used by routers [RJ90, FJ93] so that connections can find the available bandwidth without unduly
stressing the network. We comment on both approaches as we analyze our measurements. The TCP
modifications are of particular interest for our study because they rely on accurate packet timing
information, which we will find can be elusive.

In Figure 9.2, the connection fails to fill the pipe because it is receiver-window limited.

In general, to fill the pipe requires that the window size in byiesexceeds the “bandwidth-delay
product,” i.e.:
w > pa-RTT, (9.2)

wherep 4 is the available bandwidth in bytes per second, and RTT is the round-trip time in seconds.
We develop this relationship in detail §1.6.1. While estimating RTT is not difficult, estimatipg

is, SO connections cannot readily use Egn 9.2 to determine their correct window size. In Chapter 14
we discuss ways of estimating thettleneckbandwidth,pp, which is an upper bound gny, and

in § 16.5 we look at the relationship between the two.

9.2.6 Responding to congestion

The other fundamental component of Jacobson's modifications to TCP concerns how TCP
reacts tocongestioni.e., periods when some element of the end-to-end chain of routers and links
is under stress: a sustained interval during which packets arrive more quickly than the element

118

can service them. During congestion, the unserviced packets are queued at the congested router
until they can be serviced. If the congestion lasts long enough, the queues build and build until
eventually the queued packets exhaust the router's buffer. At this point, the router must discard
incoming packets.

Note that congestion spanspectrumbetween busy periods during which queues grow
large, and periods when no more buffer remains and packets are lost. Thus, packets may or may
not be lost during congestion periods, depending on the sizes of the buffers and the duration of the
congestion. (We examine the interplay between delay and |ds$6rR2.4.)

Congestion is potentialliethal to a network because it can lead to positive feedback that
sustains and even magnifies the congestion. In particular, if packet loss leads to retransmissions
that are sent at the same rate as the original packets, then the load borne by the network will not
diminish, and the congestion sustains itself. Packets from newly-initiated connections add further
to the load, leading to even higher levels of congestion.

The positive feedback can thus bring the network to a stamoogestion collapsein
which the network load stays extremely high but throughput is reduced to close to zero [Na84].
Exactly this happened in the early days of the Internet, and led to Jacobson's work on TCP conges-
tion avoidance [Ja88]. As discussed above, one of the key insights of that work is that the network
provides an implicit signal of congestion in the form of packet loss. Barring loss due to causes such
as transmission noise on a network link, the network should only discard packets if it no longer has
enough buffers to carry them. Consequently, when a TCP sender observes a packet loss, it should
infer that the network path is congested, and ease its use of the path by cwitidgand hence
limiting its transmission rate). It does so as follows.

First, upon retransmittingewnd is set to one packet, so the connection begins a “slow
start” phase in order to hunt for the correct value of the available bandwidth again. Second, the TCP
state variablssthresH"slow start threshold”) is set to half of the window in effect at the time of the
retransmission (i.e., the smaller of either the offered window, or the valaead prior to setting
it down to one packet). The intent behisdthreshis to denote the window size beyond which it
is likely that there is no more available bandwidth. The sending TCP should only gingerly expand
cwndbeyondssthresh

As acks arrive for packets now transmitted by the sender, each increasddy one
packet, per the usual slow-start increase. Ocwad reachesssthresh however, then the TCP
increasexwndby only one packet per RTT. Thus, the rate at whieindincreases changes from
exponentiaduring the slow-start phase linear during the “congestion avoidance” phase.

Figure 9.4 illustrates how a TCP timeout retransmission appears on a sequence plot. At
T = 2.3 sec, data up to 24577 has been acknowledged, and eight more packets are in flight, which
equals the offered window. A little later two more acks for 24577 arrive (“duplicates,” as discussed
in § 9.2.7 below). However, no additional acks are forthcoming.TA& 3.4 sec, the RTO ex-
pires and the sending TCP retransmits the first unacknowledged packet, 25089. At thisvpiht,
has been set to 1 packet (which is why only one packet is retransmittedistimdshhas been
set to 4 packets, half of the window in effect at the time of the retransmission. The retransmit-
ted packet elicits an ack for 28673, corresponding to all of the outstanding data. This indicates
that only 25089 was dropped by the network—all of the later packets arrived at the receiver, so a
retransmission of 25089 was all that was needed to fill the sequence “hole.”

The ack for 28673 both advances the window edge and enlamgedto 2 packets, so

119

35000
|
gnnn
0
I LI
0 g Illl
il (1)]

Sequence #
30000
|
one

25000
\

= =

U Dllllllll

Time

Figure 9.4: Sequence plot showing a TCP timeout retransmission

the sender now transmits two new packets. As acks arrive, the sender continues rapidly increasing
cwndin slow-start fashion. However, when the ack for 32257 arrivéB at 3.75 sec,cwnddoes

not increase from 5 packets to 6 packets, but remains at 5 packets, because the TCP has now entered
congestion avoidance. It is only after the arrival of the ack for 35329, the last in the platythdt
increases to six packets.

While the above outlines the congestion avoidance principles, in practice there are many
fine points regarding exactly how congestive avoidance is implemented. (For example, why in
Figure 9.4 it took more than one RTT during congestion avoidancevimid to increase by one
packet.) We discuss a number of these in Chapter 11.

9.2.7 Fastretransmit and recovery

In addition to timeouts, TCP supports another retransmission mechanism, called “fast
retransmit.” It is also due to Jacobson. Although not part of the TCP specification, it is widely
implemented. Fast retransmission is an attempt to avoid the sometimes lengthy lulls a connection
experiences upon aloss, due to the RTO being much larger than the RTT. Figure 9.4 above illustrates
the problem. For this connection, the RTT was about 65 msec, but the RTO wait was 1.2 sec.

In general, RTO should be larger than theximunmRTT a connection's packets might ex-
perience, in order to allow enough time for acks to arrive. Yet, it is difficult to estimate this maximum
due to frequent fluctuations in RTT, and, furthermore, it is important to estimate it conservatively,
i.e., overestimate it rather than underestimate it, so that packets are not needlessly retransmitted.
(We will see the effects of underestimationgid1.5.10.) Finally, many TCP implementations have
access to only coarse-grained clocks, so it is difficult for them to time small RTOs.

To address this problem, Jacobson noted that TCPs receive an additional, implicit signal
when a packet has been lost. This signal comes in the form of the arrival of “duplicate acks.” When

120

Sequence #

36000 38000 40000 42000

| | | |
Unnun

34000
\

32000
\

Figure 9.5: Sequence plot showing a TCP “fast retransmission”

above-sequence data arrives at a TCP receiver, the specification states that the TCP should generate
a redundant acknowledgemeént.These are termed “duplicate acks” or “dups.” In Figure 9.4 we

see two of these arriving dt = 2.33 sec andl” = 2.53 sec. Since all but the first packet beyond the

ack point arrived at the receiver, it should have sent 7 dups. From the plot, we cannot tell whether

it did so but 5 were lost, or if it failed to do so. (It turns out that, in this case, it failed to do so. The
TCP implementation was one that does not include the recommended generation of dups.)

Fast retransmission works by counting duplicate acks, and, if their number reaches a
given thresholdV4, then the sending TCP infers that the packet beyond the ack point was lost, and
retransmits it. Current implementations uSg = 3. This value was chosen as a trade-off between
not missing fast retransmit opportunities because too few dups arrive, versus not misinterpreting the
arrival of dups and retransmitting unnecessarily. The latter can occur when packets arrive out of
order. In§ 13.1.3 we examine how welV,; = 3 performs, and find that it does very well, almost
always detecting true loss and not being fooled by reordering; and, furthel jrat2 would result
in TCPs being fooled significantly more often.

Figure 9.5 shows a sequence plot depicting a fast retransmission. Packet 36865, originally
transmitted afl” = 0.85 sec, was lost, but all of its 6 successors arrived successfully. These then
elicit six dups, the third of which causes a fast retransmissidn-at0.93 sec. At this pointcwnd
is one packet andsthreshis 4 packets. When the retransmission is ack'd at 0.98 sec, slow
start advanceswndto 2 packets, and then to 3 packets upon receipt of an ack for thosé two.

Fast retransmit works very well for eliminating the lengthy timeout lull, provided enough
above-sequence packets arrive at the receiver to elicit at least 3 dups. (If the receiver's offered

151t also does this if below-sequence data arrives, i.e., unnecessarily retransmitted data. We explore the distinction
between these two i$13.1.3.

6The apparent duplicate ack for 39937 is in fact a “window update,’§p@2.2. TCPs are careful to distinguish
between window updates and true duplicates, as the former do not indicate the safe arrival of an additional data packet.

121

window is small, or ifcwndis small, then this may be a problem.) Jacobson further refined it with a
mechanism termed “fast recovery.” The observation underlying fast recovery is that each additional
dup beyond the firsv;, = 3 indicates that another data packet has arrived at the receiver. Thus, it
is sound to increasewnd (which was cut to 1 packet upon the fast retransmission) by one packet
for each of these, though not to excessthresh Furthermore, it is sound to increasendby N,
packets upon a fast retransmission, too, because each of th¥ fidstps likewise corresponds to a
successfully received packet.

Thus, fast recovery opersvndmore quickly. If this were all that the TCP did, then fast
recovery would lead to a large burst when the TCP received an ack for the retransmitted packet
(T = 0.98 sec in Figure 9.5), because at this panindwould often be much larger than 1 packet
(then increased in Figure 9.5 to 2 packets by the arrival of the ack). To eliminate this burstiness, fast
recovery also specifies that, if the TCP receives enough additional dups, it then begins transmitting
newdata,beforeit has received an acknowledgement for the retransmitted data. Thus, the algorithm
looks like:

1. Upon receiving 3 dups, sssthresto half the effective window, setwndto one packet, and
retransmit the first unacknowledged packet.

2. Next, “inflate” cwndusing:
cwnd <« ssthresht+ 3,

where the constant 3 reflects the three duplicates already recéived.

3. Whenever another dup arrives, increasad by one more packet. I€wndis now large
enough to transmit new data, do so.

4. When an ack arrives that advances the ack point to or beyond the last packet that was in flight
prior to the fast retransmission, then fast recovery ends. Execute:

cwnd «+ ssthresh

to “deflate” the window to its proper post-recovery size, and updated from the ack nor-
mally.

Figure 9.6 illustrates how fast recovery appears on a sequence plot. A number of dups
arrive for 74573, which is retransmitted after the third dup is received (i.e., after four acks for 74573
arrive, the first being the “original” and the others being dups). Prior to the retransmission, the
window was 8 packets, so after the retransmisstthreshs 4 packets, and after window inflation,
cwndis 4 + 3 = 7 packets. The next dup advancasndto 8 packets, but the TCP already has
8 packets' worth of data in flight, so it cannot retransmit at this point. The dup after that, though,
arriving atT = 7.94 sec, advanceswndto 9 packets, and this is enough to liberate a new data
packet, 79361. Two more dups after it advaoeendto 10 and 11 packets, and two more data
packets are sent. Then,At= 7.96 sec, all of the data outstanding prior to the retransmission is
ack'd (closely followed by a window update, the second ack shown overlapping with the first). At

1"We have simplified discussion by presenting the algorithms in terms of full-giaekiets when in fact they are
implemented in terms diytes Provided all of the packets contain a full MSS' worth of data, these two are equivalent.

122

80000
\

Sequence #
76000 78000
| |

1
1
[|

I
0
0
0
0
0
0
0

74000
\

72000
\

7.86 7.88 7.90 7.92 7 .94 7.96

Figure 9.6: Sequence plot showing TCP “fast recovery”

this point, the window deflates back ¢sthreshor 4 packets. The ack is then processed, and since
this TCP's test for congestion avoidance is

cwnd > ssthresh

rather than
cwnd > ssthresh

(used by some other TCPs), the connection is deemed still in slow start, so the ack advantes

to 5 packets. Three of these are already in flight, so the TCP transmits two new packets. Thus, the
TCP was able to continue transmitting, and ended the retransmission pericdwnifhaving just
entered congestion avoidance, and it did so without generating any unduly large bursts.

We make one final point regarding fast recovery. The window inflation and deflation is
subtle (and often confusing). It arises due to conflating the meaniogmdto be both “how many
packets the connection can have in flight” and “how far above the ack point can the connection
transmit.” During fast recovery, these notions are separate, since some of the packets above the
ack point are indeed no longer in flight (because they are what caused the dups). Because these
points are subtle, we should not be too surprised to learn in Chapter 11 that TCPs implementing fast
recovery suffer from more than one bug in managing the window deflation.

9.3 The Raw Measurements

Table XIV lists the 35 sites that participated in the two experimental rdisand Ns.
Tables | and Il in Part | summarize the sites.

We conducted the first ruiVy, during December 1994, coincident with the routing study.
Likewise, we conducted the secontly, during November—December 1995. As with the routing

123

| Name | #MN; | #N, | Tracing machind

adv —| 1,244

austr 207 | 1,036| BSDI 1.1
austr2 - 1,259

bnl 307 | 1,200

bsdi 166 | 1,374

connix 308 | 1,474

harv 190| 1,061

inria 172 | 1,180

korea 49 — | HP/UX 9.01
bl 318 | 1,412 | SunOS/BPF
Ibli 230 | 1,134| SunOS/BPF
mid —| 1,295

mit 308 -

near —| 1,296 | SunOS/BPF
nrao 301 982

oce 126 838

panix - 240

pubnix 148 | 1,085

rain -] 1,289

sandia -] 1,182

sdsc 259 964

sintefl —| 1,469| NetBSD 1.0
sintef2 —| 1,524| SunOS/BPF
SIi 194 | 1,306

ucl 230 | 1,266

ucla —| 1,397| Sun0S 4.1
ucol 275| 1,208| SunOS 4.144)
ukc 299 989 | SunOS 4.1
umann 222 998

umont 144 | 1,469| Sun0OS 4.1
unij 74| 1,412| Sun0S 4.1
usc 231 —| Sun0S 4.1
ustutt 240 | 1,165

wustl 304 | 1,232

Xor 316 -

Total 2,805 18,490

Table XIV: Sites participating in the packet dynamics study

124

study, differences betweek; and N5 give us an opportunity to analyze how Internet packet dy-
namics changed during the course of 1995.

The second and third columns give the number of connections in which the site partici-
pated as either sender or receiver. The final column lists the operating system of the machine used
to trace the site's TCP traffic, or empty, if the tracing was conducted on the same machine as ran the
TCP. Tracing systems listed axYZ/BPF” had the Berkeley Packet Filter installed [MJ93], which
greatly aids with accurate packet measurement. Onewsité,, changed its measurement setup
betweenV; and N>, using a separate machine durikg but the same machine durivd,.

As discussed above, each measurement was made by instructing the Network Probe Dae-
mons (NPDs) running at two of the sites to send or receive a 100 Kbyte TCP bulk transfer, and to
trace the results usingpdump . An important difference betweex; and\; is that inA; we used
Unix socket options to assure that the sending and receiving TCPs had sufficiently large buffers that
they were never “window limited”§(9.2.4), to prevent window limitations from throttling the trans-
fer's throughput. This change has a downside, which is that it sometimes clouds apparent trends
between theV; measurements and ttié, measurements with questions concerning whether the
trends are simply artifacts of using bigger windowsAh. Nevertheless, the change was worth
making, since the bigger windows enabled Mg connections to push considerably harder on the
network path, with more opportunities to observe the amount of resources the path had available as
a result.

Finally, we limited measurements to a total of 10 minutes, as a mechanism to prevent
measurement attempts from indefinitely consuming resources at the NPD sites. This limit leads to
under-representatioof those times during which network conditions were poor enough to make it
difficult to complete a 100 Kbyte transfer in that much time. Thus, our measuremeriitaseel
towards more favorable network conditions. §ri5.1 we show that the bias was negligible for
North American sites, but noticeable for European sites.

125

Chapter 10

Calibrating Packet Filters

The data for our entire packet dynamics study are traces of packets sent through the net-
work recorded by thecpdump utility, written by Van Jacobson, Craig Leres, and Steve McCanne
[JLM89]. tcpdump uses a host computerpacket filterto measure when packets appear on the
local network. Packet filters are operating system services for recording network packets. In this
chapter we discuss the general problem of how to test the soundness of a trace measured by a packet
filter, and the specific issues that arise from the different packet filters used in our study.

We begin by introducing the notion of “wire time§ (L0.1), and then describe how packet
filters work § 10.2). One of the goals of a packet filter is to record wire times as accurately as possi-
ble. In§ 10.3 we give an overview of the sorts of measurement errors packet filters can exhibit. For
each error, we discuss hawspanaly attempts to detect its presence when analyzingpdump
trace. While not a measurement error, a packet filter's “vantage point’—where in the network it is
located—can also complicate the analysis afpglump trace, which we discuss #10.4. Finally,
it is not quite as simple as it might at first appear to pair up instances of the same packets in two
tcpdump traces, one recorded at the TCP sender and one at the re¢elM®b covers the details
of doing so.

10.1 The notion of “wire time”

If we wish to accurately describe how packets travel through a network, then we need to
carefully specify exactly what we mean when we associate a time with a packet's appearance on a
link in the network. To do so, we introduce the notion of “wire time.” Wire time is defined in terms
of a particular measurement locatidh on a particular network link.. For a given packet, the
wire time ofp on L is the timet at whichp appears al/ on L. Note that this definition is vague
in some fundamental ways. Sometimes what we (ideally) want to know is w/ifiest appears at
M, which one might define ggs “wire arrival time,” corresponding to the first moment at which
any bit ofp is viewed atM on L. Other times we want to know wherfinishesappearing af/, its
“wire completion time,” corresponding to the first moment at which all the biis lrdive been seen
at M on L. These two times can be quite differenfithas a low bandwidth, and so it takes a long
time for all of p's bits to pasd/.

Depending on the particular link, wire times can vary considerably with different mea-
surement points on the link, such as the two ends of a satellite link; or very little, such as the various

126

measurement points on an Ethernet.

For each packet recorded by a packet filter, the filter generdteestamporresponding
to the time at which the filter captured the packet (discussed furttet2). One goal of a well-
designed packet filter is to ensure that this timestamp is as close as possible to the packet's wire time
with respect to the packet filter's measurement locafidén,

However, the filter's locatiod/ will often differ from the location® where the connec-
tion endpoint whose traffic we wish to measure resides. (This difference affects the packet filter's
vantage pointan issue we discuss in detail§ri0.4.) Consequently, it may be difficult to accurately
estimate from packet filter timestamps recordedi/ahe wire times as seen Bt In our study, how-
ever, the packet filters always monitored the same local-area network (LAN) as was used by one of
the endpoints in our study, or ran on the endpoint itself. Since the LAN's had small propagation
times, this means that the packet filter timestamps were (potentially) quite close to wire times as
seen at.

10.2 How packet filters work

The goal of gpacket filtersupplied with an operating system is to selectively record net-
work traffic. This operation is referred to as packet “capture.” The captured packets might be only
to or from the computer running the packet filter, or might be ancillary traffic that has nothing to do
with the local computer. In the latter case, the filter still needs some way to “see” the traffic in order
to measure it. This is done by means of passively monitoring broadcast media such as Ethernet or
FDDI networks, a mode of operation referred to as “promiscuous.” With non-broadcast media such
as point-to-point links or Ethernet “hubs,” passive operation is sometimes not possible (depending
on the design of the networking elements) unless considerable pains are taken to split the physical
signal so that the passive monitoring machine receives its own copy. For our study, measurement
was always done either in the context of a broadcast medium, or on the endpoint host itself.

The position of a packet filter with respect to the TCP endpoints, or its “vantage point,”
can complicate analysis of cause-and-effect among the streams of packets between the sender and
the receiver. We discuss this issue furthe§ ir0.4. We note here that vantage point complexities are
often more significant for passive monitoring because the monitoring machine is further removed
from the TCP endpoint. Apart from this issue, which can be important, we in general prefer passive
monitoring because it minimizes measurement error. A passively-monitoring packet filter often can
yield more accurate estimates of “wire time” because the computer doing the measurement is not
also busy processing the network traffic itself.

Packet capture usually takes place inside the operating system's kernel, since dealing
with hardware devices such as network interfaces generally falls within the kernel's domain. It is
presumably at this point that the packetreestampgs generated, reflecting the time at which the
packet was captured. Hopefully this occurs as early in the process as possible, so that the timestamp
is as close to the packet's wire timel(.1) as possiblé.

Depending on what one wishes to measure, often most of the network traffic seen by the
filter is irrelevant and needs to be discarded. Doing so is termed packet “filtering,” and provides the
genesis for the name “packet filter.”

1The timestamps generally are closer to “wire completion” times than “wire arrival” times, since usually the timestamp
is generated after the entire packet has been received from the network interface.

127

Operating systems greatly differ on the amount of filtering provided by their kernels.
Some provide only very simple filtering, while others allow quite sophisticated pattern-matching.
The difference can be very important for network measurement, because, if a kernel supports only
crude filtering, then additional filtering must be performed by the application program accessing
the packet filter. This filtering is done at the user-level, which entails copying the potentially very
high volume of network traffic from the kernel up to the user-level, merely so almost all of it can
be discarded. This copy operation can take considerable processing, and thus can greatly aggravate
the problem of packet filtedrops(§ 10.3.1). For this reason, one generally prefers what is termed
a kernel packet filtermeaning a packet filter that implements sophisticated filtering at the kernel
level, since these can much more rapidly winnow down the packet stream to just those of interest to
the application.

We used thecpdump utility for generating our packet tracescpdump is written in
terms oflibpcap , a library that knows about a great number of packet filters provided by different
operating systems [MLJ94libpcap provides packet filtering using the BSD Packet Filter (BPF;
[MJ93]). For operating systems that fail to provide much in terms of kernel-level packet filtering,
libpcap hauls up all the packets received by the filter and uses the BPF matcher at user-level to
filter. For systems that provide BPF-equivalent kernel filterlinpcap knows how to download
a filter from the application prograntcpbdump , in our case) to the kernel, to obtain the benefits of
kernel-level filtering.

Of the sites participating in our studibpcap was able to use kernel-level filtering on
those systems running the following operating systems: B®BMi(, connix , pubnix , rain ;
austr 's separate tracing machine), NetBSiar(ix ; sintefl 's separate tracing machine), and
Digital OSF/1 parv , mit , ucol in A%, umann). In addition, some systems had BPF manually
added to their kerneldb{ ,Ibli ,near ;sintef2 'stracing machine). For the remaindémpcap
performed packet filtering at the user-level.

In all cases, the filtering used in our study was for packets with the IP addresses for the
NPD source and destination hosts in their IP header, and also with both a source port of 7,505 and
a destination port of 7,505, as these were the ports used by all of the NPD probe traffic. Note that
we didnot additionally capture ICMP traffic directed to either host, the lack of which subsequently
complicated our TCP analysis, since one form of ICMP message (“source quendhlicB.3)
alters the TCP behavior of a host receiving it.

A final measurement consideration concerning packet filters is the use of a “snapshot
length” orsnaplento control how much of each packet the filter records. Often, for network analy-
sis all that is required is to record the packeaders Doing so and omitting the packebntentscan
save large amounts of both copying (minimizing processing time and thus decreasing the chance of
measurement drops) and storage space. Consequently, for our study we only recorded packet head-
ers. Doing so limited certain types of analysis that require packet contents for full accuracy, such
as assessing the prevalence of data corruption. We discuss how we worked around this limitation in
§11.4.2.

10.3 Packet filter errors

It is crucial in any study based on packet filter measurement to consider the forms of
measurement errors that packet filters can exhibit. In this section we discuss five types of errors:

128

drops; additions; resequencing; timing; and misfiltering. For each, we look at the impact of the error
on subsequent analysis, and hiopanaly — attempts to diagnose the presence of the error.

10.3.1 Drops

The most widely recognized (and often most common) form of packet filter error is the
presence ofirops in which the trace produced by the filter fails to include all of the packets ap-
pearing on the network link that matched the filter pattern. The missing packets are said to have
been “dropped.” The usual reason that drops occur is that the measuring computer lacks sufficient
processing power to keep up with the rate at which packets arrive on the monitored network link.
This is particularly a problem for machines requiring “user-level” filteridL(.2), because for
them considerable processing can be spent simply moving the stream of monitored packets up to
the user level from the kernel level.

Packet filter drops can present serious problems for analyzing network traffic. For ex-
ample, any analysis of network packet loss rates must be certain not to confuse filter drops with
true network drops. Furthermore, filter drops generally occur during periods of peak network load.
These are often precisely the times of greatest interest for studying traffic dynamics. If the peaks
are “clipped,” one can easily underestimate the maximum load the network experiences [FL91].

In general, packets can be dropped at two different places.n&tweork interface card
that connects the monitoring computer to the network link can run out of buffer memory for storing
packets awaiting recording, because the kernel is too busy doing other things to read them quickly
enough from the card; or the kernel itself can exhaust its buffer for storing packets awaiting con-
sumption by the user-level tracing utility. Once a packet is successfully transferred to the tracing
utility, it is usually immune from further drops (unless it fails to match the filter, naturally), but
the time required to subsequently transfer it to permanent storage can result in the user-level utility
failing to consume new packets at the same rate that the kernel makes them available, eventually
exhausting the kernel's buffer memory.

As discussed i§ 10.2, kernel-level packet filters are generally much less susceptible to
drops because they pare down the measured packet stream much more rapidly than do user-level
packet filters, and hence require much less processing time.

10.3.2 Packet drop reports

The operating system's packet filter interface usually includes a mechanism to query how
many packets the kernel dropped, taking care of the second place where packets can be dropped.
Network interface cards, on the other hand, often supply only crude signals that packets were
dropped (such as a boolean flag indicating simply whether or not any drops have occurred), making
it more difficult to evaluate drops occurring due to the kernel being unable to keep up with rate of
packet arrivals.

Unfortunately, some operating systems do not report drio@s (, ucol in N5, korea ,
sandia ; most of the Solaris sites). Others report drops when in fact the trace includes all of the
connection's packets. This can occur with user-level filtering, because the drop count tallies the
number of packets the kernel was unable to deliver to the user level, and it can be the case that
none of these belong to the connection of interest. Worse, some report no drops when in fact there
were drops. This occurred numerous times for the NetBSD 1.0 machine used teittefie 's

129

traffic, and also for some of the Solaris machines that nominally reported drop cxamiastr2
nrao in N5). None of these systems ever reported a drop count other than zero, indicating that the
accounting machinery is absent.

Finally, we note that packet drops were quite rare for the systems with kernel-level filter-
ing, though they did sometimes occur.

10.3.3 Inferring filter drops

Because we cannot trust the different packet filters to reliably report dicasaly
employs a number of self-consistency checks to infer their presence. The key in doing so is to be
certain not to mistake a genuine network drop for a filter drop, while still detecting filter drops as
reliably as possible.

Fortunately, for TCP traffic it is usually possible to discern between a network drop and a
filter drop, because TCP isliable. This means that a (correct) TCP implementation will diligently
work to repair genuine network drops, while taking no action in response to filter drops (since, in
fact, it successfully transmitted the packétgjhis observation leads to a number of self-consistency
checks employed bigpanaly

1. Since TCP implementations send data in sequence order, except during retransmission, a
“skip ahead” in which new data is sent that does not follow the highest sequence sent so
far indicates that the packet filter dropped some earlier-sent data (namely, the data that was
indeed in-sequence).

When applying this check, one must be careful to allow for the possibility of a network
“interface drop.” That is, the implementation may appear to have skipped ahead because the
earlier-sent packet, while successfully transferred from the sending computer to its network
interface card, never made it out from the card onto the local network. Interface drops are
actually a special case of the “vantage point” problem discussgd @ below.

tcpanaly distinguishes between a likely measurement drop and an interface drop by check-
ing to see whether the TCP later retransmits the skipped packet. If so, it most likely did
so because the packet did indeed fail to arrive at the receiver, and it was an interface drop.
If not, then the packet must have arrived at the receiver (since TCP is reliable), so it was a
measurement drop.

2. Even during retransmission, TCPs have a particular order in which they will retransmit data.
While this varies between implementations, for those implementatigpahaly knows
about, it can detect whether the TCP deviates from the order, which generally indicates that
the packet filter either dropped an incoming ack that altered the retransmission order, or an
outgoing data packet that maintained the integrity of the retransmission order.

3. Since a TCP implementation should never send data beyond the upper edgeooigbstion
window(§ 9.2.2), or the inflated congestion window in the case of fast reco¥eh?2(7), the
presence of such in a trace is much more likely to be due to the packet filter having dropped
an ack.

2An exception is if a packet is dropped by both the packet filtet later, by the network.

130

Detecting this inconsistency is difficult because it requires understanding exactly how the
particular TCP implementation manages its congestion windopanaly does have this
knowledge (Chapter 11), however, so it can make this consistency check. This is fortunate,
because if the receiver is offering a spacious window, as was the design(#9.3), then
offered window violations (see below) will be very rare, even in the presence of filter drops of
acks; but congestion window violations will still flag most instances in which the filter drops
an ack.

4. For TCP implementations free of retransmit timer problems§(&fL.5.8 andy 11.5.10), the
presence of an uncalled-for retransmission usually indicates that the packet filter has dropped
one or more acknowledgements that triggered a “fast retrans§rit’2(7) sequence.

5. Afailure of a TCP to send data when it apparently was allowed to do so can likewise signal a
packet filter drop—the data was actually sent, but the filter failed to record this fact. However,
there are many reasons why a TCP might not send data when it appears it can, including not
having data available from the sending application; attempting to avoid the “silly window
syndrome” ([CI82]); or the host processor being busy doing something else. Because it can
be difficult to determine if one of these is the reason the TCP failed to sgrashaly does
not consider a failure to send as indicative of a measurement drop.

6. A properly functioning TCP will never acknowledge data that has not arrived, nor will it
acknowledge data above a sequence “hole” (some earlier data has still not arrived), since
TCP acknowledgements are cumulative. Presence of such acknowledgements are thus much
more likely to be due to the packet filter having dropped some incoming data packets.

7. Since a TCP implementation should never send data beyond the upper edgeftérda
window(cf. § 9.2.2), the presence of such in a trace is almost certainly due to the packet filter
having dropped an ack (or having resequenced an ack; 5&8.6 below).

8. If data is sent before the connection is fully establistye@.2.4), this usually indicates that
some of the packets in the establishment sequence were dropped by tHe filter.

Most of these checks can only be conducted from vantage pgitts4) that are local to
the point where the bogus traffic is sent (or fails to be sent). If the vantage point is some distance
away (in particular, if it is at the opposite end of the connection) then one cannot always distinguish
measurement drops from network drops. Consequently, the first five of the checks can only be
reliably assessed from traces gathered at the data sender, the sixth can only be reliably assessed at
the receiver, and the last two can be reliably assessed at either end, since they should never occur
regardless of earlier packets dropped by the network.

For trace pairsicpanaly makes one further check: if a packet arrives at the receiver
that was never sent according to the sender trace, then almost always this indicates a measurement
drop at the sender. (Note that this check is complementary to those above, and does not serve to
replace them, since it only detects measurement drops at the packet sender.) For further discussion,
including why it does noalwaysindicate such, se$10.5 andg 13.2.

3The T/TCP extension to TCP allows data to be sent prior to full establishment [Br94, St96]. None of the TCPs in our
study used T/TCP, however.

131

10.3.4 Trace truncation

Related to packet filter drops but slightly different is the problem of ttagecation
Truncation occurs when the filter misses the packets belonging to either the beginning of a connec-
tion or the end. Both cases are easy to detect because TCP connections are delimited by an exchange
of special connection management packgt3.2.4). If this exchange is missing, then the trace has
been truncated.

Trace truncation occurs due toace between when the measurement process begins and
finishes executing and when the connection itself begins and finistpelscontrol attempts to
avoid this race by waiting five seconds between requesting that the repwte start their mea-
surement processes, and requesting that they proceed with the connection. Similarly, it waits five
seconds after the transfer source indicates it has finished before requesting that thenpeisote
terminate their measurement processes.

These delays do not always avoid the race, however, particularly begadisentrol ‘s
trace requests may themselves be held up in the network due to transmission delays, so the transfer
request can wind up arriving right on the heels of the measurement request. In addition, the sending
application can consider itself as done transmitting its data well before its TCP actually completes
the transfer, due to retransmissions that occur after the application has scheduled all of the data
for transfer. This mismatch further contributes to the potential for races. A better design would
be to use explicit handshaking between the measurement and transfer processes to ensure that the
measurements always fully bracket the transfer.

If the beginning of a trace is missing, thempanaly gives up on trying to analyze it,
because it is too difficult to then work out what the congestion window is, and hence to apply the
powerful self-consistency check of looking for packets that are sent in violation of the congestion
window. If, however, only the end of a trace is missing, thepanaly can readily analyze the
remainder of the trace. When pairing such a truncated trace with the complementary trace made at
the other endpointicpanaly truncates the trace pair at the last packet appearing in both traces.
This occurred in about 6% of th& trace pairs, and 3% of th&> pairs. Truncation typically
involved only the final few packets of the trace.

Afinal note: sometimes a trace begins with what is actually leftover traffic from a previous
measurement between the same pair of hosts, because at the network level the previous connection's
final connection handshake has not yet completed. In principle, this should never happen, because
the TCP implementation should not allow the same connection port to be reused while it still main-
tains state for the earlier instantiation of the connection. In practice, however, we have observed
it in several of our traces, sometimes in the traces at both ends of the new connection, indicating
it is not simply stale packets left unread from the earlier use of the packet filter but indeed the last
wisps of the previous connection. Providing the packets have connection termination flags set (FIN
or RST),ticpanaly simply ignores them.

10.3.5 Additions

While it is easy to see how packet filters can sometimes fail to record network packets,
we might not expect that they can also recexdrapackets! Yet, this does indeed happen, with the
IRIX 5.2 and 5.3 packet filters. Figure 10.1 shows part of a sequence plot exhibiting this problem.
Here, the ack just before tin#é = 11.175 has liberated five packets.

132

Sequence #
3500 3000 3300 34000
\ \ \ \
1
1

32000
|

31500
|

=

T T T T
11.1750 11.1760 11.1770 11.1780

Time

Figure 10.1: Packet filter replication

Each outgoing data packet appears twice. The slope (i.e., data rae€.@et) of the two
sets of packets is telling. The first corresponds to a data rate of over 2.5 MB/sec, while the second
is almost exactly 1 MB/sec. This latter agrees closely with the data rate of an Ethernet, and indeed
the host generating the traffic is connected to an Ethernet. Thus, surprisingly, the first set of packets
appear to have bogus timing while the second set appears to be accurate! Furthermore, the two sets
are indeed intertwined, that is, the second occurrence of sequence number 32,257 appears in the
trace before the first occurrence of 34,305.

This puzzling picture all makes sense given the following explanation. This trace was
made running the packet filter on the same machine as that generating the network traffic, and the
operating system is copying outgoing packets to the filtéze the first time when the packets are
scheduled to be sent out onto the local Ethernet, and the second time when they actually depart onto
the Ethernet. The 2.5 MB/sec corresponds to how fast the operating system is sourcing the traffic,
while the 1 MB/sec reflects the local rate limit of the Ethernet link speed.

About 2,000 of the traces in our study have duplications of this sort. Clearly such dupli-
cates can complicate or skew our analysis. For example the computation of packet loss rates had
better not conclude that when the sender's filter reports 400 packets sent but only 200 arrive that the
loss rate was 50%! On the other hand, we would rather not discard all these traces for our subse-
guent analysis, stepanaly needs to cope with the duplication. Yet, we cannot blithely discard
the second copy of each packet, because we might in the process discard a packet truly replicated by
the network, an event that would be very interesting to detect (this does indeed hapgeh3 28e

For our measurement purposes, the second copy is actually preferred to the first, since it
is closer to the true wire time (L0.1). Unfortunately, while in many traces every single packet sent
by the host (data packets, if the IRIX host was the sender, acks if the receiver) appeared twice, in
some of the traces a second copy was occasionally missing. (We know the omission was not due
to an interface drop, pe&rl10.3.3, because it was never retransmitted.) Furthermore, in some traces

133

28000
\

24000 26000
\ \
1

0

Sequence #

22000
\

20000
\

18000
\

Figure 10.2: Packet filter resequencing

the duplication starts midway through the trace, rather than permeating the entire trace. For these
reasonstcpanaly copes with measurement duplicates by discarding the later copy.

It discriminates between a measurement duplicate and a true retransmission as follows.
First, it checks whether the “id” field in the packets' IP headers match. This field is used by IP for
fragmentation purposes, which we need not delve into here. However, one salient property of the
field is that in general it is incremented for each new IP packet that a host sends. Consequently,
different TCP packets will usually have different IP “id” fields in their IP headers. If the “id” fields
agree, it then checks whether the sequence number fields match, and, for data packets, also whether
the second copy was sent less than one quarter of the minimum observed round-trip time (RTT) after
the first copy. If the endpoint TCP is known to reuse the IP “id” field when retransmitting a data
packet (of the TCPs in our study, only Linux 1.0 does this), then data packets are never considered
candidates for measurement duplication, since it is too easy to confuse a true retransmission with
a measurement duplicate (especially since Linux 1.0 retransmits too earfyl pe+.8, and hence
would pass the RTT test). Fortunately, the packet filter used to trace the sole Linuxdreat)
does not appear to suffer from measurement duplications, so we do not lose any calibration by
doing so.

10.3.6 Resequencing

Another form of packet filter error is what we term “resequencing,” in which the packet
filter alters the ordering of the packets so that it no longer reflects events as they actually occurred
in the network. Figure 10.2 shows a portion of a sender trace in which this occurred. At first glance
the plot appears normal: acks are occasionally arriving and as they do, the window slides several
packets' worth and newly liberated packets depart shortly afterwards.

Figure 10.3, however, shows a blow-up of the central tower from the previous figure.

134

23000 24000
\ \

Sequence #

22000
\

6.9280 6.9284 6.9288

Time

Figure 10.3: Enlargement of resequencing event in previous figure

We see that the packet filter has recorded timestamps for the packets such that the first two data
packets are sequenced as having depdéalethe acknowledgement arrived. Since the congestion
window would not have permitted their earlier departure, and there was a lengthy lull as shown in
Figure 10.2 before their departure but only 100's of microseconds between their alleged departure
and the arrival of their liberating ack, it is clear that the filter has misrepresented the true sequence of
events. The problem here is not a clock adjustmgi2(6), since the packets appear in the shown
chronological order in the trace file (and also because this problem is much more common than
we find clock adjustments to be). This problem occurs quite frequently for the Solaris 2.3 and 2.4
packet filters, plaguing about 20% of the traces they record. It almost never occurs for any of the
other packet filters.

Most likely the resequencing occurs because the packets are being recorded by a packet
filter running on the same host as is generating the traffic. We speculate that the Solaris packet filter
has two code paths by which packets are copied to the packet filter for recording, one corresponding
to incoming packets and one corresponding to outbound ones. If the outbound path is appreciably
faster than the inbound one; if copies of packets can queue separately in both paths waiting for the
filter to record them; and if packets are only timestamped when the filter processes them, then the
resequencing makes sense.

Unfortunately, resequencing presents a considerable analysis headache, as it destroys any
ready assessment of cause-and-effect. It also means that the packet timestamps have large margins
of error, with a bias towards overestimating how long it takes acks to arrive compared to how quickly
data packets are sent out. Thiepanaly needs to detect this problem so that it knows not to trust
the sequence of events reported by the packet filter. It cannot really correct the problem since we do
not know when the ack truly arrived, so we do not have a sound timestamp to assign to it. Instead,
it flags the trace as lacking accurate timing and causality information.

To detect resequencing for traces recorded at the data sespdeialy keeps track of

135

stall packets. These are data packets that are not timeouts (i.e., not retransmissions of the lowest
unacknowledged sequence number) and that have been sent after a lengthy lull in network activity.
tcpanaly considers a lull to have occurred if at least 25 msec has elapsed since the previous data
packet was sent, or, if an ack arrived after the last data packet was sent, then at least 50 msec has
elapsed since the ack arrived.

If an ack follows a stall packet by less thamx(1 msecR;), where R, is the clock
resolution of the packet filter's timestampg<.2.1), and if the ack acknowledged a sequence number
below that of the stall packet (so, transmitting the stall packet after seeing the ack would have made
sense), thercpanaly flags the ack as reflecting a resequencing event.

As mentioned above, the stall packet technique only works for traces recorded at the data
sender.tcpanaly uses a similar technique for receiver traces, namely looking for acknowledge-
ments for data as-yet-unreceived but arriving shortly after.

Note that there is some overlap between detecting measurement drops and resequencing
events. For example, an observation of data sent beyond the congestion window could be due to the
corresponding ack having been dropped, or due to resequencing, with the ack arriving shortly after
the window violation.tcpanaly may occasionally mistake one for the other, based on the timing
of the packets arriving after the event. For our purposes, this potential misattributing of the exact
type of packet filter error is unimportant. The key requirement is simplyttipahaly recognize
the trace as untrustworthy.

Finally, the Solaris filters are particularly apt to resequence an ack for a FIN packet ter-
minating the connection, presumably because the associated code paths are particularly asymmetric
in terms of processing time. Since for our analysis this reordering is essentially benign, because
it comes at the very end of the connectiacpanaly does not consider traces thatly exhibit
resequencing for a FIN packet as untrustworthy. The statistic above of 20% of the Solaris traces
having resequencing problems does not include those with only resequenced FIN packets.

10.3.7 Timing

Another type of packet filter error concerns the accuracy of the timestamp recorded for
each packet: how close is the timestamp to the true wire time? In Chapter 12 we look at the issue of
calibrating these timestamps in detail. Most of the consistency checks we develop in that Chapter
rely on comparingpairs of packet timings, those corresponding to when the sender's packet filter
recorded the packet's departure, and those of when the receiver's packet filter recorded the packet's
arrival. These tests prove quite powerful at detecting different clock problems, but require extensive
analysis. In this section we confine ourselves to a simpletépahaly performs to check the
validity of a single trace's timestamps, hamely ensuring that they never decrease.

We refer to a decrease in the timestamp values as “time travel.” One might think that time
travel would never occur, and checking for it would be a waste of effort, but, surprisingly, it does
happen! We recorded four instancesN, all involving connix ‘s clock, and 538 instances (!) in
N, 498 involvingsintefl 's clock (that is, the clock dfintefl 's NetBSD 1.0 tracing machine)
and 40 involvingpanix 's clock (also a NetBSD 1.0 machine).

Figure 10.4 gives an example of how a sequence plot exhibiting time travel appears. If we
add lines to the plot showing the order of the packets as they appear in the trace file (Figure 10.5),
then we see a sharp backward jump from tifhe- 3.6 sec toT" = 3.05 sec.

Sequence #

Sequence #

25000

20000

15000

25000

20000

15000

2.8 3.0 3.2 3.9 3.6 .8
Time
Figure 10.4: Example of “time travel”
2.8 3.0 3.2 3.9 3.6 .8

Time

136

Figure 10.5: Same plot, with lines showing the ordering of the packets in the trace file

137

Sequence #
60000 70000
]

50900

40900

Time

Figure 10.6: Receiver sequence plot showing a forward clock adjustment, undetectable to the eye

Time travel has a simple explanation: it reflects the local clock being set backwards. It
can occur frequently, as witkintefl , if the clock is periodically synchronized with an external
source by setting it to the source's reading, and if the clock tends to run fast. Another form of
time travel, considerably more difficult to detect, &weward adjustments. Figure 10.6 shows a re-
ceiver sequence plot spanning an 11 second period during which the receiver's clock was artificially
advanced by an additional 400 msec. To the eye, however, this adjustment is completely hidden.

We look at detecting clock adjustments in greater detdjli2.6.

10.3.8 Misfiltering

The last type of packet filter error we look at is “misfiltering,” meaning that the filter
incorrectly executes its pattern matching and either rejects packets it should accept, or accepts pack-
ets it should reject. The first of these is similar to a measurement drop, though systematic in nature.
The second can in principle be detected by checking the accepted packets to make sure they do
indeed match the desired filter. To do this check properly requires a separate implementation of
the filtering mechanism than that usedItypcap , since otherwise one would expect the same
erroneous match to occur again.

tcpanaly does not include a full, separate matching mechanism, but it does perform
two consistency checks in this regard. First, it checks to make sure that the IP header of each
packet indicates a TCP packet. This check never failed. Second, it partitions all the TCP packets it
inspects into individual TCP connections based on their host and port numbers, and analyzes each
resulting connection separately. In no case did it find more than one connection in a trace, though
it occasionally found remnants of an earlier incarnation of the same connection, as discussed in
§10.3.4.

138

Sequence #
54000 55000
\ \

53000
|

52000
|

4.200 4.202 4.204 4.206 4.208 4.210 4.212

Time

Figure 10.7: Example of an ambiguity caused by the packet filter's vantage point

10.4 Packet filter “vantage point”

While not a measurement error per se, another difficulty in calibrating packet filter mea-
surements arises from complications due to the packet filter's location in the network. We term
this its “vantage point.” For example, if the packet filter records data packets as they arrive at the
receiver, ambiguities arise in trying to determine whether any arrival anomalies observed are due to
the network perturbing the packets, or because they were sent by the source in an unusual fashion.
Suppose two packets arrive out of sequence order; it is not always apparent whether the network
reordered them, or if the packet with the lower sequence number was dropped by the network and
the sender has already retransmitted it.

Vantage point effects can be significantly more subtle than in this example, however. They
are most insidious when the filtappearsas if it were located directly at one of the TCP endpoints,
and onlyoccasionallydoes its separate location alter the traffic perspective it records.

Figure 10.7 gives an example. The sequence plot is from a packet filter recording traffic
at the sending endpoint. A little after tif¥e = 4.203, an ack arrives for a sequence number a bit
below 52,000. Very shortly afterwards, at tirfie= 4.204, an ack arrives for a sequence number
above 54,000. Then at tini& = 4.205, the sender transmits two packets with sequence numbers
below 54,000. If the sequence plot truly reflected the traffic as seen by the TCP endpoint, then the
TCP never should have sent these packets, since it had already received an acknowledgement for
the corresponding data! As can be seen from the plot, shortly after sending these two packets the
endpoint therdoesprocess the second ack, and sends new, unacknowledged data.

The key point here is that neither the packet filter nor the endpoint TCP are behaving
erroneously. The problem is simply that the packet filter's vantage point is not exactly the same as
that of the endpoint TCPs, and the problem is exacerbated by the vantage point beiolpsetiy
that of the TCPs, as this then encourages assumptions that the two are indeed the same.

139

Vantage-point problems can be reduced by running the packet filter on the same machine
as the TCP endpoint, although this introduces other measurement problems due to competition
for the machine's processing power. This step does not, however, eliminate the problem, because
cause and effect can still be obscured if the TCP takes a long time to react to any particular input.
For example, when new data arrives, many TCP receivers only acknowledge it after the receiving
application process has consumed at least two packets' worth of data, which can take considerable
time after the network arrival of the data.

In order to correctly analyze TCP trafficpanaly must be able to cope with vantage-
point problems. This means that in general it is insufficient for analysis purposes to only remember
the most recently received packet. Dealing with vantage-point problems considerably complicates
tcpanaly 's design, but the result is much more robust analysis. We discuss how we do so in
§11.3.1.

10.5 Pairing packet departures and arrivals

The last packet filter issue we look at is how to take two trace filesecorded at TCP
endpoints, and 7, recorded at endpoint, and from them synthesizeteace pair that matches
packet departures fromandr with their corresponding arrivals atands.

The basic approach we use for trace pairing comes from the observation that each packet
has two “fairly” unique fields in its header, its sequence number (or the sequence number it is
acknowledging, if an ack) and its IP “id” fiel (L0.3.5). If these fields were indeed unique, then
trace pairing would be easy, since the fields would allow unambiguous determination of which
packets irf; correspond to which iff.. Those without a corresponding packet were either dropped
by the network (if present only in the trace local to their sender), or by the packet filter (if present
only in the trace local to their receiver).

The pairing problem lies in the fact that the sequence number and IP id fields are not
actually unique. Sequence numbers can reappear in different packets due to retransmissions or
duplicate acksy9.2.7). Most TCPs only reuse the IP id field when its 16 bit counter wraps around,
but one system in our study (Linux 1.0) reuses the IP id field as well as the sequence number when
retransmitting’

tcpanaly deals with these problems as follows. Suppose we wish to pair packets sent by
s with their arrivals at- (everything works the same when pairing in the other directimpganaly
first goes throughy; and for each packetsent bys it computes a keyk,,, comprised of the triple
of the packet's IP id field and its data and acknowledgement sequence numbers.

Using K, as an index into a tabl®;, we check to see whether we have already seen a
packet with the same key. If not, the packet is adde®t@ndtcpanaly proceeds to the next
packet. If another packet with the same key has been seen, then we check whether the packets
areidentical meaning they have the same TCP header flags, data and acknowledgement sequence
numbers, length, and offered windéwif any of these differ, themcpanaly flags that a serious

“This is a reasonable performance decision, and explicitly allow§diig.2.15 of [Br89]. If the sending TCP keeps
its unacknowledged data in the form of fully assembled packets, then for retransmission all it needs to do is copy the
packet out to the network interface. The reuse of the IP id field does not present an integrity problem since what is being
retransmitted is a verbatim copy of what was sent earlier.

®In principle, for data packets we should also check whether the data contents agree. Since, however, the traces in our

140

analysis error has occurred, since the assumption that the key suffices as a unique identifier has
proven incorrect. For all of the traces i, and N5, this never occurred. We next check whether
the packet filter in use is known to create spurious measurement duplicatib@s3(5). If so, then
tcpanaly discards the later copy @f as a measurement artifact. Otherwise, if the sending TCP
is known to reuse IP id fields (Linux 1.0, for our study), then the additional packet is entered as
a second instance df, in P;. If none of these considerations hold, thepanaly flags that a
packet has apparently been replicated at the sender (these are analyzed fi§rit®@P)nand does
not construct a trace pair fgr, and7, because it cannot do so reliably.

tcpanaly next goes through each packedrriving froms in 7,., again computing its key
K,. If K, does not appear i (the table of packets sent Byindexed by their keys), then either
p's transmission was dropped by the packet filter at the send@rvaas truncated§(10.3.4); or the
network garbleg in transmission so that its sequence number or IP id field has changed (analyzed
further in§ 13.3). If K, appears inPs, thenp is checked against tHg version of the packet to see
if they are identical. If notfcpanaly flags that the packet was corrupted by the network (again
analyzed irg 13.3). If the two copies agree, then we proceed as follows:

1. If K, appears exactly once i, and has not yet been paired with an arrivaljnthen it is
paired withp in 7.

2. If K, appears exactly once i, but has already been paired7n with an arrivalp’, thenp
is flagged as @eplicationof p’. Replications are further analyzed§ri3.2.

3. If K, appearsn times in P, for m > 1, then we term the pairing ambiguous To resolve
ambiguous pairingstcpanaly first computes:, how many times the same key occurs in
T.. If n = m, thentcpanaly assumes that each packet arrived in order and pairs them in
order of occurrence. & > m, then we presume a measurement drop occurréd (it could
also have been a packet replication, but that is much less likely) <dfm, then some of the
original instances of the packet were dropped by the network. In this case, we attempt to pair
each departure with the arrival that has the smallest difference in timestamps, provided this
difference is no smaller than the smallest such difference for all of the unambiguous pairings.
If this pairing results in a single packet departure matching two different packet arrivals, then
we abandon the attempt to construct a trace pair, since we cannot construct a plausible set of
pairings.

If tcpanaly was not able to unambiguously pair the packets in the traces, or if the traces included
corrupted packets (which may be erroneously paired), ttygmaly does not construct a “trace

pair” and skips any subsequent analysis that requires a trace pair. The latter problem (corrupted
packets) was extremely rare, but the former problem is more common: ambiguities due to Linux 1.0
TCP reusing IP id fields rendered 65% (15 out of 23) of the traces with a Linux 1.0 sender un-
pairable. Consequently, we were unable to perform sound analysis of the trans-Pacific path from
Korea to the other sites, especially because the Linux 1.0 traces thadtdidffer ambiguities were

those with especially low levels of retransmission, so analyzing just them would result in a biased
assessment of the levels of retransmission and loss along the path.

study only include packdieadersand not data contents, we could not perform this test.

141

Finally, if tcpanaly removes relative skew from the receiver's clogk2.7.9), it then
recomputes the packet pairings, in case any of the ambiguous matches are changed by the altered
receiver timestamps.

142

Chapter 11

Analyzing TCP Behavior

We discussed earlier how one of the main drawbacks to using TCP traffic for our network
“probes” is the often quite complex behavior of the TCP endpoif®.1.2). We argued that the
resulting fine-resolution probing outweighs this disadvantage, because the disadvantage can be over-
come by careful analysis of the packet arrivals and departures in order to remove those aspects of
the traffic behavior due to the TCP endpoints themselves. In this chapter we discuspdraly
performs this analysis. In addition, the process of removing the TCP effects reveals a wealth of in-
teresting detail about how different TCP implementations behave. We find a tremendous range both
in their performance and in their congestion-avoidance behavior, the latter playing a critical role in
the Internet's global stability.

In addition, a solid understanding of each TCP endpoint's exact behavior enables us to
distinguish between packet filter errors and bona fide network anomalies. For example, if multiple
copies of a single data packet arrive at the TCP receiving endpoint, we can look to see whether
the receiver generates an ack for each one. If it does, then the extra copies are bona fide and not
measurement duplication$ 10.3.5). If not, therif the TCP endpoint is known to correctly generate
acks when it receives redundant packete can conclude that a measurement error occurred, and
the packets did not really exist. If the TCP is known to not generate acks in this situation, then we
cannot tell, and look for a separate indication of whether the packets were indeed real (for example,
whether they have different TTL's). Thus, thoroughly understanding TCP behavior provides an
invaluable self-consistency check on the soundness of our measuréreht.

11.1 Analysis strategy

As its name suggests, we began writioganaly with the goal of analyzing TCP behav-
ior. Only later did we realize that, in the process of doing so, it develops many of the data structures
also needed to analyze network dynamics.

Our original goal was for the program to workane pas®ver the packet trace by recog-
nizing genericTCP actions. The goal of executing only one pass stemmed from htpizigaly
might later evolve into a tool that could watch an Internet link in real-time and detect misbehaving
TCP sessions on the link. Designing the program in terms of generic TCP actions such as “time-
out” and “fast retransmission” would then enable it to work for any TCP implementation without
needing to know details of the implementation.

143

After considerable effort, we were forced to abandon both of these goals. One-pass anal-
ysis immediately proved difficult due tantage pointissues § 10.4), in which it was often hard
to tell whether a TCP's actions were due to the most recently received packet, or one received in
the more distant past. Attempts to surmount this problem by usipgcket look-ahead for small
k proved clumsy, and finally foundered when we realized that one basic prageataly needs
to determine concerning a TCP implementation is only truly apparent upon inspecting an entire
connection, namely whether the implementation has a “sender windp1.8.2). Since sender
windows are common, in order to infer them soundly we decided to aipanaly to inspect
the entire packet trace before making decisions as to how the TCP behaved. Doing so immediately
simplified other types of analysis, too.

We abandoned the goal of recognizing generic TCP actions as the wide variation in TCP
behavior became apparent. For example, as related below, the Solaris and Linux TCP implemen-
tations in our study often retransmit data packets much too early, before the original packet had a
chance to arrive at the destination and be acknowledged, and the Linux implementation furthermore
retransmits entire flights of packets rather than just one packet at a time. Neither of these behaviors
fit a generic TCP action (except “broken retransmission™), and they are very easily confused with
legitimate retransmissions due to “fast retransmissi@r8.2.7). Similarly, the fashions in which
different implementations open the congestion window differ in subtle ways, with the result that
sometimes it can be extremely difficult to tell why a TCP failed to send new data when an ack
arrives: is it because its window has not opened another full packet, or because the TCP is simply
running slow and has not had time to do so? Both occur quite frequently.

Thus, we are left with a much less flexible but more robust desigiefanaly : it makes
two passes over the packet trace, it usgmcket look-ahead and look-behind to resolve ambigui-
ties, and, instead of characterizing the TCP behavior in terms of generic actions, we must settle for it
having coded into it intimate knowledge of the idiosyncrasies of 17 different TCP implementations.
Furthermore, when confronted with a trace generated by a new implementation not already coded
into it, it can only fruitfully analyze the trace if the new implementation behaves identically to one
of the 17 it already knows about, or if the extra effort is made to add knowledge of the new imple-
mentation to the program. To ameliorate this shortcoming, the program is capable of automatically
running all known implementations against a given trace to determine those with which the trace
appears in full accord.

Alltold, tcpanaly is about 14,000 lines of C++ code. Of these, about 7,500 analyze TCP
behavior (1,400 concerning individual implementation behavior), 5,000 analyze network behavior,
and the remainder perform utility functions. The use of C++ is particularly beneficial for expressing
the behavior of one TCP implementation in terms of its differences from that of another implemen-
tation. In particularfcpanaly includes a “Reno” implementation that captures the main features
of the BSD Reno TCP release, from which most of the TCPs in our study were derived. This allows
these derivatives to be expressed succinctly, in terms of just how they differ from “generic” Reno.
A widespread Reno variant known as Net/3 is discussed in detail in [WS95].

Table XV summarizes the different TCP implementations knowwagdanaly . The first
column gives the name of the implementation and the version numbers present among the imple-
mentations in our study. The second column lists the sites running each version, separated by ';'s.
Sites listed with a subscript af or 5 participated in both\; and A, but only used the given
implementation during the first or second, respectively.

144

Implementation | Sites | Notes \
BSDI1.1; 2.0; 2. & bsdi 1, connix , pubnix ;, | Reno-derived. BSDI 2 not a
austr o; pubnix o, rain ; | public release.
bsdi o

Digital OSF/1

harv , mit , ucol 5, umann

Reno-derived. No differ

ences observed between ver-

sions 1.3a, 2.0, 3.0, 3.2.

HP/UX 9.05; 10.00

sintef2 ; sintefl

Reno-derived.

IRIX 4.0.1; 4.0.5f; 5.1; 5.2;
5.3;6.2x

oce; sandia ; bnl 1; sdsc 1;
adv, bnl o; sdsc o

Reno-derived. No difference

[72)

observed between 4.0.1 and

4.0.5f, nor between 5.3 an

6.20. 6.2c not a public release,.

Linux 1.0 korea Implemented independently
from BSD.
NetBSD 1.0 panix Reno-derived.
Solaris 2.3; 2.4 inria 1, sri , ucl 1, ustutt , | Implemented independently
wustl , xor ;austr2 ,inria o, | from BSD. Very minor dif-
mid , nrao o, ucl - ferences between 2.3 and
2.4.
Sun0S 4.1 austr 1, Ibl 1, near, nrao 1, | Tahoe-derived. 4.1.3 and 4.1\4
ncar , ucla , ucol 1, ukc, | appear identical.
umont, unij , usc
VIi; Vs bl 5; Ibli Experimental Reno-variants

developed by Van Jacobso
Neither a public release.

Table XV: TCP Implementations known tepanaly

>

145

All but Linux 1.0, Solaris 2.3 and 2.4, and SunOS 4.1 are some variant of “Reno.”

SunOS 4.1 is a variant of “Tahoe,” a Reno predecessor, while the Linux and Solaris implemen-

tatio

11.

inde

ns were written independently of Reno and of each other.

2 Checking packet and measurement integrity

One often assumes that a trace produced by a packet filter sited at a TCP endpoint does
ed reflect the packets sent and received by the endpoint. In Chapter 10 we discussed some ways

in which this assumption can be violated. Here we look at additional consistency ¢tyenksy
uses to avoid misassumptions.

© 00 N o O

10

Among all the traces in the study, we never observed any of the following:
. Options present in the IP header.
. A packet sent with more data than the M§9.2.2).
. A TCP connection-establishment option present in a hon-establishment (non-SYN) packet.

. An establishment (SYN) packet appearing after completion of the connection establishment
handshake.

. lllegal or unknown TCP header options.
. SYN packets with other flags set. (We have seen this in other Internet traffic traces.)
. IP fragments with the “Don't Fragment” bit set.
. Non-TCP traffic § 10.3.8).
. lllegal IP header lengths.
. TCP “simultaneous open” [St94].
We did, however, occasionally observe the following:
. Time travel §{ 10.3.7).

. IP header checksum errotspanaly verifies that the computed checksum for the IP header
matches that in the header. This test never failetfinbut failed 17 times inV5. All 17 oc-
currences were between the same pair of hestsn(x andnrao), and all of the IP headers
flagged with errors suffered from corrupted (too large) length fields. These circumstances
strongly suggest a faulty link somewhere in the middle of the path betweanx and
nrao , presumably the final hop in the path because otherwise an intermediary router should
have discarded the packets. The corrupted length fields are consistent with CSLIP errors, as
discussed ir§ 13.3.

. TCP checksum errors. Packet traces generatedpdymp have asnaplenthat limits the
amount of data recorded for each packet to the fifsytes § 10.2). Thesnaplencan greatly
reduce the volume of data the packet filter must copy and record. But it means that, for TCP

146

data packets longer than theaplentcpanaly cannot compute the corresponding checksum

and compare it to the value in the TCP headsgranaly can, however, checksum pure ack
packets, since they completely fit within theaplenused in our experiment. It does so unless

the header checksum is exac#{f — 1, because we observed that some IRIX packet filters
frequently record outgoing packets with that value in the checksum field rather than the true
checksum. We suspect that this occurs because the packet has been copied to the packet filter
for recording prior to the checksum computation, because the computation is done later by
the network interface hardware.

Checksum errors in pure acks detected by this means are quite rare: 1 instavicarnd

26 instances iolV,. All but one of these latter involvelthli , which, as discussed #13.3,
suffered from an atypically strong predilection for checksum errors. We discuss how to infer
checksum errors in data packets below ihl.4.2, and irt 13.3 we find that these are much
more common than errors in pure acks.

An interesting question is whethampanaly ever falsely identified TCP checksum errors
because a packet filter recorded a corrupted copy of a packet (while the receiving TCP re-
ceived an uncorrupted copy). However, with corrupted packets removed from the analysis,
tcpanaly still found that the receiving TCP behaved as expected, indicating that the packets
were indeed corrupted and ignored by the TCP.

4. Truncated packets. These are packets that, according to the IP header, have a length of
bytes, but in fact, as delivered by the local link, had a length of énty n bytes. There were
4 instances inV7, 348 inN5. The latter involved 8 different receiving hosts.

5. lllegal TCP header length. This is a TCP header length field that indicates a length less than
the allowed minimum of 20 bytes. It indicates a corrupted packet. We observed only two
instances, both in,.

6. IP fragments. We observed 5 instances\in (none in A7) of a packet arriving with an

IP header indicating it was the beginning of a fragment. (The packet filter pattern we used
precluded capture of any fragment portions other than the initial fragment.) Upon inspection,
however, all of these were not actually bona fide IP fragments, but instead a repeated pattern
of packet corruption: the packet was enlarged in flight from carrying to 512 bytes of data
to purportedly carrying either 980 bytes or 1460 bytes. Both of the latter are popular MTU
values § 9.2.2). Their presence suggests a SLIP compression error, as discussed in more
detail in§ 13.3.

It is important fortcpanaly to detect corrupted packets, because they are discarded by
the receiving TCP rather than processed by itcphinaly misses such a corruption, then it can
erroneously infer that the TCP failed to act when it should have. Thus, we believe the effort entailed
in detecting the sometimes quite rare errors reported above is well worth while, especially because
a priori we have no solid reason for assuming they are indeed rare.

11.3 Sender analysis

In this section we discuss hatspanaly analyzes a TCP implementatiorsenderbe-
havior: that is, the details of how the TCP reliably transmits data to the other endpoint. The sender

147

behavior includes the TCPtangestiorbehavior, too: how the TCP responds to signals of network
stress. Proper congestion behavip©(2.6) is crucial to assure the network's stability. The next
main section { 11.4) then discusses haspanaly analyzeseceiverbehavior: when and how a

TCP implementation chooses to acknowledge the data it receives. In general a TCP both sends and
receives datacpanaly , however, only accurately analyzes unidirectional TCP transfers. Extend-
ing it to cope with bidirectional transfers would not be a major undertaking, but was not needed for
our study and so was left for future work.

11.3.1 Data liberations

To accurately deduce the sender behavior of a TCP from a record of its traffic requires a
packet trace captured from a vantage pdirit@.4) at or near the TCP. If the vantage point is distant
from the sender (especially at the receivecphanaly has no reliable means of distinguishing
between measurement drops, anomalous TCP behavior, and true network drops. It also cannot
distinguish lengthy latencies from the vantage point to the sending TCP's location, and a TCP that
is simply slow to respond to the acknowledgements it receives.

As discussed ir§ 10.4, even a vantage point quite close to the sender still can result in
timing ambiguities. We accommodate this difficulty by introducing the notion of lifz¢eations
Whenever an acknowledgement arriviepanaly determines how it updates the offered window
and the congestion window 0.2.2). If the new window values permit the TCP to send another
packet(s)tcpanaly then notes which packets it should send. We term each such newly-allowed
data packet a “liberation.”

By noting the time at which new acks created liberatianganaly can keep a list of
all pending liberations and, when the TCP finally does send more data packets, determine their
corresponding liberations. The difference in time between when the data packet was sent and when
it was liberated then defines tinesponse timef the TCP for that ack. Unusually large response
times often indicate thatpanaly has an incomplete understanding of the TCP's behavior, and
that the delay was really because the purported “liberating” ack did not in fact liberate the data
finally sent. It flags such instances so they can be inspected manually to determine the origins of the
apparently imperfect behavior.

Sometimegcpanaly will observe a packet being sent that has no corresponding liber-
ation. We term this a “window violation,” because it indicates that the TCP exceeded either the
congestion window or the offered window. In principtepanaly should never observe a window
violation if it correctly understands the operation of the sending TCP. Violations can still occur, how-
ever, if the trace suffers from measurement drops, or if the understanding of the TCP is incomplete
or inaccurate.

tcpanaly can use statistics of response times (minimum value, mean value) to compare
how closely different candidate TCP implementations match a particular trace. If a candidate im-
plementation is indeed correct, then its response times will usually be quite small. If the candidate
is incorrect, then the liberationspanaly computes for the implementation will not correspond to
the times at which packets were actually liberated. The difference leads to either increased response
times or window violations. Thus, depending on the relative response times and presence or lack of
window violations,tcpanaly sorts candidate implementations into those that are close fits, those
that are imperfect fits, and those that are clearly incorrect fits (for example, if it observes window
violations). These last can also occur due to measurement drops, though, in thatpeasty

148

usually rejects all of the candidate implementations.

The process of coding intopanaly a new TCP implementation likewise relies on min-
imizing response time statistics and eliminating window violations. For example, we might begin
by deriving a C++ class to encapsulate the new implementdtiarterms of differences from the
generic Reno class. We then rtapanaly against a trace of's sender behavior. tEpanaly
flags a window violation, we manually inspect the trace at the location of the violation (usually using
a sequence plog 9.2.4) and attempt to determine a rule for hbwiffers from Reno at that point.

Once all window violations have been eliminated, we then turn to the response time statistics. If
the maximum response time is quite large, it usually indicates a congestion window that has opened
up more slowly than expected, or a failure to take advantage of fast retransmit. Again, a sequence
plot greatly aids in diagnosing the behavior. After identifying and codifyifggbehavior, we test

to assure that this has indeed lowered the response time. If so, we proceed to the next instance of a
large response time, or the next trace & behavior. If the new TCP is close to one of the existing
ones, this is a fairly quick process.

In addition to summarizing the amount of data newly allowed and when it became lib-
erated, liberations include a set of zero or more attributes that describechamaly should
interpret a failure of the TCP to promptly use the liberation:

Blameless due to SWS (Silly Window Syndrome) avoidanc& CPs are supposed to implement
the SWS avoidance algorithm described in [CI82, St94], which in some cases prevents them
from sending data that they otherwise could.

This attribute indicates that the TCP should not be blamed for failing to utilize the liberation,
since the TCP's state after receiving the ack that created the liberation corresponds to one in
which it should not send due to SWS avoidance.

Blameless due to PSHWhen a TCP is sending data and has temporarily exhausted the available
data, then the TCP marks the last packet it sends with the PSH (“*push”) flag, informing the
receiving TCP that it should not wait for any further data since none will be forthcoming for
a while. Any ack received after a PSH packet was sent is marked as blameless-due-to-PSH,
since the TCP might still not have any fresh data to send, and hence could reasonably ignore
the opportunity created by the ack to send additional data.

Blameless due to no more datacpanaly has looked ahead and the sender will never have any
more data to send, so the liberation can be safely ignored. This attribute is separate from the
one above because TCPs do not always set PSH when all of the data for a connection has
been sent.

Should not be missedIf true, thentcpanaly should specifically complain if the TCP fails to
respond to the ack. An example is for the third duplicate ack that, for many TCP implementa-
tions, triggers a “fast retransmission” sequeric®.2.7). For those implementations, the fast
retransmission shoulalwaysoccur.

These attributes guidepanaly in correctly assessing the sending TCP's response times. For
“blameless” liberations, if the TCP's apparent response time is excessive, it is ignored.

There are many additional, minor detailst¢épanaly 's accurate management of libera-
tions. We omit further discussion here in the interest of brevity. They are documented in the C++
code.

149

11.3.2 Inferring sender windows

tcpanaly sometimes lacks critical information that affects the sending TCP's behavior.
In this and the next two sections we discuss how it infers such information based on testing the
directly-available information for self-consistency.

In § 11.1 above we discussed the problem of determining whether the sending TCP has an
unstated “sender window,” that is, a fixed limit on how many packets it can have in flight separate
from its congestion window and the offered window9.2.2). In practice all TCPs have a sender
window, namely the amount of buffer space they can commit for holding previously sent data until it
is acknowledged. The key question, though, is whether this limit is ever smaller than the congestion
window and the offered window. If so, then it is reasonable for the TCP to not send data even though
from recent liberations it looks like it could. However, there is no obvious sign in a packet trace
what the TCP's actual sender window is.

tcpanaly infers whether a sender window was in effect by calculating the maximum
amount of data the connection ever had in flight. Then, during its second pass over the trace, if at
some point the TCP's congestion window and the offered window would have allowed it to have
sent a full segment(9.2.2) more than this amount, but the TCP failed to do so, then the failure
to send additional data was either due to a sender window, or to insufficient understanding of the
TCP! One clue sometimes present that the limitation was indeed a sender window is that often the
sender window is the same as the offered window advertised IpetitingT CP in the data packets
it transmits to the receivercpanaly can still make mistakes, however, particularly when it fails
to realize that the reason the TCP did not transmit more data is not because of a sender window, but
because of the arrival of a source quenghl.3.3).

11.3.3 Inferring source quenches

Unfortunately, the filter pattern we used to collect the traces in our study was limited to
exactly the TCP packets used for each TCP transfer. This limit was imposed for security reasons,
to guarantee that the packet filter making the trace could not be used (either accidentally, or mali-
ciously, by a cracker) to spy on other network traffic using the same link. Usually, the TCP packets
fully suffice for understanding the resulting TCP behavior. One exception, however, is if some el-
ement of the Internet infrastructure sends an Internet Control Message Protocol (ICMP; [Po81b])
message to the sending TCP instructing it to slow down. This message is called a “source quench,”
and its packet format does not match the filter pattern used for our measurement, so our traces do
not include any source quench ICMP messages.

TCP implementations vary on how they respond to source quench messages. In general,
the TCP is supposed to diminish its sending rate. BSD-derived TCPs do so by entering a “slow start”
phase € 9.2.4). Figure 11.1 shows an example of this happening. AtTime11.2 the congestion
window is five packets, so the ack &t = 11.25, which advanced the window by two packets,
should have led to two additional packets being sent. None were, however. About 200 msec later
another ack arrives and advances the window another two packets, yet only one packet is sent, as
though the window were now only three packets. This would indeed be the case if a source quench
had arrived betweei = 11.2 andT = 11.25, setting the window to 1 packet. Due to slow start,
the first ack T = 11.25) would then have advanced the window to 2 packets, not enough to send

LA particularly easy error to make is to overlook the possibility that the TCP failed to send due to SWS avoidance.

150

Sequence #
46000 48000
| |
]
]
0
0

44000
|
1
0

42000
\
0

10.5 11.0 11.5 12.0

Time

Figure 11.1: Sequence plot showing effects of unobserved source quench

any new data, and the second ack would have advanced it to three packets. Similarly, the ack around
T = 11.6 advances the window to 4 packets, as can be seen in the plot.

Solaris also enters slow start, but in addition it cagghreshoy a factor of two. Linux 1.0
diminishes the congestion window by one full segment (MSS).

tcpanaly infers the presence of a source quench as follows. Any time it detects a large
lull between when a liberation is created and when the resulting packet was actually sent, it looks
at the series of packets between the ack creating the liberation and the data packet ostensibly cor-
responding to the liberation, as well as the packets shortly after. If the whole series is consistent
with slow start having begun (for no discernable reason) sometime between the ack and the data
packet, then the trace is consistent with an unseen source quench. (This analysis does not work for
Linux 1.0, since it does not enter slow start. Consequepignaly fails to infer source quenches
for Linux 1.0.)

Source quenches are quite rare—they have been depredai@®.8.3 of [Ba95]),
since generating extra network traffic during a time of heavy load violates fundamental stability
principles—but they do happen. I, tcpanaly inferred a total of 26 source quenches in 20 dif-
ferent traces. Almost all of these includbdl as sender (one time as receiver), suggesting that a
router near it still generates source quenches when stressed. Likepésaly inferred 65 source
guenches in 64 different, traces, almost all of which involvegbnnix or austr2 . Theconnix
source quenches are quite striking in their regularity: the time they arrived after the beginning of
the connection was always between 500 msec and 1 sec, with a median and mean of 750 msec. The
connections further exhibit a strikingly regular pattern of thenix TCP opening its congestion
window to about 2 bytes just before the source quench is sent, suggesting that it is single-handedly
stressing a particular nearby router.

We note that often the source quenches inferredcbgnaly are almost immediately
followed by retransmissions, indicating that the router sending them is indeed almost overwhelmed.

151

We can see this phenomenon at the end of Figure 11.1. We also notepthratly 's analysis

of possible source quenches is only heuristic. In particular, if a source quench is followed by a
retransmission timeout or a second source quench, tdpanaly ~ will not find an exact match

to a slow-start sequence following the first source quench, and does not infer that a source quench
occurred.

11.3.4 Inferring initial ssthresh

The final inference done hbigpanaly is determining whether the sending TCP has an
initial limit on ssthresh Recall from§ 9.2.6 that the TCP state varialdsthreshdetermines when
the TCP should switch from “slow start,” in which the congestion window begins at only 1 packet
but rapidly expands, to “congestion avoidance,” in which the window increases less quickly.

Usually, when a new TCP connection begins,s$shreshvariable is initialized to the
equivalent of “infinity,” allowing it to rapidly probe for the presence of arbitrarily high available
bandwidth. (Exceptions are Solaris, which initializsthresho 8 packets, and Linux, which sets
it to a single packet.) Sometimes, however, the TCP implementation first inspecistéscache
for information about previous connections to the same remote host. These implementations then
initialize ssthrestbased on the congestion conditions previously encountered.

tcpanaly needs to be able to detect when the inisisthreshis lower than normal, be-
cause otherwise it will erroneously conclude that the sending TCP is very slow in responding to the
acks that would normally—due to slow start—have opened up the congestion window beyond the
hidden initialssthresHimit. It does so in a fashion similar to inferring source quencliekl(3.3).
Any time the TCP appears to take too long to respond to a liberation, if the TCP has not already
undergone a retransmission (which would have altasttireshanyway) thentcpanaly looks
ahead to see whether the series of packets beyond the point of the apparent Iull is consistent with
congestion avoidance rather than slow start. If so, it infers that the connection had an atypical initial
value forssthresh

It turns out that only the experimental Vs TCPs exhibit non-default initiassthresh
values? Other TCPs may in the future exhibit different initedthrests, too, as a recent proposal
for improving TCP's start-up behavior includes setting the in#&threshbased on measurements
of the connection's first few packets [H096].

11.4 Receiver analysis

In this section we discuss hawpanaly analyzes a TCP implementationeeiverbe-
havior, namely when and how the implementation chooses to acknowledge the data it receives.
11.4.1 Ack obligations

Similar to the notion of data liberation§ (1.3.1), when analyzing receiver behavior
tcpanaly addresses vantage point probler§slQ.4) by keeping track of a list of pending ack

2The HP/UX implementations appeared to, also, but so rarely that we cannot determine whether a different, not yet
determined mechanism is leading to the early onset of congestion avoidance.

152

obligations Whenever a TCP receives data, it incurs some sort of obligation to generate an ack-
nowledgement in response to that data. The obligation mayptenal or mandatory as discussed
below.

tcpanaly has a default set of rules for the sorts of obligations created by different types
of packets. It then includes additional rules for specific implementations that do not follow the
default set, as discussedri1.6. In our discussion of different types of ack obligations below, we
also detaikcpanaly 's corresponding default rules.

Optional ack obligations

An optionalack obligation refers to data that the TCP may choose to acknowledge but can
also wait before acknowledging. This occurs when new data arrives that is in sequence. The TCP
standard states that a TCP may refrain from acknowledging such data in the hopes that additional
data may arrive and the acknowledgements combined, but for no longer than 50 mMs&8.Q
of [Br89]). Furthermore, a correct TCP implementation should always generate at least one ack-
nowledgement for every two packet's worth of new data receivadknowledgement strategy is
further discussed in [CI82].

tcpanaly considers the arrival of any new, in-sequence data as creating an optional ack
obligation, even if more than one such packet has arrived and not yet been ack'd. When an ack-
nowledgement is finally generated for the new data, we then inspect the number of packets acknow-
ledged to see whether the TCP has heeded the suggested limit of one ack for every two packets.
tcpanaly reports instances in which the limit is violated, but considers this different than a failure
to meet anandatoryack obligation, discussed in the next section.

Mandatory ack obligations

A mandatoryack obligation occurs when a packet arrives to which the TCP standard re-
quires the receiving TCP to respond with an acknowledgement. In the original TCP specification,
the receipt of a packet containing already-acknowledged data mandated that a new acknowledge-
ment be sent, since the unnecessary retransmission indicates that the sender may be confused as to
what data the receiver has successfully received. This was clarified.th2.21 of [Br89] to also
optionally include the receipt of packets whose data cannot yet be acknowledged due to a sequence
“hole” below the packet's sequence, in order to facilitate “fast retransmissjcdh2 (7).

Consequentlyfcpanaly considers the arrival of any out-of-sequence data as creating
a mandatory ack obligation. (The mandatory obligation is not to ack the out-of-sequence data, but
instead to generate a cumulative ack for all in-sequence data received, since TCP acknowledgements
always reflect the extent of cumulative, in-sequence data received,P2rl.) tcpanaly keeps
track of statistics concerning how often and how quickly an implementation responds to mandatory
obligations separately from those for optional obligations.

Gratuitous acks

If tcpanaly observes an ack being sent for which there was no obligation, and which
does not change the offered window or terminate the connection, then it flags thegrakugieus

3¢ 4.2.3.2 of [Brg9] expresses this as “SHOULD,” whii&.2.5 notes it as “MUST.”

153

Observing gratuitous acks plays a role analogous to observing window violations when analyzing
a sender's behavior: they can indicate confusion regardiragaly 's interpretation of the TCP's
behavior, or measurement errors in the packet trace.

11.4.2 Inferring checksum errors

As noted in§ 11.2,tcpanaly often cannot verify a packet's TCP checksum because
the packet filter only records the beginning of the packet and not its entire contents. Nevertheless,
checksum failures do indeed occur, and when theteplanaly needs to deduce their presence to
avoid misattributing the receiving TCP's behavior to something else.

There are several situations in whiglpanaly infers the possibility that a packet re-
ceived earlier had a checksum error (and thus the subsequent ack obligations derived from the trace
do not correctly reflect the situation as perceived by the receiving TCP):

1. If a retransmission is received for data already apparently received by the TCP, and which
should have previously been ack'd by the TCP but was not, and if all sequentially earlier data
has been ack'd;

2. ifinstead of acking increasing sequence numbers in response to a series of optional ack obli-
gations, the TCP generates duplicate acks as each new packet arrives, until the retransmission
called for by the duplicate acks arrives; or,

3. if an apparently unnecessary retransmitted packet actually results in an advance of the ack-
nowledged sequence number, indicating that the retransmission did indeed fill a sequence
hole. (This item is slightly different from the first item, because here we are considering data
that originally arrived above-sequence, and so could not be acknowledged directly at that
time.)

More precisely, whatcpanaly really infers is that the TCP acted as though it ignored an arriving
packet. We then assume that the packet was ignored because it failed its checksum test. We return
to this point in more detail later.

tcpanaly doesnot attempt to infer checksum errors in traces recorded by packet filters
that it has determined either dropp&dLQ.3.1) or resequencegl 10.3.6) packets, since it is to diffi-
cult with these traces to disambiguate between a genuine checksum failure and seemingly confusing
TCP behavior because the trace is inaccurate.

Figure 11.2 shows a sequence plot reflecting two checksum errors. The plot comes from
a trace recorded at the receiving end of a connection. Consequently, most of the points showing
acknowledgements lie directly on top of the data packets being acknowledged and thus do not show
up visually. (This is fine for the purposes of this example.) Up through fime 20.0 the data
all arrives in sequence, but starting at tiffie= 19.5 the receiving TCP generates duplicate acks
for sequence 74,241 rather than advancing the acknowledgements. This continues until data packet
74,241 is retransmitted &t = 20.2. The retransmission leads to the TCP immediately acking all
of the outstanding data, fully consistent with a single checksum error occurring at the 74,241 data
packet. Note that, after the retransmission, the pattern repeats &t t#0.5. Duplicate acks for
sequence 78,849 indicate that the 79,361 packet was likewise discarded due to a checksum error.

Figure 11.3 shows a sequence plot of a considerably different instance of checksum errors.
Instead of as in Figure 11.2, where two isolated packets were corrupted, here an entire burst of

Sequence #

Figure 11.2: Receiver sequence plot showing two data checksum errors

Sequence #

76000 78000 80000

74000

30000 35000 40000

25000

Figure 11.3: Sequence plot showing a burst of checksum errors

] e e e
-
T T T T T
19.0 19.5 20.0 20.5 21.0
Time

Time

154

155

9 packets were all discarded by the receiving TCP. We can tell that the TCP did not accept the nine
packets from 26,281 to 37,961 At= 3.7to T = 5.2 sec, because as the data is retransmitted the
TCP only acknowledges the newly retransmitted packets—they are not shown filling any sequence
“holes” as would be the case if some of the 9 packets had been successfully received.

We further discuss checksum bursts such as this one, as well as detailing the prevalence of
checksum errors in our datasetsgibh3.3. As noted above, whijpanaly really infers argackets
ignored by the receivewhich we therassumeavere ignored due to checksum errors. It is possible
that the packets were ignored for a different reason, such as the kernel lacking sufficient buffers to
keep them until the receiving TCP could process thens. 18.3 we investigate this possibility and
find that almost all of the errors appear indeed due to packet corruption.

11.5 Sender behavior of different TCP implementations

In this section we look at the variations in how the different TCP implementations listed
in Table XV act when sending data. Our findings in this section and the next are almost all based
on the modifications we had to makettpanaly in order for it to successfully match the traces
of the TCP's behavior. A few other behaviors were discovered by examining source code for the
implementations, which we had for Linux 1.0, Solaris 2.5; ¥ad V3, as well as the invaluable
source code analysis of Net/3 in [WS95]. In addition§ .7 we present brief findings of behavior
observed for three other implementations; these were determined by manually studying sequence
plots, ascpanaly does not have the behavior of these implementations coded into it.

TCP behavior is very complex, and we do not attempt to exhaustively examine it. Our
main interest is iperformanceandcongestion behaviordoes the TCP implementation use the net-
work as effectively as it can, and does it correctly adapt to congestion by decreasing its transmission
rate, as is required for global Internet stability? There is a natural tension between these two goals,
and a great deal of research has gone into tuning TCP so it balances high performance with stable
behavior in the presence of congestion. One of the basic questions we would like to answer in this
section is how successfully this research has in fact been incorporated into TCP implementations
deployed in the Internet. The answer turns out to be “quite mixed.”

We proceed as follows. First, we give an overview of previous work in analyzing the
behavior of TCP implementations. The work focuses almost entirely on sender behavior. Next,
we present theenderbehavior of the implementations in our study, beginning with two “generic”
implementations, “Tahoe” and “Reno,” from which almost all of the implementations derive their
behavior. We then discuss each of the different implementations in Table XV. After analyzing
sending behavior, we turn iy 11.6 toreceiver behavior, namely the policy by which the TCP
sends acks. Finally, we look i611.7 at the behavior of some additional TCP implementations:
Windows 95, NT, and Trumpet/Winsock. This last investigation was motivated by our finding that
the independently written TCP implementations in our study (Linux and Solaris) suffered from
serious congestion and performance problems. We were interested to see whether other non-Reno-
derived TCP implementations likewise have these sorts of problems. The answer turns out to be:
yes!

156

11.5.1 Previous studies of TCP implementations

Several researchers have previously studied and characterized the behavior of TCP imple-
mentations, using different techniques from ours.

Comer and Lin

Comer and Lin studied TCP behavior using a technique teractide probing[CL94].
Active probing consists of treating a TCP implementation as a black box and observing how it
reacts to external stimuli, such as a loss of connectivity to the other endpoint, or a failure by the
other endpoint to consume data sent by the TCP under study. They examined five implementa-
tions, IRIX 5.1.1, HP-UX 9.0, SunOS 4.0.3, SunOS 4.1.4, and Solaris 2.1, to determine their initial
retransmission timeout values, “keep-alive” strategies, and zero-window probing techniques. The
authors' emphasis was on correctness in terms of the TCP standards, and they found several imple-
mentation flaws.

Brakmo and Peterson

Brakmo and Peterson analyzed performance problems they found in TCP Lite, a widely-
used successor to TCP Reno (and the basis for some of the implementations in our study) [BP95b].
TCP Lite is also known as “Net/3,” which is the term we will use for consistency with other studies
we discuss.

Their approach was to simulate Net/3's behavior using a simulator based oikéneel
[HP91]. Thex-kernel is highly configurable, so that the simulations actually directly executed the
Net/3 code, an important consideration for assuring accuracy. They found:

1. An error in the “header prediction” code. Net/3 uses this code to make an early decision
whether an incoming packet is what would have normally been expected: either an in-
sequence, non-retransmitted data packet, or an ack for new data that does not change the
size of the offered window [CJRS89]. If the packet matches the expectation, then it can
be processed succinctly; for example, without all the computations necessary to update the
congestion window.

The error they found was that the code considered an incoming acknowledgement as expected
even if the congestion window had been inflated due to “fast recove8:/2(7). Thus, if after

fast recovery the acknowledgements all passed the header prediction test, then the window
was never deflated.

Fixing this problem is a one-line addition to the prediction code.

2. Inaccuracies computing the retransmission timeout (RTO) due to details in some of the integer
arithmetic used to approximate the true real-numbered calculations. The authors proposed
altering the scaling used in the integer arithmetic to remedy the inaccuracy.

3. Confusion between whether the “maximum segment size” variable used to decide when to
send new acknowledgements and how to update the congestion window should include the
size of TCP header options or not.

157

4. Very bursty behavior when the offered window advances a large amount (an incoming ack for
a large amount of new data). When this occurs, Net/3 (and, in our experience, all other TCPs)
immediately sends as many packets as the new window allows. The authors include a small
coding addition that would reduce such bursts to 2 or 3 packets at a time.

5. A “fencepost” error in determining whether the congestion window was inflated due to fast
recovery, and later needs deflating. The fix is replacingtast with a> test.

Of these problems, we found that a number of the implementations in our study exhibited
all of them, except we did not examine the RTO's used by the implementations and thus did not
have an opportunity to observe the second problem.

Stevens

In [St96], Stevens devotes a chapter to an analysis of the behavior of a large number of
TCP connections made to a World Wide Web server running Net/3 TCP. The analysis was based on
a 24 houncpdump packet trace of 147,103 attempts by remote sites to connect to the Web server.
He characterized the range of options offered by the remote TCPs, finding tremendous variation
(including many obviously incorrect values); the rate at which connection attempts and re-attempts
arrived; the variation in round trip time between the server and the remote clients; and the pending-
connection load on the server. In addition, he analyzed three Net/3 implementation bugs, one in
which two different TCP connection states become confused (“SYN received” and “performing
keep-alive probe”), one in which the TCP falils to time out zero window probes (and thus over time
devotes more and more resources to zero window probes for connections that have permanently lost
connectivity), and one in which the TCP can skip the first cycle of “slow start” if it happens to have
data ready to send upon connection establishment.

He further found that almost 10% of all SYN packets were retransmitted; some remote
TCPs sent “storms” of up to 30 SYNs/sec, all requesting the same connection; and some remote
TCPs did not correctly back off their connection-establishment retry timer, or reset it after 4 at-
tempts.

Dawson, Jahanian and Mitton

In recent work, Dawson, Jahanian and Mitton studied six TCP implementations using a
“software fault injection” tool they developed [DJM97]. The implementations were: SunOS 4.1.3,
AIX 3.2.3, NeXT (Mach 2.5), 0OS/2, Windows 95, and Solaris 2.3. The first and last were also
present in our study; the remainder were not.

Their basic approach is a refinement of Comer and Lin's “active probind’1(5.1).

They use ther-kernel to interpose a general purpose packet manipulation program between the
TCP implementation and the actual network, so they can arbitrarily alter, delay, reorder, replicate,
or discard any packets the TCP sends or receives.

The main focus was on timer management. They found that retransmission sequences
vary a great deal; that some TCPs do not correctly terminate the connection with a RST packet if
the maximum retransmission count is reached; and that Solaris 2.3 uses a much lower bound for its
initial RTO, around 300 msec, than the other implementations, and also takes much longer to adapt
the RTO to higher, measured RTTs. We further discuss both of these latter probleiis. 5110.

158

They also studied keep-alive behavior. “Keep-alives” are an optional TCP mechanism for
probing idle connections to ensure that the network path still provides connectivity between the two
endpoints. The TCP standard specifies that, if a TCP supports keep-alives, then, by default, the idle
interval must be at least two hours before the TCP begins probing the path. However, the authors of
[DIM97] found that OS/2 begins keep-alive after only 800 sec. In addition, Windows 95 only makes
four keep-alive probes, all sent one second apart. If none of these elicit replies, then it abandons
the connection. This latter behavior will make Windows 95 connections quite brittle in the face of
mid-sized connectivity outages.

Finally, they found that Solaris 2.5.1 (not otherwise part of their study) incorrectly imple-
ments Karn's algorithm, which is used to disambiguate round-trip time measurements [KP87].

11.5.2 Generic Tahoe behavior

The goal of our TCP behavior analysis is to delve considerably deeper into the perfor-
mance and congestion behavior of the different TCPs in our study than done previously. We begin
by discussing the generic TCP “Tahoe” implementation td@tnaly uses as a building block for
describing the behavior of all of the TCP implementations except Linux 1.0.

Our Tahoe implementation reflects the behavior of the Tahoe version of BSD TCP, re-
leased in 1988 [St96, p.27]. It includs®w start(§ 9.2.4),congestion avoidandg 9.2.6), andast
retransmissiorn(§ 9.2.7), but nofast recovery(§ 9.2.7). It updates the congestion window upon the
receipt of any ack for new data. It setsthresho half the effective window upon a retransmission,
but for fast-retransmit it rounds the result down to a multiple of the Maximum Segment Size (MSS;
§ 9.2.2), while for a timeout it does not. No doubt this inconsistency is due to the fast retransmit
code having been added later than the original timeout code. In both sai@gshis never set
lower than2-MSS.

Tahoe updates the congestion windomndusing congestion avoidanceciivndis strictly
larger tharssthresh The increase is:

MSS?
AW = {CwndJ : (11.1)

without any additional constant term (Egqn 11.2 below).

11.5.3 Generic Reno behavior

The “Reno” version of BSD TCP was released in 1990. Our generic Reno implementation
does not attempt to precisely describe that release, but instead to provide a common base from which
we can express as variants the numerous Reno-derived implementations in our study. Reno differs
from Tahoe as follows:

1. Itimplementdast recovery(§ 9.2.7), in which following a fast retransmit it inflates the con-
gestion windowcwnd and will send additional packets if enough additional duplicate acks
arrive.

2. It consequently suffers from the “header prediction” and “fencepost” errors when deflating
the window, as previously described in [BP95p1(1.5.1).

159

3. It roundsssthreshdown to a multiple of MSS for timeout retransmissions as well as fast-
retransmits.

4. It includes aradditive constantvhen increasing the window during congestion avoidance.
That is, instead of using Tahoe's increase as given in Eqn 11.1, it uses:

cwnd 8 (11.2)

MSS MSS
v - US| M)
The extra term MSS/8 leads to a super-linear increase of the congestion window during con-
gestion avoidance. Subsequent to its addition to Reno, this extra term has come to be viewed

as too aggressive ([BP95b], credited to S. Floyd in footnote 6), but its presence is widespread.

11.5.4 BSDITCP

We had several BSDI 1.1 and 2.0 sites in our study, as well as one site running an alpha
release of 2.1, which we term 21

BSDI 1.1 appears identical to our generic Reno implementation. We observed two
changes with BSDI 2.0. The first is that it omits the extra congestion avoidance increment (i.e.,
it uses Eqn 11.1 rather than Egn 11.2). The second is that it computes the MSS governing how
much data it should send in each TCP/IP packet in a slightly complicated fashion, as follows.

When initiating a connection, BSDI 2.0 includes the “window scaling” and “timestamp”
options in its initial SYN packet. If the remote peer agrees to these options in its SYN-ack, then
each subsequent packet sent by BSDI 2.0 includes an accompanying timestamp in its header. With
padding, this option requires an additional 12 bytes of space in the header. If, for example, the MSS
is 512 bytes, as is often the case, then the TCP should send 512 bytes of data in each packet along
with 52 bytes of header, the usual 40 bytes of TCP/IP header plus the timestamp option. Instead,
it uses an MSS of 500 bytes. The fundamental problenthat the implementation is overloading
the notion of “MSS,” trying to make it serve as both the maximum amouwlatd to send to the
receiver in one packet, and also as the largest total TCP/IP packet size that can be sent along the
Internet path without incurring fragmentation. Yet, the presence of options means the relationship
between these two is more complex than simply adding in a constant header size.

To further complicate matters, BSDI 2.0 uses the unadjusted MSS (i.e., its value before
deducting 12 bytes for options) in its congestion window computations.

None of these MSS fine points has much impact at all on BSDI 2.0's performance or
congestion behavior. But they do subtly alter the conditions under which the TCP will send packets,
and thus solid analysis of the TCP's behavior must take them into account.

BSDI 2.1x behaves the same as BSDI 2.0 except for two differences. The first is that it
uses the adjusted MSS for its congestion window computations (the MSS still has 12 bytes deducted
for the header options). The second is that, if the remote TCP does not include an MSS option in its
SYN-ack reply to the BSDI TCP's initial SYN packet, then the congestion windovesthdeshare
initialized to a huge valueinstead of MSS bytes. This bug occurs because of an assumption in the
Net/3 code that SYN-acks will always include MSS options and that therefore receiving a SYN-ack
is the proper time to initializewndandssthresh

“Pointed out to me by Matt Mathis.
SSpecifically:2%° - 21, See [WS95, p.835].

160

25900 30900

20900

Sequence #
15900

10?00

50‘00

o

9

1
(O]
®

Figure 11.4: Sequence plot showing the Net/3 uninitializekd bug

Figure 11.4 dramatically illustrates the potential burstiness created by this bug. Here,
when the initial ack arrives offering a window of 16,384 bytes (and with no MSS option), the BSDI
TCP instantly sends all the full-sized (536 bytes, in this case) packets that fit within the window, a
total of 30 packets. The next ack (which was sent because it updates the advertised window) offers
a larger window (cf§ 9.3), and again the TCP floods the network with packets, taking advantage
of the increased window. A third ack arrives but does not advance the window, so nothing further is

sent.
Ironically, even the first packet of the storm was lost (as was its retransmission), as can

be seen by the lack of progress in the acknowledgements. All told, 14 of the 61 packets sent in the
first two spikes were lost (any other connections sharing the path between the two TCPs also surely

suffered).
Fortunately, it is relatively rare that this bug manifests itself so dramatically. It requires

interaction between the BSDI TCP and a remote TCP that both does not send MSS options in its
SYN-ack, and offers a large window. TCPs that do not offer MSS options tend to be of quite old

vintage, and these tend to offer small receiver windows.
The bug does not always manifest itself under the conditions given above. We suspect

that the times it does not are when the BSDI TCP finds initrahd andssthreshvalues in its route

cache, and thus begins the new connection with tamer values.
This bug nicely illustrates the fundamental tension between TCP performance and con-

gestion behavior. Fixing it lessens the TCP's performance (blasting out 30 packets at a time can
work extremely well in making sure one utilizes all available bandwidth), but also makes the TCP

much more “congestion friendly.”
Finally, we note that the IRIX 5.2 TCP implementation also exhibits this bug, as does

Net/3. Most likely both BSDI 2.& and IRIX 5.2 “inherited” the bug as they incorporated enhance-

ments and changes from Net/3.

161

45000 50000 55000
\ \ \
[]

Sequence #

40000
|
1]

35000
\

18.0 18.5 19.0 19.5 20.0

Figure 11.5: Sequence plot showing the HP/UX congestion window advance with duplicate acks

11.5.5 Digital OSF/1 TCP

Digital's OSF/1 TCP implementation appears virtually identical to our generic Reno
implementation. The only difference we observed was that it does not always manifest the “header
prediction” bug § 11.5.1). We could not find a pattern to when it would and when it would not.
For analyzing a given tracégpanaly accommodates its inability to know whether the TCP will
exhibit the bug by looking ahead to determine whether in fact the TCP deflated the congestion
window.

We did not observe any differences between Digital OSF/1 versions 1.3a, 2.0, 3.0, and 3.2.

11.5.6 HP/UXTCP

HP/UX 9.05 TCP is very similar to our generic Reno implementation. The only dif-
ferences we observed were two behaviors that rarely have an opportunity to manifest themselves.
First, HP/UX 9.05 does not clear its “dup-ack” countgry(2.7) when a timeout occurs, so if it
receives additional duplicate acknowledgements after a timeout, these can lead to fast retransmit
or the sending of additional fast recovery packets. Second, such duplicate acks also advance the
congestion window, providing that the timeout was for a segment previously retransmitted using
fast retransmission.

We illustrate this latter behavior in Figure 11.5, since it is somewhat unusual. The stream
of acks along the bottom of the figure are all duplicates. The packet they call for has already been
retransmitted, but was dropped. The data packets sent afoend8.8 with sequence numbers near
55,000 are fast recovery packets, sent out by inflatingd Just beforél” = 19.0, the previously-
retransmitted packet times out and is retransmitted again. As more dups arrive (from an earlier huge
flight of packets), each liberates another retransmission via fast recovery. This is not ideal behavior:
the packets being retransmitted may all have already arrived at the receiver. The TCP should instead

162

either send additionalewdata, as it was doing prior to the timeout (and which is the intent behind
fast recovery, thwarted by the timeout having resend), or simply wait one RTT to see what data
the peer has now received.

HP/UX 10.00 behaves identically to HP/UX 9.05 except it advances the congestion win-
dow (per Figure 11.5) for dup acks received after any timeout, not just one of a packet previously
transmitted using fast-retransmission; and it uses the original MSS it offered to its peer when com-
puting congestion window updates, rather than the final MSS negotiated during the connection
setup.

11.5.7 IRIXTCP

IRIX 4.0 appears identical to our generic Reno implementation except it does not manifest
the header prediction bug (1.5.1). IRIX 5.1 does, though not always, the same as Digital OSF/1
TCP § 11.5.5). IRIX 5.2 is identical to IRIX 5.1 except it also exhibits the uninitializadid bug
shown in Figure 11.4. IRIX 5.3 is identical to IRIX 5.2 except that, if the remote peer does not
include an MSS option in its SYN-ack, then IRIX 5.3 initializes the congestion window to the value
it offered, even if this is larger than the final MSS it used.

11.5.8 Linux TCP

The Linux 1.0 TCP implementation was written independently from any other. Conse-
quently, it is not surprising that it differs in many ways from the others in our study, including some
ways that are particularly significant.

The most significant is itbroken retransmission behavioFirst, often when it decides
to retransmit, it re-sends every unacknowledged packet in a single burst. Second, it decides to
retransmit much too early, leading it to retransmit packets for which acks are already heading back,
or, even worse, which are themselves still in flight towards the recéidacobson terms this sort
of behavior “the network equivalent of pouring gasoline on a fire” [Ja88], because it unnecessarily
consumes network resources precisely when they are scarce. Consequently, it cacdegdgtion
collapse in which the network load stays extremely high but throughput is reduced to close to zero
[Na84].

Figure 11.6 illustrates Linux 1.0's behavior. At ab@u 85 an acknowledgement arrives
advancing the window by three packets, which the TCP immediately sends.=A86, however,
two duplicate acks arrive, the first of which spurs the TCP to retransmit every packet it has in flight.
Shortly after, an ack arrives for sequence 77,825; this correctly liberates only new data, as does this
ack for 78,849 that follows momentarily. None of the new data arrives successfully—the network
is already clogged with the unnecessary retransmissions.

At T = 87.8, sequence 79,361 times out and is retransmitted. This happens again at
T = 90.6 (the timeout is not fully doubling as it backs off, though in other cases it doeg).-A092
dup acks for 78,849 arrive. These were sent within 400 msec of the ack receiled &6.4 but
took more than 5 seconds to arrive, indicating huge delays in the network. The TCP appears to

5The offered MSS can differ from the final MSS used because, if the remote peer does not include an MSS option,
then the TCP must use an MSS of nho more than 536 b§té2(2.6 of [Br89]).

"These retransmissions usually occur shortly after receiving an ack, suggesting that they are not timeout retransmis-
sions per se, but are stimulated instead by the arrival of the ack.

Sequence #

S
S - -
1>
- o

=
S
S -
o

- - o
[=3 = =
=
o -
=
S
>
o
~ -

o =

T T T T
86 88 Q0 o2

163

Figure 11.6: Sequence plot showing broken Linux 1.0 retransmission behavior

Sequence #

805‘00 81?00 81?00 82?00 82?00 83?00

80900

Time

Figure 11.7: Enlargement of righthand side of previous figure

164

ignore their arrival, however (so would a Reno TCP), but when the twice-retransmitted data packet
is ack'd a little while later, again all data in flight is retransmitted, and again 1.3 sec later, and again
1.1 sec later. Worse, not only is all of this data being retransmitted at about 1 sec intervals: if we
blow up the activity (Figure 11.7), we see the packetsadge being retransmitted on much finer
time scales!

All told, this connection sent 317 packets, 117 of them retransmissions. 20% of the
packets were dropped by the network. Of the retransmitted packets that reached the other end,
60% were superfluous, since the data had already arrived safely in an earlier packet. How hard this
connection hammered others sharing the network path, we can only guess! But it is clear that, if
Linux 1.0 were ubiquitous, its retransmission behavior would bring the Internet to its knees.

The excessive retransmissions clearly follow shortly after the TCP receives an ack, so
tcpanaly models them as a type of “fast retransmission.” We have been unable to determine
exactly which incoming acks will trigger these retransmissions, though they appear to occur only
for duplicate acks or acks received during a retransmission sequence. Consedenthly
simply allows that either of these might potentially liberate the entire window for retransmission.

The Linux TCP maintainers are aware of this problem and report that it has since been
fixed.

Linux 1.0 differs from the other implementations in our study in several other ways:

1. It does not implement fast retransmission or fast recovery.

2. ltinitializesssthresho a single packet (MSS), which makes it slow to initially open its win-
dow. This behavior is beneficial from the perspective of network stability, as it means that
Linux 1.0 TCP connections begin in a fundamentally conservative fashion.

3. The Linux 1.0 code has logic in it to prevent more than 2,048 bytes from ever being in flight,
quite conservative behavior. However, a typenders it ineffective.

4. 1t does not roundsthrestdown to a multiple of MSS for any form of retransmission.
5. Its test for slow-start iswnd < ssthreshrather tharcwnd < ssthresh

6. In congestion avoidance, it counts the number of acks received, and, when they@axoded
divided by MSS, therwndis advanced by MSS and the counter reset to zero.

7. It has no minimum value on how far it can @agthresh

8. It acks every packet receive¢i11.6).

11.5.9 NetBSD TCP

As far as we could determine, NetBSD 1.0 TCP is identical to our generic Reno imple-
mentation.

8We have observed Linux 1.0 retransmitting a packet it sent less than 2 msec before. The first transmission was due
to a newly arrived ack advancing the window, and the second was part of a retransmission burst apparently triggered by
the receipt of the ack.

9The limit is specified a2048 when what is being tested against it is the numbeguauketsin flight.

165

10900

8090

60‘00

Sequence #

4000

20‘00

0
\

Figure 11.8: Sequence plot showing broken Solaris 2.3/2.4 retransmission behavior, RTT =
680 msec

11.5.10 Solaris TCP

Along with Linux, Solaris TCP is the other independent TCP implementation in our study.
tcpanaly knows about two versions, 2.3 and 2.4, which differ only in minor ways.

Like Linux, the most striking feature of Solaris 2.3 and 2.4 TCP ifitken retransmis-
sion behavior Dawson et al. identified that Solaris uses an atypically low initial value of about
300 msec for its retransmission timeout (RTO). This value, plus difficulties the timer has with
adapting to higher RTTs, leads to the broken retransmission behavior. For a connection with a
longer RTT, the TCP is guaranteed to retransmit its first packet, whether needed or not. Such an
unnecessary retransmission would be only a minor problem if the timer then adapted to the RTT
and raised the RTO, but it fails to do so, leading to connections riddled with premature, unnecessary
retransmissions.

Figure 11.8 shows an example of the retransmission problem in action. The sestder is
in California, and the receiver isce, in the Netherlands. The round-trip time is about 680 msec,
above that of 200 msec for the initial Solaris retransmit timer (but not pathologically large). The
Solaris TCP sends almost as many retransmissions as new packeisdgtd packets whatsoever
were dropped! Each retransmission was completely unnecessary. Furthermore, so many retransmis-
sions are generated that it is difficult to find unambiguous RTT timings, in order to adapt the timer.
While the RTO does indeed double on multiple timeouts, it is restored to its erroneously small value
immediately upon an acknowledgement for a retransmitted packet, so it never has much opportunity
to adapt.

As the path's RTT increases, the problem only gets worse. Figure 11.9 shows a plot for
an N5 connection fromwvustl to oce. The smallest RTT in the trace is about 2.6 sec, and it got
as high as 9.9 sec. The beginning of the connection is simply disastrous, with the first data packet

166

40‘00

30‘00

Sequence #
20‘00

- mo oo o o

1000

0
\

Figure 11.9: Sequence plot showing broken Solaris 2.3/2.4 retransmission behavior, RTT = 2.6 sec

being retransmitted 5 times (the first retransmission occurs closely enough to the original packet
that it is hard to distinguish in the plot), the second data packet is retransmitted 6 times, the third
4 times, the fourth 4 times (not all shown), and so Nieneof the packets or their retransmissions

were dropped! All of the retransmissions were needless. Worse yet, because they were needless,
they elicited dup acks from the receiver, which eventually reached the level sufficient to trigger fast
retransmission(9.2.7), generatinfurther needless retransmissions!

The connection eventually ran smoother, as the timer managed to adapt, but was still
plagued with needless retransmissions as the RTT grew larger and the timer sometimes failed to
track it quickly enough.

Thus, Solaris TCP can effectively increase the load it presents to any high-latency Internet
path by a factor of two or even quite a bit more. Unfortunately, many of the most heavily loaded
Internet paths—those linking different continents via trans-oceanic or satellite links—have exactly
this property. It would be interesting to learn what proportion of the traffic on a very heavily utilized
link (such as the U.K.—U.S. trans-Atlantic cable) is due to completely unnecessary retransmissions.

The Solaris TCP maintainers are aware of this problem and have issued a patch to fix it.

Solaris TCP differs from the other implementations in our study in a number of additional
ways:

1. Itinitializesssthresho 8-MSS. From the perspective of network stability, this is nicely con-
servative, but from the perspective of performance, it impedes fast transfers unless they are
quite lengthy.

2. Sometimes when it receives an ack, it retransmits the packet just after the ack rather than the
packet newly liberated by the advance of the window. These retransmissions do not affect the
congestion window, nor do they alter the notion of what new data should be sent next time the
window advances. Figure 11.10 shows an exampld’ At 10.3, the Solaris TCP retransmits

167

Sequence #
45000
|

40000
\
1
0

35000
\

9.5 10.0 10.5 11.0 11.5

Time

Figure 11.10: Solaris 2.4 retransmitting without cuttavgnd

sequence 37,125, and then just affer 10.5 it retransmits 38,577. Yet, when an ack arrives
for (the original transmission of) 38,577, we see that the congestion window was not reduced
by the retransmissions, but remains at 5 packets.

3. Its duplicate-ack counter survives timeouts, which can lead to a recently retransmitted-via-
timeout packet being retransmitted again via fast retransmission.

4. Although there is code in the implementation for fast recovery, it is only exercised under
rare circumstances. The problem is that the Solaris implementation is careful to advance the
congestion window only upon receiving an ack for new data (see next item). This means that
the dup acks that are supposed to keep inflating the window in order to liberate additional
packets do not actually increase the window, since they do not acknowledge any new data.
The rare circumstance in which the TCP can send a single fast recovery packet is if it has
already accumulated during congestion avoidance more “excess” bytes than are required to
advancecwndgiven its current value.

5. During congestion avoidance, the TCP keeps track of exactly how many bytes of data have
been acknowledged since the last advanaind Whenever this value exceedand cwnd
is increased by the MSS. (Like the Linux congestion avoidance increment strategy, this is
closer in spirit to the scheme outlined in [Ja88] than the Tahoe approach given by Eqn 11.1.)

6. Its test for whether it is in a slow-start phasewnd < ssthrestrather tharcwnd < ssthresh

7. Upon receiving an ICMP Source Quenghi (.3.3), it setssthreshio cwnd2 prior to entering
slow start.

8. When cuttingssthreshit does not round it down to a multiple of MSS.

168

The only differences between Solaris 2.3 and 2.4 that we observed are in their acking

policies. Se¢ 11.6 for discussion.

11.5.11 SunOS TCP

We had many SunOS 4.1.3 and 4.1.4 sites in our study. We did not observe any differences

between the two releases.

1.

SunOS 4.1 appears to have been derived from BSD Tahoe, with the following differences:

If the MSS offered by the remote TCP peer is larger than that offered by the SunOS TCP,
then it uses the larger value to initializesnd though it still uses its own offered value for all
subsequentwndcalculations.

. Ifit receives a series of acknowledgements for the same sequence number, if any of the acks

is awindow recision(that is, advertises a smaller window than did the previously-received
acks), it simply ignores the ack. Other TCPs consider the window-recision ack as resetting
the duplicate ack counter, delaying the possible onset of fast retransmission.

We note that in our study the only window recisions we observed were due to packet reorder-
ing. No TCP ever originated an ack that rescinded a previously-offered window.

. It will only enter fast retransmission for a packet that was not previously retransmitted using

fast retransmission (circumstances under which this behavior manifests itself are rare).

. Upon retransmission, when cuttisgthresht does not round it down to a multiple of MSS,

regardless of the type of retransmission.

11.5.12 VJTCP

Two sites in our study ran experimental TCP implementations developed by Van

Jacobsonlbl during A ran a version we term \(J(in A it ran SunOS), and in both/; and
N3 Ibli - ran a version we term \4J Though it differs from the numbering, Y the earlier of the
two versions. It behaves the same as our generic Reno implementation except:

1.

it uses an additive constant of 4 bytes when updatimgd during congestion avoidance, as
opposed to MSS/8 (Egn 11.2);

. it does not exhibit the “fencepost” error when deflating the windpd(5.1);

. it does not cussthreshif a timeout retransmission occurs during a fast retransmission se-

quence,

. it has a bug that leads to it always cuttisgthreshdown to two segments upon any other

timeout.

VJ; behaves like Vil except it does not exhibit the header-prediction Bu$X(.5.1) and

it uses Egn 11.1 to update the congestion window during congestion avoidance (no additive incre-
ment).

169

11.6 Receiver behavior of different TCP implementations

In this section we examine variations in how the different implementations behave as re-
ceivers of data: the policies used to acknowledge newly arrived data and the effects of these on
performance and congestion. We begin with a discussion of how different implementations ac-
knowledge in-sequence data, the “normal” case of a connection proceeding smadthly.q).

We find a number of different “policies” for choosing exactly when to generate acknowledgements.
Some of these have surprisingly negative performance problems. We then look at how implementa-
tions acknowledge out-of-sequence data: packets coming above or below a sequericelh6l2)

Finally, after characterizing the generation of gratuitous agksl(6.3), we finish with an analysis

of response delaysnamely, how long it takes a TCP receiver to generate its acknowledgements
(§ 11.6.4). Variations in response times can introduce a significaise termfor senders that at-
tempt to measure round-trip times (RTTs) to high resolution. One of our goals is to assess the
viability of sender-only timing schemes.

11.6.1 Acking in-sequence data

When a TCP receives in-sequence data, it needs to eventually generate an acknowledge-
ment for the data, so the sender knows it has been successfully received and can release the resources
allocated for retaining the data in case it required retransmission. There is a basic tension between
acknowledging data quickly versus waiting to see if more in-sequence data arrives so that a single
ack can take care of acknowledging multiple data packefhe more acks the receiver generates,
the more network resources its feedback stream consumes; but also the more likely in the face of
packet loss that enough acks will reach the sender that it will not retransmit unnecessarily, and the
smoother the resulting stream of transmitted packets, since the window moves in numerous, small
increments rather than rare, large increments.

TCPs need to assure that they acknowledge data quickly enough that the sender does not
erroneously conclude a packet was lost and retransmit it. The TCP standard requires that acknowl-
edgements be delayed no more than 500 msec, and either recommends or requR2exs 4 and
§ 4.2.5 of [Br89]) that a TCP acknowledge upon receiving the equivalent of two full-sized packets,
that is,2-MSS bytes § 9.2.2).

As discussed if§ 11.4,tcpanaly associates the acks generated by a TCP with the data
packet that prompted the TCP to send the ack, allowing determination of the acknowledgement
delay. It also classifies acks into three categories, those for less than two full-sized packets (“delayed
acks”), those for two full-sized packets (“normal acks”), and those for more than two full-sized
packets (“stretch acks”). We expect: delayed acks to incur considerable delay as the TCP waits
hoping for more data to acknowledge; normal acks to be commonplace in any connection with
significant data flow, and to take little time to generate; and stretch acks to be rare. We now treat
each in turn.

Delayed acks

In both /7 and N5, it was exceedingly rare to observe a delayed ack that took longer than
500 msec, on the order of one trace in 1,000.

190r to see if the ack can piggyback on a data packet or window update being sent back to the sender.

170

All of the BSD- (i.e., Tahoe- and Reno-) derived implementations in Table XV use a
delayed-ack timer of 200 msec, meaning that, except for truly unusual conditions (presumably when
the host was very busy doing something else), they generate delayed acks within 200 msec of
receiving the corresponding packet. These delays are furthermore evenly distributed over the range
0 msec to 200 msec, a consequence of the implementations using a 200 msec “heartbeat” timer.
Every time the timer expires, they check to see whether new, unacknowledged data has arrived. If
so, they generate an ack. The fact that the new data may have arrived at any point since the last
heartbeat leads to the even distribution of the delays.

Linux 1.0 always immediately acknowledges newly arrived in-sequence data, so, by
tcpanaly 's definition,all of its acks are delayed acks. It usually generates the ack within 1 msec.

Solaris TCP differs from the others in that it uses a 50 nirstecval timer, scheduled upon
the arrival of each packet, instead of a 200 mseartbeattimer. As a result, the delay is generally
very close to 50 msec (slightly lower, perhaps because the timer is scheduled before the packet filter
timestamps the arriving data packet; £f.0.3.6), though it is a configurable parameter. One might
think that a shorter delay would lead to better performance because the sender waits less before
receiving the ack. We note, however, that, for certain link speeds, a low value such as 50 msec
guarantees that every ack for in-sequence data will be a delayed ack, which is instead counter-
productive because the sender winds up waitovgger for acks in terms of the delay required
to acknowledge two packets. Suppose the delay timer is set $econds, the maximum data
transfer rate the Internet path can supportligytes/sec and the data packets haveilstages. Then
whenever:

t <b/p,

it is impossible that two full-sized data packets will arrive before the delay timer eXpir€an-
sequently, the sender will wait an extraeconds for the acknowledgements of every two pack-
ets. Ift = 50 msec and = 512 bytes, then ifp < 10 KB/sec, the delay will be sub-optimal,
leading to acking of every packet even if they arrive as fast as possible. This range includes the
still-quite-common rates of 56 Kbit/sec and 64 Kbit/sec. If, howewet, 200 msec, then only for

p < 2.5 KB/sec is the delay sub-optimal. This rate includes some of today's modems, but no other
commonly used link technologies.

Finally, we temper this discussion by noting that the deficiency is fairly minor. Yes, a low
delay timer results in extra ack traffic, and somewhat elevated RTTs. However, acks are small, so
the additional traffic load is likewise small, and the additional latency is bounded by the small timer
setting to an often-imperceptible value.

Normal acks

We term an ack “normal” if it is for two full-sized packets. Since our study concerns
unidirectional bulk transfer, we expect that most of the time the receiving TCP will have plenty of
opportunity to generate normal acks.

BSD-derived TCPs dmot simply generate acknowledgements every time they receive
two in-sequence, full-sized packets. Instead, they generate the acknowledgements when the receiv-
ing application procestiasconsumedhat much data, even if the data it consumed was actually
delivered in earlier packets. This means that normal acks are not always promptly generated. We

well, almost impossible. Segl6.3.2.

171

=
p=1
S
p=1 _g
= =
£
f= -
= =
S
p==3 -
o =
= = [[mmm =
p=1 -
S— -
> S =
@ =
= -
S =
= =
= =
D =
D o =
g ®
= -
= -
[=3 -
=8 =
& 5
=
= T
= -
o— [=] =
T T T T T T T
O.0 0.2 o.4 0.6 0o.8 1.0 1.2

Figure 11.11: Sequence plot showing Solaris 2.4 acknowledgments (large squares) during initial
slow-start

analyze the timing of their generation belowsiil.6.4. Here we simply note that quite frequently
the delay in generation is very small, presumably because it takes little time for the application
process to consume the new data.

Since Linux 1.0 TCP acks every packet, it does not generate normal ackpabgly 's
definition of “normal.” Solaris TCP generates normal acks after an initial slow-start sequence, but
not before (see next section).

Stretch acks

Every implementation in our study except Linux 1.0 sometimes generates “stretch” acks,
that is, acknowledgements for more than two full-sized packets, contrary to [Br89] (though they all
came less than 500 msec after the last packet they were acknowledging). We suspect most of these
occur because of delays in the application process consuming the newly arrived data (discussed
above). For most implementations and sites, stretch acks usually were for no more than three full-
sized packets.

Some implementations and sites, however, were especially prone to large stretch acks, par-
ticularly some of the IRIX sites. These instances, however, were intermittent (except for Solaris—
see below): quite often, the site would not generate a significant number of stretch acks, other times
it would. Most likely this intermittence reflects periods of heavy versus light load. The IRIX sites
might be particularly prone because of some peculiarity of how the IRIX scheduler deals with heavy
processor contention: if it delays competing processes for lengthy periods of time, this could easily
translate into stretch acks. For example, we noticed ddatoften generated stretch acks sepa-
rated by almost exactly a multiple of 30 msec, and posit that 30 msec reflects the host's scheduling
quantum.

172

109000

"y,
o

80?00

LR TTTTITTT

60900

Sequence #

WL TTTTT)

40?00

ULTTTTIN

20900

o

0
\

Figure 11.12: Corresponding burstiness at sender

Solaris TCP, however, generates stretch acks in quite a different manner. It apparently has
been tuned so that, during the initial slow-start, it generates only one ack for each increasingly-large
“flight” of packets. Figure 11.11 shows how this works, using a trace recorded at a Solaris receiver.
Here, the acks are shown with large squares, since they lie directly on top of the end of each initial
slow-start flight. The delay between the final packet of a flight and the corresponding ack is only
100's ofusec—much too small for timer-driven acking. Since the TCP appears to “know” exactly
when each flight ends without waiting any appreciable time for additional packets, we conclude that
it does indeed know: it predicts that each flight will be one packet larger than the previous flight
(which is exactly the case during slow-start, if each flight elicits only one ack in reply), and counts
exactly that many packets before acknowledging.

At aroundT = 0.9 a data packet was lost, and thus the prediction that 10 packets would
arrive in that flight failed. The ack for the 9 packets that did arrive is sent when the delayed-ack timer
expires, 49 msec after the last packet in the flight arrived. The packets liberated by this ack then
arrive above the sequence hole and the TCP generates a series of duplicate acks in response, and
the sending TCP retransmits the missing packet. Note that, after this point, the Solaris TCP gives
up on trying to ack just once for each flight, and falls back on acking every three full-sized packets
(in violation of [Br89]), or fewer if the delayed-ack timer expires before three arrive. This behavior
also fits with our hypothesis that the TCP is predicting flights by counting slow-start cycles: once
the connection is no longer in slow-start, the TCP cannot easily determine the size of the next flight,
so it falls back on a less sparse acking policy.

It seems very likely that this acking behavior was developed in order to maximize through-
put for local-area networks. We are led to speculate that this is the case, because the acking policy
has four major drawbacks for wide-area network use, worth discussing in detail because at first
blush one might find such a frugal ack policy attractive as apparently efficient and streamlined:

1. Because each ack advances the window by increasingly large amounts, the acking behavior

173

0

50900
o

40?00

||Illllm
[

Sequence #
20900 30900
iy Im
iy, 'B
gy 1 'm

10?00
1 |m

9
0

O.0o 0.5 1.0 1.5
Time

Figure 11.13: Sequence plot showing retransmission timeout due to loss of single Solaris 2.4 ack

leads to progressively burstier transmissions by the sender. Figure 11.12 shows the same trace
as in Figure 11.11 except recorded at the sending TCP. We see increasingly taller “towers” of
packets, sent at rates up to 1.15 Mbyte/sec, completely saturating the local Ethernet. While
a local area network might be able to accommodate such burstiness, it can be very hard on
a wide-area network, because it leads to rapid queue growth if the bottleneck bandwidth is
significantly lower (in this connectiongpanaly calculated it to be about 350 Kbyte/sec
(evidently two T1 circuits), using the methodology discussed in Chapter 14). This queue
variation then potentially perturbs all the other connections currently sharing the bottleneck
link, by delaying their packets and perhaps causimayr packets to be dropped.

Much better is for the packets to be spaced out more evenly, approaching the bottleneck
bandwidth, which will happen naturally due to “self-clocking’q.2.5) if the receiving TCP
generates acks at a quicker rate. See [BP95b] for a discussion of TCP sender modifications to
achieve smoother spacing in the face of large ack advances.

2. Because only one ack is sent per round-trip time, the connection loses the usual benefit of
exponential window-increase during slow-start. On/tteslow-start flight, the Solaris ack-
ing policy will lead to exactlyk packets in flight. A policy of ack-every-packet, on the other
hand, leads t@*~! packets in flight, an enormous difference when trying to fully utilize a
network path with a large bandwidth-delay product.

3. Because only one ack is sent per round-trip time, the resulting connectiomsitdesin
the face of packet loss, which is much more prevalent in wide-area networks than local-
area networks. Since each flight of data elicits only one ack in response, if the ack is lost,
then the data/ack “pipelinefhustshut down with an expensive (in terms of performance)
retransmission timeout, because the sender will not re@iyenore information about the
data it sent. Figure 11.13 shows a trace recorded at a Solaris receiver in which this occurred.

174

10
b

80?00
)

Sequence #
60900
N
™~

oo 4
]
~

=

0
\

T T T
O.0 0O.2 o.4 0.6 o.8 1.0 1.2 1.4

Figure 11.14: Receiver sequence plot showing lulls due to Solaris 2.3 acking policy

The slow-start progresses normally until abdut= 0.8, at which point the lone ack for

the 8th slow-start flight is lost. Even though none of the data packets were lost, the entire
connection must shut down until a timeout about 700 msec later restarts the flow of data, and
then proceeds on from this point at an unnecessarily reduced transmission rate, due to TCP
congestion avoidance. With a more prolific acking policy, loss of the ack would have had
no effect on the data flow whatsoever, since more data would have arrived shortly (liberated
by acks for packets earlier in the flight) and elicited more acks in response, keeping the flow
alive.

. Finally, the Solaris acking policy {grovably sub-optimain the following sense. One of the
goals of a solid implementation of a byte-stream transport protocol such as TCP should be
that, in the absence of any competing network traffic, a transport connection should quickly
reach a state in which it delivers packets to the receiving end continuously and at the available
bandwidth. Yet, the Solaris acking policy cannot achieve this goal, even if we allow its linear
slow-start window increase discussed above to qualify as “quickly.”

The fundamental problem is that, regardless of how large the slow-start flight grows, it always
eventually comes to an end, at which point the Solaris TCP sends the sole ack for that flight.
While that ack is traversing the network back to the sender, the sender is perforce doing
nothing because it has already sent its entire flight and cannot send any more data until an
ack arrives to advance the window. Thus, the Solaris acking policy guaranteesuthagaal

to the round-trip time will accommodate each flight of data. As long as the sender remains in
slow-start, the receiver witheversee a continuous stream of packets arriving at the available
bandwidth!

Figure 11.14 illustrates this problem. This connection has a RTT of about 44 msec, and a
T1 bandwidth limit of about 170 Kbyte/sec. Thus, the connection's bandwidth-delay product

175

60900 80900 100000

Sequence #

40?00

20900
®

= [*
o— =] =3
oo os 1lo 1ls

Time

Figure 11.15: Sequence plot showing more frequent acking leading to “filling the pipe”

is about 8 Kbyte, so if the sending TCP has this much data in flight at one time, ordinarily
that would suffice to “fill the pipe” and completely utilize the available bandwidth. Near the
end of the connection, it has more than 8 Kbyte in flight, andsyi#tdoes not achieve full
utilization, due to the 44 msec delays incurred at the end of each flight.

The only Solaris TCP in our study that did not exhibit this problem suas$r2 , because its
bottleneck bandwidth of about 13 Kbyte/sec was so small that the delay ack timer (50 msec
in Solaris) would often expire before the full flight could arrive.

Other acking policies avoid this problem because, by acking more often, they can ensure (for
a large enough window) that the sender will have additional data already in flight by the time
the current flight ends. As the window grows sufficiently large, the packets from this next
flight will arrive closer and closer to the end of the first flight, until eventually the distinction
between flights blurs and the connection settles into a continuous stream of arriving data
packets. Figure 11.15 shows such a connection, with the same sender as in Figure 11.14.
Note that this connection had a longer RTT than that shown in Figure 11.14, which explains
why it happened to achieve only the same overall throughput, instead of higher throughput,
which would have been the case for equal RTTs and a greater degree of “filling the pipe.”

11.6.2 Acking out-of-sequence data

When a TCP receives a packet with out-of-sequence data, it eithsigenerate an ack-
nowledgement, if the data corresponds to data already acknowledged, which we term “below se-
guence”; orshouldgenerate an acknowledgement, if the data is for a sequence number beyond what
has been previously acknowledged, which we term “above sequence” [Br89]. (These situations are
also discussed above §rl1.4.1.) For example, suppose a TCP has received contiguous data up to
sequence 10,000. If it now receives data with a sequence number below 10,000nhbstyéner-

176

ate another acknowledgement for sequence 10,000. If, instead, it receives data starting at sequence
number 11,000, then ghouldgenerate another acknowledgement for sequence 10,000.

In both cases, the acknowledgement generated is for the highest in-sequence data re-
ceived. The reason for generating acks in the first case is that the sender has retransmitted unnec-
essarily and thus appears confused as to how much data the receiver has in fact received, so the
receiver needs to inform the sender again of what it has received. The reason for generating acks in
the second case is to enable “fast retransmit,” discuss¢8.@&7.

Of the TCPs in Table XV, only SunOS 4.1 exhibited unusual behavior when receiving
out-of-sequence data. While it generally will immediately acknowledge below-sequence packets,
it does not always do so, and it never immediately acknowledges above-sequence packets. Instead,
it apparently checks upon each expiration of the 200 msec delayed-ack heartbeat timer whether
any above-sequence (or, sometimes, below-sequence) data has arrived. If so, it generates a single
duplicate acknowledgement reflecting its current upper-sequence limit.

One other form of “mandatory” ack not generated by SunOS 4.1 concerns the initial SYN
packet used to begin establishing a TCP connection. SunOS 4.1 TCP appears to ignore retrans-
missions of the initial SYN once it has sent a SYN-ack, and instead continues retransmitting (upon
timeout) the SYN-ack until it is acknowledged. This behavior has only minor implications concern-
ing a possible delay in establishing connections when the first SYN-ack is lost.

Other than SunQS, all the implementations in our study tend to generate mandatory ac-
knowledgements promptly (though we have observed more than 1 minute delays for a Solaris im-
plementation while it waited for a sequence hole to be filled!). The few tiopemaly detected
a failure to send a mandatory ack were generally due to either vantage-point probléthg)(
packet-filter resequencing errofs10.3.6), or confusion caused by checksum errors.

The only other failure we observed with respect to generating mandatory acks is with
Solaris 2.3 TCP. If it receives a packet containing only a FIN option (no data), and arriving above-
sequence, then it simply ignores the packet. If the packet contains data, then it elicits a duplicate ack
like any other above-sequence arrival, but the presence of the FIN bit is forgotten (so if the sequence
hole is filled, the TCP will acknowledge all of the data but not the FIN). This behavior is fixed in
Solaris 2.4, and is the only difference in behavior we observed between the two implementations.

11.6.3 Gratuitous acks

tcpanaly includes in its analysis checking for “gratuitous acks,” meaning acknowledge-
ments that as far as it could determine simply did not need to have been sent. These are quite rare.
For example, only about 0.5% of tiAé, receiver traces exhibited a gratuitous ack. SunOS 4.1 TCP
is particularly apt to generate them; Figure 11.16 shows a typical gratuitous ack produced by this
implementation. The acknowledgementZat= 0.4 is sent on the delayed-ack timer, because the
TCP has received above-sequence data that it cannot directly acknowledgenoted in§ 11.4.1,
SunOS 4.1 does not acknowledge each above-sequence packet.) The second aclf; at tirie
appears completely unneeded. It was sent almost exactly 200 msec after the first ack in the plot, so
almost certainly due to the delayed-ack timer. While the last data packet arrived shortly before the
T = 0.4 ack was sent, we suspect is had not yet heecessedand its processing led the TCP
to generate another ack the next time the delayed-ack timer expired. (So this example is really a

12This ack includes the same offered window as its predecessor; ietasnt in order to update the window.

177

35000 40000
\ \

Sequence #
30000
|
10

=

25000
\

20000
\

0.3 o.4
Time

Figure 11.16: Sequence plot showing gratuitous acknowledgement

vantage-poinjproblem, pef 10.4.)
tcpanaly can also become confused and falsely conclude a gratuitous ack was sent if the
TCP takes a particularly long time to generate an ack, or if a checksum error cotefusedy 's
analysis of cause and effect. Figure 11.17 shows an example of the former, integzEohly
views the lower ack sent &t = 1.28 as gratuitous, even though it was really a response to an out-of-
order packet 21,745 received shortly before the packet preceding it in sequence, Brauhd6.
Thus, it took the TCP in this example (HP/UX 9.05) more than 20 msec to generate the mandatory
ack required by receiving an out-of-sequence packet, which in the presence of the earlier (likewise
tardy) ack for the same sequence numbér at 1.26 sufficed to confusécpanaly as to why the

second ack was sent.
One other form of gratuitous ack we observed occurs with Linux 1.0. It will generate an

ack if 30 seconds have elapsed without any newly arriving packets. Presumably, this ack is intended
to resynchronize the sender with the receiver in the face of a lull induced by the loss of previous

acks.

11.6.4 Response delays
As discussed ir§ 9.1.3, there are a number of advantages to network measurement

schemes that rely only on the ability to record packet timings at one of the two connection end-
points. One of the main advantages is that it is logistically much easier to secure single-endpoint
measurements than dual-endpoint. For example, TCP Vegas has as one if its central congestion con-
trol mechanisms an analysis of round-trip times measured by the TCP sender [BOP94]. The goal of
these measurements is to infer how the sender's window changes are affecting the queueing delays
in the network, i.e., how the sender's behavior is utilizing networking resources. As developed in
[BOP94], the RTT timings central to the congestion control policy are made solely by the sender.

178

Sequence #
20000 21000 22000
| | |

19000
\

18000
\
1
i

1.20 1.22 1.249 1.26 1.28 1.30

Time

Figure 11.17: Sequence plot showing false gratuitous acknowledgement

Not needing to rely on cooperation by the receiver in making these measurements is a great boon,
but it carries with it the risk of having to make control decisions based on considerably less precise
measurements than could be obtained if the receiver cooperated.

In this section we look at the variation among a TGBsponse delay$®y which we mean
how much time the TCP takes to generate an acknowledgement for new data it has received. We
are interested in theariation because itlirectly affectghe precision with which a sending TCP can
measure round-trip time delays. If the receiving TCP exhibits large variations in the time it takes
to generate acknowledgements, and if the sender has no way of factoring out these delays, then the
sender must contend with consideraht@sein its RTT measurements, perhaps enough to render
impractical the accurate assessment of the network's state based on sender-only measurement.

As we argue elsewhere (Chapter 16), often what is of greatest intereatiagions in
networking delays rather than the absolute magnitude of the delays. Thus, we do not concern
ourselves in this section with thmeantime a TCP takes to generate an acknowledgement, as this
contributes nothing to errors in measuring delay variation. Instead, we focus waristion of the
time taken to generate an acknowledgement.

Furthermore, we assume that the sender can eliminate one of the common sources of delay
variation, namely delayed acks. These are easy to spot, because any time an ack is received that
advances the window by less than two full-sized packets, the ack was potentially delayed, so RTTs
derived from its arrival should not be trusted beyond the 200 msec of variation known to frequently
attend delayed acks.

We also assume that acks generated for exceptional conditions such as out-of-sequence
data are not of much interest, since they generally indicate that the sending TCP is about to enter an
exceptional state (retransmission) anyway. Thus, we confine ourselves to the time taken by different
TCPs to generate acks for two or more full-sized, in-sequence packets.

The maximum time taken by a TCP to generate a “normal” §dKki.(6.1) is almost always

179

less than 200 msec and often less than 50 msec, no doubt reflecting the BSD and Solaris delayed-ack
timer intervals. We have, however, observed values as high as 1.6 sec. (The mean time taken is less
than 1 msec in about two thirds of our traces, and less than 10 msec in about 95% of our traces.)

One final important point is that to assess response time we compute the standard devia-
tion (o) of the response time, rather than using a more robust staf%id 4). We do so because
we argue that a real-time sender-based measurement scheme will only be able to make fairly cheap
assessments of delay variations, rather than employing robust statistics. Furthermore, even if the
sender can afford to compute robust statistics on the packet timing measurements it gathers, it will
still have the serious problem of discerning between “outliers” due to receiver delays versus those
due to genuine networking effects. Thus, we argue it is reasonable to assess delay variations in
terms of standard deviation, even though we know this estimator can be seriously misleading in the
presence of occasionally quite large, exceptional values.

In assessing botl/; and N>, we find that about two thirds of the timecalculated for
the response time is below 1 msec. These cases are good news for sender-based measurement, since
often clock resolutions are not appreciably more accurate than 1 msec ariy®&y.@). However,
the mean value fos was about 5 msec, and for the one-third of the traces with 1 msec, the
mean climbs to 15 msec.

There is a great amount of site-to-site variation among the average valoes@floubt
reflecting large variations in average site-to-site load. For example,an IRIX system, has an
average value of just under 1 msec, whilenl , another IRIX system, has an average value of over
5 msec.

We conclude that, for high-precision, sender-only RTT measurement, the ack response
delays will often not prove an impediment; but sometimes they will, meaning that the intrinsic
measurement errors will be large enough to possibly swamp any true network effects we wish to
guantify. Here, “often not” is roughly 2/3's of the time, “sometimes they will” is 1/3 of the time,
and “large enough” is on the order of 15 msec. Naturally, the point at which the noise impairs
measurement and control depends on the particular time constants associated with the connection,
and with what information the TCP wishes to derive from its measurements.

11.7 Behavior of additional TCP implementations

Our analysis of TCP behavior above revealed two implementations with particularly sig-
nificant problems: Linux 1.0 and Solaris (2.3 and 2.4). These implementations were both written
independently of any of the others. Furthermore, ofithether implementations we studied, none
of which exhibited problems of the same magnitude as theseawere derived from a common
implementation, the BSD Tahoe/Reno releases. Thus, we find a striking dichotomy between those
TCP implementations exhibiting serious problems, and those that do not: the former were written
independently, the latter built upon the Tahoe/Reno code base.

We interpret this difference as highlighting the fact thmplementing TCP correctly is
extremely difficult. The Tahoe/Reno implementations benefited from extensive development and
testing by a host of TCP experts. Furthermore, they were the code base used by Jacobson to imple-
ment the algorithms in his seminal paper on TCP congestion behavior [Ja88].

However, to test our hypothesis that implementing TCP independently is difficult and
fraught with error, we need to examine other independent implementations. To do so, we gathered

180

Sequence #
433000 440000 442000 444000 446000 448000

Figure 11.18: Sequence plot showing Windows 95 TCP transmit problem

tcpdump traces? of three additional TCPs: Windows NT, Windows 95, and Trumpet/Winsock, all
implementations for personal computéts.

We analyzed these traces by studying sequence plots of their behavior. We did not in-
tegrate them intacpanaly because we had only a handful of traces to study. These sufficed,
however, to find some interesting behavior.

11.7.1 Windows NT TCP

We inspected four traces of Windows NT TCP, two of it sending data and two of it receiv-
ing data. We found no serious problems. It does not do fast retransmit, but this only impedes its own
performance; it does not affect network stability (if anything, it abets stability). The only unusual
aspect of its behavior we found is that its congestion window during its initial slow-start begins at
2 packets instead of 1. This could be a calculated decision to improve initial performance, or a bug
due to treating the ack that completes the three-way SYN handshake establishing the connection as
opening the congestion window.

11.7.2 Windows 95 TCP

We obtained only two traces of Windows 95 TCP, one of it sending data and one of it
receiving. The sending trace exhibited a striking performance problem: often when it could send
out two packets, only the second appeared to have been sent, and the first would subsequently be

13Many thanks to Kevin Fall for undertaking the measurement of these.

“We have subsequently been informed that the Windows NT and Windows 95 TCPs are in fact the same implementa-
tion. We observed different, but not inconsistent, behaviors between them, as noted below. In particular, the Windows 95
behavior that we did not observe in Windows NT may be due to the particular software/hardware combination used when
obtaining the Windows 95 traces, which differed from that used to obtain the Windows NT traces.

181

Sequence #
4000 6000 8000 10000
|
]

2000
\

0
!
A

Figure 11.19: Sequence plot showing Trumpet/Winsock TCP skipping initial slow start

sent via timeout “retransmission.” Figure 11.18 shows this problem. A pattern of one-ack, two-acks,
one-ack, two-acks repeats. The first ack (such as the one a bit féferé55) reflects a timeout
retransmission filling a sequence hole. The congestion window is evidently one packet at this point.
The TCP sends a single packet and this is acknowledged about 150 msec later. It then apparently
sends not the next in-sequence packet, but the one after that. Receiving this out-of-sequence packet
elicits a dup ack from the remote TCP, but only one, after which no more acks arrive. The sending
TCP thus times out and retransmits the packet it should have sent in the first place, and the cycle
repeats. Eventually it breaks out of the cycle, by sending two back-to-back packets when called for
by a newly-received ack.

We suspect the problem is that the TiSBending both packets, but the first is frequently
being dropped by the network interface card, perhaps because the second arrives too closely on its
heels. This would explain why the problem is sporadic, and also why it may have gone unnoticed
during development of the TCP. Certainly, if this problem is widespread, then Windows 95 TCP
users suffer from very poor performance. Since the retransmission problem lies wholly within the
sending host, however, it does not threaten network stability in any way.

11.7.3 Trumpet/Winsock TCP

The lastindependently implemented TCP we studied was Trumpet/Winsock. We obtained
13 traces of its behavior. Some were made with version 2.0b and some with version 3.0c. We did
not detect any difference in behavior between the two, even though the release notes of 3.0c indicate
it fixed a retransmission problem with version 2.

The first problem Trumpet/Winsock TCP exhibits it thaskips the initial slow start
Figure 11.19 illustrates this behavior. The connection is established justlatter0. The TCP
waits 400 msec and then dumps 6 packets of 1460 bytes (except the first, which is 512 bytes)

182

250000
\

Sequence #
220000 230000 240000
| |
]

210000
\
1

200000
\
0

Figure 11.20: Sequence plot showing Trumpet/Winsock TCP skipping slow start after timeout

without waiting for any acknowledgements. When the first ack arrives, the window simply slides
and more packets go out. Over time the window opened to 9 packets.

It further skips slow start after timeout retransmissiofigure 11.20 illustrates this be-
havior. AtT = 7.6, a packet times out and is retransmitted. When an acknowledgement for it and
a number of other successfully received packets is received, the TCP sends another 8 packets, and
when an ack for the first four of these arrives (along with dups), another 9 are sent! (We observed
similar behavior even if the ack for the retransmitted packet only acknowledged a few packets be-
yond it.) We did also observe some apparent slow-start sequences after retransmission timeouts
(though duplicate acks received during this sequences advanced the congestion window), indicating
that thenotion of entering slow start after timeout is present in the implementation, but incorrectly
implemented. These sequences had one other unusual aspect, which is that they began with the
transmission of a packet followed 10 msec later by a retransmission of that same packet.

We are, unfortunately, not yet finished with cataloging Trumpet/Winsock TCP's imple-
mentation flaws. Figure 11.21 shows the TCP's acking policy. The trace was recorded at a Trum-
pet/Winsock receiver of a bulk transfer. The only acks it sent are those shown distinctly in the
plot—none were sent shortly after a data packet arrived. The acking is clearly entirely timer-driven,
incurring similar performance implications as for Solafsl.6.1), except it always acks in this
fashion, rather than just during the initial slow-start, and it is acking off of a timer rather than when
it knows no more data is in flight.

The final implementation flaw we found in Trumpet/Winsock TCP is thdisitards any
above-sequence data it receivesigure 11.22 shows this surprising deficiency. Again, the trace
was captured at the Trumpet/Winsock side of a connection in which the TCP was receiving a bulk
transfer. Shortly afte” = 18.5, a sequence hole forms due to a packet having been dropped
by the network. 13 more packets follow, all arriving safely, yet the TCP does not generate any
duplicate acks indicating their reception. Furthermore, when the lost packet is finally retransmitted

183

= I~
S -
S -
P=1 -
> -
= =
= o
[=1 =
S = o
S =
I==1 -
H== T -
a -
= -
= -
> -
= - o
= =
D -
w -
[=3 -
S =
S =
S =
= =
- = e -
= - o =
S =
S -
S =
b= =
— =
T T T T T T
16.2 16.4 16.6 16.8 17.0 17.2 17.4
Time

Figure 11.21: Sequence plot showing Trumpet/Winsock timer-driven acking

-
=
=3
=3 = -
=3
= - -
~
= - -
a - -
S
=
o - -
=
D - -
@ s - -
=
el - -
=Y
~N - -
-o
= -
=
= -
=
N
~N -
T
18.5 19.0 19.5 20.0 20.5 21.0

Time

Figure 11.22: Sequence plot showing Trumpet/Winsock failure to retain above-sequence data

184

due to a timeout, we find it doe®t fill the hole previously created, which would lead to the TCP
acknowledging both it and the 13 previously received packets. Instead, only it is acknowledged,
and, as additional packets (already safely received) are retransmitted, they too form the limit of the
acknowledged data.

Thus, the TCP hathrown awayall of the additional packets it received above the se-
guence hole. As noted i513.3, this pattern of behavior is possible when a CSLIP link generates
a “burst” of checksum failures. When we first observed this behavior, we presumed that was what
had happened. However, Wesubsequently gathered full packet traces ¢naplenlimitation on
the amount recorded for each packet;§cf0.2) and enablettpanaly 's checksum testing (L1.2)
to determine whether the data packets were received uncorrupted. They were, indicating that the
TCP could have kept them but instead discarded them. Furthermoneseweeobserved the TCP
generating a duplicate ack upon receiving a packet above a sequence hole, nor acting as though a
retransmission had filled a sequence hole.

All of these behaviors have strong, adverse impacts on network stability. Skipping slow
start initially and after loss means that Trumpet/Winsock data transfers can present heavy bursts
of traffic to the network when it lacks the resources to accept them. It violates [Br89]. Acking
only when a timer expires can lead to excessive, unnecessary retransmissions when a single ack for
many packets is dropped by the network. This also violates [Br89]. Finally, discarding successfully-
received above-sequence data wastes network resources as the other TCP must resend all of the data
again. This behavior, while strongly discouraged by [Br§49,.2.2.20], is not strictly forbidden,
presumably to avoid indefinitely tying up resources in the receiving TCP in cases where connectivity
is lost with the sender.

5Thanks again to Kevin Fall.

185

Chapter 12

Calibrating Pairs of Clocks

In this chapter we tackle the difficult problem of calibrating the accuracy of packet filter
timestamps. “Wire times,” as defined§rl0.1, lie at the heart of much of our study, and the packet
filter timestamps are the only means we have for estimating wire times. Yet, we have no independent
means of verifying that the timestamps reported by the packet filters are indeed accurate. We must
instead develop self-consistency techniques for calibrating the timestamps against themselves. For
the most part, we are successful in doing so.

Undetected clock errors can result in serious systematic errors in our analysis of network
dynamics, since superficially a clock error is indistinguishable from variations in packet transit
times. These latter variations occur all the time due to queueing in the network, and we are interested
in accurately analyzing them.

We begin by defining ir§ 12.1 basic terminology for describing the different clock at-
tributes of “resolution,” “offset,” “accuracy,” and “skew.” We next discussgia2.2 why we did
not require the clocks in our study to be synchronized, and how, if we had, use of the popular Net-
work Time Protocol (NTP) would not necessarily have eliminated clock problems. Since the clocks
at the connection endpoints lacked synchronization, we introdugd 3 “relative” counterparts
of “offset,” “accuracy” and “skew,” for discussing potential disagreements between two network
clocks.

We then turn to methods for assessing clock resolution and relative clock accuracy
(§ 12.4,% 12.5); detecting clock adjustment$ 12.6), in which a clock quickly jumps or skews
forward or backward because it is being set to a new absolute time; and detecting relative clock
skew § 12.7). Clock adjustments and skew can introduce large, artificial network “dynamics,” so it
is particularly important to detect and remove these effects.

We finish in§ 12.9 with a look at how well a clock's synchronization correlates with stable
clock behavior (lack of adjustments and of skew). We show that, unfortunately, a high degree of
synchronization between two clocks does not necessarily mean that the clocks are free of relative
errors.

12.1 Basic clock terminology

In this section we define basic terminology for discussing the characteristics of the clocks
used in our study. The Network Time Protocol (NTP; [Mi92a]) defines a nomenclature for dis-

186

cussing clock characteristics, which we will use as appropriate. It is important to note, however,

that the main goal of NTP is to provide accurate timekeeping over fairly long time scales, such as
minutes to days, while for our purposes we are concerned with much shorter-term accuracy, namely
between the beginning of a network transfer and its end. This difference in goals sometimes leads
to different definitions of terminology, as discussed below.

12.1.1 Resolution

A clock'sresolutionis the smallest unit by which the clock's time is updated. It gives a
lower bound on the clock's uncertainty. (Note that clocks can have very fine resolutions and yet
be wildly inaccurate.)lt is crucial that this uncertainty be propagated when deriving estimates of
network properties from timestamps produced by the clock.

Note that we define resolution relative to the clock's reported time and not to true time,
so for example a resolution of 10 msec only means that the clock updates its notion of time in
0.01 second increments, not that this is the true amount of time between updates.

12.1.2 Offset

We define a clock'effsetat a particular moment as the difference between the time re-
ported by the clock and the “true” time as defined by national standards. If the clock reports a time
T. and the true time i}, then the clock's offset &, — T;.

12.1.3 Accuracy

We will refer to a clock asccurateat a particular moment if the clock's offset is zero,
and more generally a clockacuracyis how close the absolute value of the offset is to zero. For
NTP, accuracy also includes a notion of the frequency of the clock; for our purposes, we split out
this notion into that okkew because we define accuracy in terms of a single moment in time rather
than over an interval of time.

12.1.4 Skew and drift

A clock's skewat a particular moment is the frequency difference (first derivative of its
offset with respect to true time) between the clock and national standards.

As noted in [Mi92a], real clocks exhibit some variation in skew. That is, the second
derivative of the clock's offset with respect to true time is generally non-zero. [Mi92a] defines
this quantity as the clock'drift. We in general will only talk about this notion in terms of clock
adjustmentsduring which the clock's time is rapidly altered, because during the small time scales
of interest for our study, only large drift values have discernable effects.

Iwe will see in§ 12.7 that, for the time scale of a single TCP connection in our study, relative clock skew is nearly
always very close to linear, indicating near-zero relative drift over small time scales.

187

12.2 Lack of synchronized clocks

When designing the Network Probe Daemon (NPD) experiment, we made an early deci-
sion not to require synchronization between the clocks at the participating NPD sites. There were
two reasons for this decision. First, one of the most important requirements of the experiment was
to enlist as many participating sites as possible, in the quest for obtaining plausibly representa-
tive results. It was felt that requiring sites to install clock synchronization as well as bring up the
measurement daemon would significantly add to the burden of participating in the study.

Furthermore, it is not clear that requiring clock synchronization would help in the mea-
surement analysis. The main reason why it might not is because the most common form of clock
synchronization used by Internet hosts is the Network Time Protocol (NTP). Use of NTP for the
NPD experiment has two important shortcomings. First, NTP's accuracy depends in part on the
properties (particularly delay) of the Internet paths used by the NTP peers, and these are exactly the
properties that we wish to measure, so it would be less than completely sound to use NTP to cali-
brate our measurements. Second, NTP focuses on almakacy which can come at the expense
of short-term clock skew and drift. For example, when a host's clock is indirectly synchronized via
NTP to a time source, if the synchronization intervals occur infrequently, then the host will some-
times be faced with the problem of how to adjust its current, incorrect fiip&yith a considerably
different, more accurate time it has just learn&gl, Two general ways in which this is done are to
either immediately set the current timely, or to adjust the local clock's update frequency (hence,
its skew) so that at some point in the future the local tiifievill agree with the more accurate time
7. (We will see examples of both of these§ii2.7.)

A key point is that, for the NPD experiment, we are much more interested in correctly
estimatingdifferencesetween two timestamps than with the correctness of individual timestamps.
That is, we care much more about clock skew than clock accuracy, because it is the differences that
measure network delays. So, given a choice, we would prefer to buy very low clock skew at the ex-
pense of diminished clock accuracy, but NTP makes the opposite trade-off. In this respect, we prefer
to synchronize the clocks posteriorias we do here, after having completed the measurements.

In the future, it may be possible to obtain highly accurate clock synchronization via a
mechanism separate from using the network itself; for example, GPS (Global Positioning System)
receivers. That would allow us to have both accuracy and very low skew, which would be ideal
for network measurement. Unfortunately, obtaining such separate synchronization today remains
rare, so it behooves us to see how much use we can make of unsynchronized or NTP-synchronized
clocks.

Finally, one might hope that a highly accurate clock will have very low skew, because if it
had high skew it would not tend to be highly accurate§ k2.9 we briefly investigate the degree to
which this held for the closely-synchronized hosts, and find that it is only somewhat true. We also
briefly argue in that section that, even with separate synchronization such as GPS receivers, sound
measurement still calls for calibrating the timestamps.

12.3 Terminology for comparing clocks

A fundamental part of our experimental design was to arrange to record packet departures
and arrivals aboth ends of the end-to-end TCP connections between the NPD hosts. Doing so

188

is crucial for discriminating between network conditions on the forward path, in which the data
packets flowed, and the reverse path, over which only the receiver's acks flowed (since the TCP
transfers were unidirectional). While recording packets at only one of the connection's endpoints is
logistically much easier, analyzing network effects then becomes much more difficult, because the
forward and reverse path become deeply intertwined.

Tracing packets at both ends, however, immediately raises questions about how to com-
pare the timestamps produced by the packet filters at the two endpoints. In this section, we develop
terminology for discussing differences between the two clocks producing the timestamps. The defi-
nitions are, for the most part, analogous to thosglif.1, except that, instead of comparing a single
clock against “true” time, we are comparing one clock against another.

We first introduce the meta-notation of a subscrigtdenoting time measured at the TCP
sender and " denoting time at the TCReceiver Because our transfers are unidirectional, data
flows only from the sender to the receiver, and acks flow from the receiver to the sendgy. dret
C, refer to the clocks at the sender and receiver, Apndnd R, their respective resolutions.

We defineC,'s offset relative taC; at a particular true tim& asT, — T, that is, the
instantaneous difference between the readingS,chnd C; at timeT'. For convenience we will
sometimes refer to this &3.'s relative offset at tim&, with C; implicitly being the clock to which
C) is compared.

Similarly, C,.'s relative skew is the first derivative 6f.'s relative offset with respect to
true time. Since we lack an independent means of measuring true time, we can only eGfirsate
relative skew in terms of time as measured by eittigor C,.. See§ 12.7 for further discussion.

If C; is accurate relative t6'; (their relative offset is zero), then we will refer to the pair
of clocks as “synchronized.” Note that clocks can be highly synchronized yet arbitrarily inaccurate
in terms of how well they tell true time. This point is important because, for the analysis of our
measurements, synchronization betwégnand C;. is more useful than the absolute accuracy of
the clocks. The same is somewhat true of skew, too: as long as the absolute skew is not too great
(§12.7.9), then minimal relative skew is more important, as it can induce systematic trends in packet
transit times measured by comparing timestamps produced by the two clocks. In addition, since we
lack an independent time standard in our study, we have no general way of assessing absolute skew,
only relative skew.

These distinctions arise because what is often most important for our measurements are
differencedn time as computed by comparing the timestamps from the two clocks. The process of
computing the difference removes any error due to clock inaccuracies with respect to true time; but
it is crucial that the differences themselves reflect good approximations to differences in true time.

Forresolution what we care about is not “relative resolution” foinht resolution which
we define ask;, = R, + R,. This definition reflects the fact that, when comparing timestamps
from C; with those fromC)., the corresponding uncertainties mustdgigledto properly propagate
the resulting total uncertainty.

While the presence of generally-unsynchronized clocks in our study presents a number
of measurement headaches, it also provides an opportunity for detecting certain types of clock
errors—namely adjustments and skew—that sometimes cannot be determined at all when analyzing
timestamps produced by a single clock. We delve into methods for detecting such errors in detail in
the subsequent sections.

189

12.4 Assessing clock resolution

All of the computers patrticipating in our study ran some variant of the Unix operating
system. Unix defines a data structure for recording timestamps that has two fields, one for how
many seconds have elapsed since a particular epoch, and one for how many microseconds have
elapsed since the beginning of the current second. Thus, timestamp resolution is never better than
1 psec. It can be much worse.

The basic idea behind estimating the resolution of the packet filter timestamps produced
by the clocks in our study is to examine consecutive timestamps to determine the smallest difference
between them. Unfortunately, Unix systems differ on how they report the time on subsequent calls
during which the (digital) clock has not advanced. Some systems simply return the same unchanged
time as given for previous calls. These are easy to detect, by disregarding timestamp differences of
zero when determining clock resolution.

Others Unix systems add a small increment to the reported time to maintain monotone-
increasing timestamps. We will refer to these adjustmentsi@sotonicity incrementsFor such
systems, we dmot want to consider monotonicity increments when evaluating the clock's reso-
lution, since they are artifacts of a more coarse resolution. Such systems generally increase the
clock by 1usec to maintain monotonicity, but we cannot simply disregard timestamp differences of
exactly 1usec, because it is possible that other processes running on the same machine (or even the
packet filter, when discarding unwanted traffic) have queried the clock multiple times, making the
increasen usec. We proceed by hoping that occasionallig small (in particularp < 5), so that,
if we observe a very small, positive timestamp difference, then we can infer that the system uses
monotonicity increments.

12.4.1 Method for assessing resolution

Taking these considerations into account, we use the following method for estimating the
clock resolutionR:

1. LetT;,0 < i < n be theith packet filter timestamp, given+ 1 successive timestamps.
2. LetAT; =T, — T; 1,1 < i < n, the differences between successive timestamps.

3. If any AT; is less than zero then the timestamps exhilyie trave] and the timing is untrust-
worthy (§ 10.3.7).

4. If any AT; is greater than zero but less thamsec, then sek’ to the smalles\T; greater
than100 usec.

5. Otherwise, sek’ to the smallest\T} greater than zero.

This method either produce®, an initial bound on the clock resolution, or the determination that
the timestamps are polluted by time travel. If the former, we then form our esAthmiéi’ rounded
to two decimal digit. The rounding is primarily to introduce a reminder tifats only a rough

2The exact algorithm used lgpanaly is slightly more complicated. It executes the above algorithm “on the fly,”
for historical reasons. To minimize computatieopanaly —only decrease®’ if a new value is at least 2.5% smaller
than the best value so far.

190

estimate, and not to be taken too exactly. It is also useful for ensuring that a resolution like 10 msec
is expressed as such, rather than 9.999 msec, as can happen if two timestamps differ by slightly less
than 10 msec because of a monotonicity increment.

Note that this computation ok produces at best an upper bound®nthe clock's true
resolution, because it may happen that the packet filter never receives back-to-back packets as little
as R seconds apart. For our purposes, this inaccuracy is acceptable, because the extra error intro-
duced is conservative in the sense that it only widens the uncertainties we associate with our timing
analysis.

12.4.2 Results of assessing resolution

tcpanaly uses the method outlined in the previous section to estimate the timestamp
resolution of each trace it analyzes. We would hope to always observe roughly the same value for
each particular packet filter, since a computer clock's resolution changes only very rarely (due to a
hardware or perhaps operating system upgrade). This is indeed the case. Here we summarize the
resolutions of the timestamps returned by the different packet fiiters.

Three of the systemsge, ucol (during A7), andxor , always had an estimated resolu-
tion of 10 msec. Their operating systems were IRIX 4.0, SunOS 4.1.3, and Solaris 2.3. A number of
other sites running these operating systems also participated in the study, all with finer resolutions,
so the limitations must be due to either hardware constraints or user configuration, rather than be-
ing fixed by the operating systems. We did not further investigate the hardware differences, as our
primary interest is in accurately estimating a packet filter's timestamp resolution, and not the details
of why the resolution is what it is.

The coarse 10 msec resolution proves problematic during our later analysis, because it
makes it difficult to resolve, for example, bottleneck bandwidths with any sort of precision. We
address this difficulty ir§ 14.7.

One systemsandia , also running IRIX 4.0, always had an estimated resolution of either
1 msec or 99Qusec.

All of the Digital Unix OSF/1 systemsh@rv , mit , umann, ucol in A>) always had a
resolution of980 psec or970 psec, which matches a clock advance tf = 1,024 ticks/sec.

Some of the SunOSiao , umont, unij) and BSDI @ustr , rain) always had reso-
lutions > 200 psec, while other SunOS and BSDI systems had finer resolutions, again suggesting
hardware differences or user configuration.

Of the remainder, all exhibited resolutions finer ti280 psec, though not in every trace.

The median resolutions over all of the traces were almost always in the 10sg@0range. This
turns out to be ample for our purposes.

Finally, we note that estimates based on packet traces from a giverHHhmsteivinga
unidirectional data transfer tend to be slightly larger (more coarse) than those from trales of
sendingthe data. The difference is on the order of 3-25%. It can be understood in terms of the
overestimation effect discussed in the previous section, namely that, if the packet filter never sees
back-to-back packets with a spacing equal to the clock resolutiont¢hamaly has no opportu-
nity to accurately estimate the resolution. A TCP sender will often send two packets back-to-back as

Recall that some NPD sites used a separate computer for monitoring the NPD traffic (Table XIV). All of the analysis
in this chapter concerns the clock of the host usddiicing the traffic, as that is the only clock relevant to our subsequent
analysis.

191

the window slides or the congestion window ope8.¢.2), and these then provide an opportunity

to observe minimally-spaced timestamps. TCP receivers, on the other hand, receive these packets
spaced out by the bottleneck bandwidth (Chapter 14), generally well above the clock resolution.
Furthermore, most implementations will wait to send an ack until the receiving application has read
at least two packets' worth of data1.6.1), which will entail extra delay, perhaps more than the
clock's true resolution.

12.5 Assessing relative clock offset

In this section we discuss how to estimate the relative offset between two network clocks.
The closer the offset is to zero, the greater the relative clock accuracy (degree of synchronization).
For our purposes, estimating relative offset is not crucial to our subsequent analysis of network
dynamics. We only need to do so in order to construct legible plots of the two-way flow of packets
and acks, and to qualitatively investigate the relationship between large relative offset and other
clock problems such as relative skew. Accordingly, we are satisfied with the method developed in
this section even though it is not highly accurate.

12.5.1 Method for assessing relative offset

Let AT, be the time required to send a packgtirom hosts to hostr. In general, we
refer to this time as the “one-way transit time” or “OTT.” Supppsés sent froms with a timestamp
T, from s's clock, and it is received atwith at local timestamfT’.. If the clock C,. were perfectly
synchronized withC, then we would have\T,,, = T, — T} (providing C;, andC, have no skew
with respect to true time).

More generally, if the relative offset betweéh andC; is AC; 5, then we have:

AT, = T,—-T,—AC.,,
and hence:
AC,s = T, =T, — AT,,. (12.1)

Unfortunately, we do not knowA7}, , so we cannot use this equation to determi€, ;. But we
canestimateAT),, and then use that estimate to estimat€, , as follows. First, define:

AT, =T, — T, (12.2)

that is, the “raw” difference in the timestamps for pagikgs trip through the network. Thug\7},,
differs from AT, by only a constant; in particular, the constant we wish to estimate. We can then
rewrite Eqn 12.1 as:

AC, s = AT,, — AT,,. (12.3)

In general, AT,,, and hence\T,,, depends on both network conditions and the size of
packetp;. We have little control over the size pf, because for a unidirectional transfer it is almost
always large for packets from the sender to the receiver (the exception being the SYN and FIN
handshake packets that delimit the connection, and the occasional very small data packet sent due

192

to buffer boundary mismatches), and always small for the acks sent in the reverse direction. We can,
however, attempt to control for network conditions, by selectingnivémalobservedAT, .- (Here
we are applying the assumption that minima occur during times when the network is unloaded.)
Selecting the minimal value works because (most) network-induced ncgsigliive and positive
(§ 12.6.2). Term the minimal valugZ,, .

Similarly, we computedT),, for the acks sent in the opposite direction. Since
AC, s = —ACs ., we expectto findT,, ~ —07),. They will not be exactly the same due to differ-
ences in the sizes of the packets used to compute each, imprecisions due to limited clock resolutions,
the possibility that one or both of the network paths wesgerunloaded during the transfer, dif-
ferences in skew betweeti. and C;, and asymmetries in the routes in the two directions, which
we know from Chapter 8 are quite common. While keeping these uncertainties in mind, we can
manipulate Eqn 12.3 as follows. Combining:

AC,s = AT, — AT,
ACs, = AT, — AT,,.

with:
Acr,s = _Acs,ra
we have:

2AC,s = AT, — AT, — (AT, — AT},)
= ATy, — ATy, + (AT), — AT,). (12.4)

We then combine Eqn 12.4 with two approximations, the first being that the most accurate instances
of AT,, andAT,, aredT),, andiT,,, and the second that:

AT, = AT,,. (12.5)

Eqn 12.5 corresponds to an assumption that the OTTs in the two directions are the same. We know
that this is not in general true, for the reasons given above, but are otherwise at a loss at how to
rectify the clock readings. It is the inaccuracy of Eqn 12.5 that requires us to make only casual use
of the estimate fo€;. ;, as discussed at the beginning of the section. We note that the Network Time
Protocol must make this same assumption when attempting to synchronize clocks over the Internet.
See Claffy et al. for further discussion [CPB93a].

With this assumption, we then have:
oy,

2

We note that, when performing the same calculation, we can also determine mjp;RTT

the minimal round trip time betweenandr, as:

0Ty,

AC,, ~ (12.6)

min-RTT,, = min AT, + min AT,
~ 0T, + 0T, (12.7)
Egn 12.7 offers an immediate self-consistency check: it should always be positive due to the un-

derlying “network physics.” Surprisingly, this test fails for 37 trace pairs and 30/, pairs. We
discuss these failures in more detaiki2.8.1 below.

193

12.5.2 Relative offset for full-sized sender packets

As discussed above, the bulk transfer sendsometimes will send full, Maximum Seg-
ment Size (MSS§ 9.2) packets, and other times shorter packets, including some with no data
whatsoever. If the path fromto » is slow (low bandwidth), then the shorter packets might arrive
appreciably more quickly than the full-sized packets. Sometimes it is more convenient to discuss
the relative clock offset and minimal RTT as computed when considering only the full-sized packets
sent bys (and continuing to consider all of the packets sentJahich tend to be acks of uniform
size). To do so, we introduce the terd&M>S and min-RT TS5,

12.5.3 Results of assessing relative offset

Using the methodology developed §n12.5.1, we evaluated the relative clock offsets
in A7 and\;, to see what sort of variation they exhibited. A single computatiol\6f. ; does
not tell anything about the absolute accuracy of eitfigror C,, but we would expect that many
computations of differenf\C;., ;.'s will reveal clusterings among the truly accurate clocks, and a
large spread among the inaccurate clocks.

Maximum relative offset

In A1, the largest observed offset was 207,982 seconds (2.4 days!). Overall, 42 times we
observed an offset greater in magnitude than 1,000 seconds, almost all greater than 10,000 seconds.
All of the host pairs with these large offsets includagtr , and the problem clearly lay with its
clock. We will see the reason for this §rl2.7.7 below.

In N>, the largest offset was 824 second8- minutes). We observed an offset larger
than 6 minutes 782 times, always withe as one of the hosts. We will likewise see§ii2.7.8
thatoce's clock and network paths have puzzling properties. These two outliers are thus suggestive
that, upon observing a very large relative clock offset, we should consider the possibility of other
clock errors.

Median relative offset

We next look at clustering host clocks based on the magnitude of their median relative
clock offset for all the traces in which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those that only occasionally had large
offsets, since the latter could be skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median of the absolute value of the offset
rather than the median of the offset itself as a way of detecting hosts that often “swing” from being
too slow to too fast. For each host, we analyze the relative offsets for those traces in which it was
the source; these are quite similar (though opposite in sign) to the offsets when it was the receiver,
and limiting our analysis to just when the host was the source simplifies the presentation.

Figures 12.1 and 12.2 shows the median magnitudes of each host's relative clock offset.
In both, oce is a clear outlier, being typically 5-15 minutes different from the other clock. Note
that, for N7, austr is not a particularly striking outlier, even though in the previous section we
identified it as having the largestaximunclock offset magnitudes. The reason it is not an outlier
in Figure 12.1 is that its clock raaccuratelyfor most of A7, and only degraded late during the

austr

bsdi
connix
harv]
inria
korea

Ibli

mit
nrao
oce

pubnix

sdsc
sri
ucl
ucol
ukc
umann
umont
unij
usc
ustutt
wustl

xXor — 1

o 50 100 150 200 250 300

Seconds

Figure 12.1: Median magnitude of clock offsaf; tracing hosts

o 200 400 600 800

Seconds

Figure 12.2: Median magnitude of clock offsaf; tracing hosts

194

195

experimental run (see below). Hencentsdiarrelative offset oveall of the transfers it participated
in is quite small.

Both figures show other apparent outliers in additiond®. We need to be careful before
removing them, though, as there is a possibility that some of them have unusually high proportions
of their connections to the other outliers, and hence are outliers only by “association.” Thus we
remove the connections involving the largest outlier and recompute the plot, then remove those
involving what is now the largest remaining outlier and recompute the plot, and so on, similar to
the approach developed in7.6.1 for assessing the “persistence” of Internet routes. \qQrthis
process removesce, korea , bnl , harv , sdsc , xor , Ibli , andpubnix as being outliers. Note
that, during the iterative processstr ceased to be an outlier, even though in Figure 12.1 it looks
like it has almost as large a median offsetpabnix : this is because it was an outlier only by
association with larger outliers. After eliminating these hosts, the remainder all have median offsets
< 1.25 sec. We consider this group of 17 hostscéssely synchronized We can, if we wish,
continue the process to find a core groughigfhly synchronizedhosts: they areaustr (1), bsdi ,
mit , nrao , andukc , all with median offsetsc 10 msec between one another.

For N5, outlier removal eliminates the six largest spikes in Figure 12.2, naroedy,
ucla , Ibli , bnl ,wustl , anducl , these last two having relatively small median offsets of 3 and
1.5 sec, respectively. We consider the remaining group of 25 hosts as closely synchronized. They
all have median offsetg 600 msec, and, ifol is removed from the group, they are all below 250
msec. Eliminating six more of the hosts with the largest median offset leaves a group of 18 syn-
chronized hosts, with median offsets below 50 msec. We can further winnow the group down to a
final set of highly synchronized hostsjv, connix , harv , near , nrao , pubnix , sdsc , sintef2
(but notsintefl), ucol , andunij , all of which have median offsets between each other of less
than 10 msec. Note that this group includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well below that of the propagation time between the hosts—very
good, and around the accuracy limit for NTP reported in [Mi92b], even though we are performing a
cruder estimate of accuracy (and of relative accuracy rather than absolute accuracy).

We will make use of these different groups of closely-synchronized and highly-
synchronized hosts i 12.9 when we test whether high clock accuracy (which we assume can
be inferred from close synchronization, although this is not necessarily the case) tends to correlate
with low relative clock skew.

Evolution of relative offset

We finish with a look at how a host's relative offset evolves over the course of an experi-
mental run. The evolution is interesting because it provides a large-scale look at how clock accuracy
changes. Our interest here is phenomenological—to develop an appreciation for clock inaccuracies
and an awareness of how they occur.

To assess offset evolution, for each host we constructed a plot with the relative offsets (in
seconds) computed for those connections for which it served as the data source, using the method-
ology given in§ 12.5, on they-axis; versus the time of the connection (days since the beginning of
the experiment) on the-axis. Since the plots are for the host as the data source, the offsets reflect
the receiver's clock minus the host's clock. Hence, positive values indicate the host's clock was
running behind the receiver's clock. Note that we include the sign of the offset in the plot—there is
no need to use only the magnitude, as we did above.

196

Offset (sec)
50000 100000 150000 200000
| | | |

0
i
%
E

Figure 12.3: Evolution ofustr 's relative clock offset over the course/of

Figure 12.3 shows such a plot for thestr tracing host's clock over the course of tkig
experimental run. This is the site that we identified above as sometimes having very large relative
clock offsets, on the order of days, yet also, surprisingly, found not to be an outlier in terms of its
medianrelative offset. From the figure, it is immediately clear how to reconcile the findings: up
until the 14th day ofustr 's participation in\y, it kept good time, but after that point its clock
came unglued and ran very slowly, such that the clocks of the other hosts to which it transferred data
ran further and further ahead of it (hence, higher and higher offsets). We look at this phenomenon
further ing 12.7.7.

Figure 12.4 shows the evolution #f;'s greatest median offset outliece , after elimi-
nating its connections withustr . The central points in the plot reflect connections for which
was paired with sites that had a clock closely synchronized to true time (or at least, so we presume,
because of the preponderance of such clocks in the plitpise” values distant from the central
points reflect pairings with other sites that had poorly-synchronized clocks.

We see that the 5 minute median offset actually grew increasingly negative over the course
of NV;. A robust linear fit (shown in the plot) to the points yields an overall offset decrease of about
1.5 sec/day. This is quite small compared to the magnitude of the offsets themselves.

Figure 12.5 shows the evolution bhl 's relative clock offset, with connections doe
removed. The central line appears to show an increasing trend, but a somewhat complicated one.
To look at it in greater detail, Figure 12.6 examines just the region of the line. We observe what
appear to be three separate regions of clearly upward trend, one spanning 0-5 days, one spanning
8-14 days, and one spanning 15-16 days. Each increase corresponds to about 0.7 sec/day. What
is puzzling are the offset shifts between the regions. These appear to be too small to have been

*As discussed if§ 12.2, and revisited below i 12.9, we did not require NTP synchronization of the clocks of the
sites in our study. In addition, we assume that when we discover highly synchronized clocks, that the synchronization was
achieved using NTP. Regrettably, we did not ask the participating sites specifics regarding the site's clock synchronization.

Offset (sec)

Figure 12.4: Evolution obce 's relative clock offset over the course /gt

Offset (sec)

Figure 12.5: Evolution obnl 's relative clock offset over the course/gf

400 30 000 B0 00

450

00 150 00 A

50

10

iz2

=

o=

o0

Days

10

is

197

198

13
\

130
\
%
I

Offset (sec)
125
|
[%%
0o
0
0

120
\
0

Days

Figure 12.6: Expanded view of the central line in the previous figure

caused by someone adjustibgl 's clock by hand, and too far from true to have been induced
by NTP synchronization. Perhaps the changes came from temporary changes in machine-room
temperatures, which are known to alter clock skew [Mi92b].

Figure 12.7 shows the evolution xér 's clock during\7, after removing connections to
austr andoce. It shows not only a steadily increasing relative offset, but a 2-minute adjustment
around day 6. We look at clock adjustments in more detdjli@.6 below.

Figure 12.8 shows the evolution ote's relative offset over the course &f, (as op-
posed toN; in Figure 12.4). The sustained decreasing offset is striking; the fit corresponds to
—1.4 sec/day. Figure 12.9 shows the evolutiortif 's clock duringV>. While overall the clock
has a clear persistent skew, the skew is reversed around day 8, perhaps in an effort to correct the
clock's inaccuracy. But the effort ends a few days later and the original skew returns. However,
around day 27 the clock's relative offset jumps by over a minute, reflecting a different sort of cor-
rection.

Figure 12.10 shows howandia 's clock evolved duringVs. For most of the experimental
run the clock performs very smoothly, but around day 20 it began a slow increase over the next week,
eventually reaching 3 seconds. During this week it initiated transfers to a number of different other
sites, so this effect is definitely due to its own clock variation rather than those of its NPD peers.

Figure 12.11 presents our last example of interesting clock offset evolution, that for
umont's clock duringV>. What is striking here are the presence of offset “towers” that, over
the course of hours, slowly elevate the relative offset from nearly zero to several hundred millisec-
onds. Apparently what is happening is thatont's clock has a fairly hearty intrinsic skew, but
NTP synchronization is detecting this and periodically resetting the clock as it strays too far. We
will see more regarding this behavior whont 's clock below ir§ 12.6.5.

Offset (sec)

Figure 12.7: Evolution ofor 's relative clock offset over the course/gf

Offset (sec)

Figure 12.8: Evolution obce 's relative clock offset over the course g}

00 150

50

50

-100

400 0 80 00 -T60

10

]
]
—]
[
= @Pﬂj@
F}M =
= = o T oeP
]
| o ﬁﬁﬁ
]] =
— @jﬁﬁ]
= =
—)
]
]
]
T T T T
o 5 10 is

199

Offset (sec)

Figure 12.9: Evolution obli

Figure 12.10: Evolution ofandia 's relative clock offset over the course/u}

20

40

40

40

-100

's relative clock offset over the course.g},

8

10

Days

200

201

10

05

DD@
1]
]

m
0o Mo om

Offset (sec)
00
|

05
\
000 m

10
L]
il

Days

Figure 12.11: Evolution ofimont 's relative clock offset over the course o

12.6 Detecting clock adjustments

As shown quite strikingly in Figures 12.7 and 12.9, computer clocks are sometimes sub-
ject to abrupt adjustments in which the clock’s notion of the current time is changed, either gradually
or instantaneouslyg(12.2). Gradual change is produced by artificially altering the clock's skew, so
that it slowly alters its offset towards the target. Instantaneous change is produced by simply loading
a new value into the clock register.

In order to characterize Internet packet dynamics, we will make heavy use in later chapters
of variation in one-way trip times (OTTs). A clock adjustment will result in a systematic shift in
OTTs between those computed prior to the adjustment and those computed after (illustrated below).
If undetected, such a shift can lead to completely erroneous findings of periods of sustained high
delay. Since we are very interested in the possibility that network dynamics truly have this property
anyway, it is vital that we reliably detect clock adjustments so as not to be fooled by them into
drawing such a conclusion.

Backward clock adjustments, in which a clock is set to a value it already registered in
the past, can sometimes be easily detedttite adjustment is largeby the presence of a pair of
timestampsl} andT; for which T, < T even thoughl, was recorded aftef;. We refer to this
sort of adjustment as “time travel,” and already analyzed §t10.3.7. In this section we tackle the
harder problem of clock adjustments (both forward and backward) thatcaagparent by trivial
inspection of the timestamp sequences.

12.6.1 A graphical technique for detecting adjustments

Suppose we have a trace pair betweemdr. One simple way to detect whether a clock
adjustment occurred during the trace is to plot both the OTTs for the packets tarrand those in

202

Bl 0
\

Ong-way Delay (msec)
|
0
0
0
0

1
g Fwm D= T =
B i 175 Rl =i A S -

T T T T T
O.0 0.5 1.0 1.5 2.0

Time (sec)

Figure 12.12: OTT-pair plot illustrating a clock adjustment (sender packets are filled, receiver pack-
ets are hollow)

the reverse direction. (Packets that are dropped have no OTT associated with them and are omitted
from the plot.)

Figure 12.12 shows such a plot made for a connection fsdse to usc in N7. The
solid black squares indicate the OTT for packets sent from the sender to the receiver, and the hollow
squares reflect the OTTs of the acks sent from the receiver to the sender. The OTTs have been ad-
justed using Eqn 12.6 to approximately synchronize the two clocks. (In this case, the approximation
does not work particularly well, since there is more than one clock offset to estimate!)

The figure shows a striking level-shift occurring for the sender's OTTs around time
T = 0.7 seconds, a fall of about 10 msec. Furthermore, the OTTs in the opposite direction show
an equal anappositechange. This equal and opposite change is a crucial aspect of the plot, as it
is the signature of a clock adjustment. If the shift were due to a change in network path properties
(for example, a route change), then in general we would expect that (1) either it would occur in only
one direction, or (2) if it occurred in both directions due to a coupled effect, it would have the same
sign.

For a networking change to result in an equal-but-opposite level shift, some resource
needs to have been shifted between the two directions of the network path, and furthermore the
resource needs to affect the transit times of the small acks equally with those of the large data
packets. It is difficult to see what sort of networking change could do this (buj $8€7.8). The
change, however, makes perfect sense if, at aroundfime).7 secondssdsc 's clock was set
ahead 10 msec, aisc's clock was set back 10 msec. In either of these cases, the difference in the
timestamps for packets sent frasdsc to usc, i.e., the quantityATps defined in Egn 12.2, will
decrease by 10 msec, and similaﬁyfpr will increaseby 10 msec. This is exactly the behavior
shown in the plot.

203

12.6.2 Removing noise from OTT measurements

Two other points concerning Figure 12.12 merit attention. The first is the presence of
a few unusually small sender packet OTTs, one of about 7 msec afiound, and the other of
around—3 msec around” = 2.3 (it is negative because for the plots the clocks were rectified using
AC}‘{'SSS, as discussed if1 12.5.2). Both of these reflect sender packets that did not carry any data
(the SYN and FIN connection management packets). These travel through the network more quickly
than full-sized data packets. Often in OTT plots we will include such packets (as they are a useful
reminder of one source of OTT variation), but we need to be careful when developing techniques
for analyzing OTT behavior to remember that these packets have unusually low OTTs due to their
size. Hence our techniques need to be careful to not weigh their OTT values the same as those for
full-sized packets.

The second important point shown in the plot is the largeation in OTTs, both for the
full-sized sender packets and the receiver packets. For example, note that the OTTs of both some
of the acks before the adjustment, and some the data packets after the adjustment, are larger than
many of the OTTs on the other side of the adjustment. This variation is the first suggestion that we
will require robust algorithms in order to not be fooled by noise when analyzing OTT data. The eye
quite readily picks out the twin level shifts in this plot, but doing so algorithmically requires care to
screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms of deviation of a given
OTT from the value expected if the network were unloaded. The noise, however, has one crucial
property that often makes it tractable: barring a significant change in the network path (such as a
route change), the noise always takes the form of an additive, positive increase. This means that,
given a set of OTT measurements, we can often hope to find those with very little network-induced
noise by looking at the smallest values in the set.

We used this property of OTT noise §nl2.5.1 above when we picked},, anddT}, as
the measured raw offsets to use when attempting to estimate the relative clock offset. We will use
it again when developing methods to detect clock adjustments and skew. For these latter, what is
interesting ardrendsin how the OTT values (with noise removed) change over the course of the
connection. Thus, we cannot simply de-noise the OTT values by selecting the global minimum,
or we will obliterate the trend. Instead we divide the series of OTT values up into intervals and
de-noise each interval by selecting the minimum value observed during the interval. The question
then becomes which intervals to use.

One natural way of devising intervals is to allocate them so that each has the same number
of packets. Another is to choose them so that they each span the same amount of time. For assessing
trends in OTT values over time, the latter seems to be the natural choice. But using fixed-time
intervals has a fundamental problem. Sometimes a connection's activity primarily occurs during
only a small portion of the connection's total duration, with the rest of the time mostly inactive due
to lengthy retransmission timeout lulls.

To address this difficulty, we combine the two approaches by choosing both a packet-
count interval,l,,, and a duration interval;. We then advance through the OTT timings and group
timings into a single interval whenever we have either encountgrpeckets, or we have reached a
point I; from the beginning of the interval. At this point, if we have any packets at all, we take their
minimum as the de-noised OTT value for the interval, and we begin a new interval by resetting the
packet count and setting the start of the interval to coincide with the next OTT measurement.

204

One detail we must attend to is the final partial interval at the end of the connection. Itin
general will not sparf; nor have a full,'s worth of packets in it. We adopted the rule that, if the
interval had more thai, /2 packets, we included it, otherwise we skipped it.

The final issue is how to pick, and ;. For a set ofl» OTT measurements spanning an
interval AT, we used:

[p = {\/ﬁJa

Using these choices means that the number of de-noised OTT values scales as the square-root of
the total number of values. This struck us as a good compromise between preserving sufficient
detail without using too fine a resolution (which could mean we do not effectively remove noise).
Furthermore, we anticipate subsequently applying a number of robust algorithms to the de-noised
values, some of which have running times(@fn?) or higher. For these, if we present them with
only O(y/n) values, then the total running time will remain(n) or only slightly higher, which is
important for performing fast automatic analysis.

We will refer to a measured series of OTT valuegasHere,z; can reflect either a series
of data packet OTTs, or ack OTTs. To detect adjustments ultimately requires comparing properties
of the data packet OTTs with those of the ack OTTs, but prior to developing the tests on these
properties, our discussion will apply to any generic series of OTT values.

We denote the de-noised series derived fignasz;. Note that for eaclt;, the indext
corresponds to the same index as where in the interval we found the (first) minimal valud bfs
is an important point—if we instead adjusted the index to reflect, say, the middle of the interval, then
we might introduce inaccuracies in the trends. The key idea is that the “best” (least noisy) value of
x; during the interval occurred at a particularand we want to take that point and discard all the
others in the interval.

Figure 12.13 shows the results of applying this de-noising method to the measurements
plotted in Figure 12.12.

12.6.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically, since it is infeasible to
manually inspect all 20,000 of our trace pairs to look for adjustmen®s1(4). The central notion
we will use is that of thesignatureof the OTTs in the two directions showing equal but opposite
level shifts.

Identifying pivots

The foundation of our approach lies in identifyipgvots points in time before which
the OTTs all lie predominantly above or below all the OTTs after the given point in time. In Fig-
ure 12.12, the pivot we aim to identify occurs arouhd-= 0.7 sec.

In this subsection we develop a heuristic for identifying pivots in the series of OTTs for
packets sent in a single direction (franto r or vice versa). In the next subsection we then analyze
the pivots identified in both directions to test for a clock adjustment.

205

Ong-way Delay (msec)
)] Rl 40
| |

10

O.0 0.5 1.0 1.5 2.0

Time (sec)

Figure 12.13: Same measurements after de-noising pair-plot

Let #; be a series of de-noised OTT values occurring at timesdered by the time
indext. Letz; be the same series numbered frors 1...n, wheret; is the:th measurement
time.

We define givot partition of i, as a partition ofi; into two disjoint setsg; andz}, for
which the maximum of one set is less than the minimum of the other. Without loss of generality, let
%} be the “larger” of the two sets, i.e., its minimum is larger than the maximusay of

We further require that the time intervals spanned:pgind:; are disjoint, namely either
the largest in Z;, is less than the smallegin 55;]_, or vice versa.

We term the pivot partitiopositiveif the measurements, occurredafter those inz}, and
negativeotherwise.

Geometrically, this definition corresponds to being able to draw horizontal and vertical
lines on a plot like that in Figure 12.13 such that either all of the points lie in the first and third
guadrants formed by the lines (if positive), or they all lie in the second and fourth quadrants (nega-
tive).

It is important to note that a given serig¢gsmay have more than one pivot partition. For
example, ifi, is strictly decreasing, then every valuetdafives rise to a pivot partition. In addition,
any time the largest or smallest valueigfoccurs at the lowest value ofi.e., z;,, then there is a
pivot partition that isolates that one value versus placing all the other values in the other partition
set. Generally, this is not a pivot partition of interest.

We proceed as follows. First, we determine whether to search for a positive or negative
pivot by inspecting whethet;, is less than or greater than, . From here on, we assume without
loss of generality that we wish to detect a positive pivot, such as the one exhibited by the receiver
packets (hollow squares) in Figure 12.12. We indicate in brackets, like [this], the changes we make
to the algorithm when testing instead for a negative pivot.

We search through the measurements to find the poilt where

206

min(#y, , Ly, ,,) — max(Z,_,, o) [respectively, for detecting a negative pivot,
min(#y,_,, 2y,) — max(Zy,, ,,T,,)] iS largest. Conceptually, we are looking for the inter-

vals that have the greatest difference between them in the same direction as the pivot; we spread
the differencing over the additional intervals on either side to combat the problem of the intervals
right at the pivot misleading us due to noise. Note that this spreading operation also means that we
cannot detect a pivot that occurs right at the beginning or end of a connegd@m(5).

k is now the candidate pivot (actually, the potential pivot occurs at a point in time between
measurement and measuremerit + 1). We then inspect the points k to find xi, the largest
[respectively, the smallest] point before the candidate pivot, and likewise thdséo find x4 1,
the smallest [largest] after the candidate.x}fis less [greater] than. 1, then we conclude that
[k, k + 1] does indeed straddle a pivot; otherwise, we conclude they do not.

If we find a pivot partition, then we define its magnitudie as the absolute value of the
difference between the median of the points after the pivot with the median of those before. We also
associate a pivot widthy = ¢, — t.

Identifying adjustment signatures

We now turn to identifying the signature of a clock adjustment for the clocks of two hosts,

s andr. The method we developed is not entirely satisfying, as it uses some heuristics in order to
accommodate residual noise in the OTT measurements, while attempting to not mistake genuine
networking effects for a clock adjustment. However, the method appears to work well in practice.
We note, though, that the method assumes that clock adjustments are relatively rare events: rare
enough that our traces are likely to exhibit at most one adjustment, and that the likelihboth of

of the clocks we are comparing exhibiting an adjustment during the trace is negligible.

Suppose we have two sets of de-noised OTT measurenigrisds;, corresponding to
full-sized packets from the data sender to the receiver, and acks in the other direction, respectively.
If either of 5; or 7, doesnot exhibit a pivot, or if the pivots are both positive or negative, then we
conclude there was not any clock adjustment.

Let M, W, M,., andW,. be the magnitudes and widths of the corresponding pivots. We
next check whether the pivotwerlap Lets; andss denote the packets bracketisgs pivot region,
and likewise forr; andr,. Lets] denote the time at whick; was sent froms (according tos's
clock), ands] the time at which it arrived at (according to-'s clock). With analogous definitions
for the other packets, we then conclude that the pivots overlap if either of the following holds:

si < ry+6t and
sy + 0t > 1],

or

ri < s3+4dt and
r5+ 0t > si,

5This assumption might be violated if NTP updates among widely separated clocks sometimes happen in synchroniza-
tion. To our knowledge, the possibility of this occurring for NTP has not been studied. Given the findings of synchronized
routing messages reported in [FJ94], it does not seem completely implausible.

207

wheredt is the allowed measurement “slop”, which we set to:

max (W, W;)
—

ot =

The idea behind the slop is to allow for other-than-instantaneous adjustments (illustrated below).
If the pivots do not overlap, then we conclude there was no adjustment. If they do, we
then next look at the magnitudes of the pivots. If either magnitude is less than the larger of twice
the joint clock resolutioR, ;. (§ 12.3), or 2 msec (an arbitrary value to weed out fairly insignificant
adjustments), then we declare the pivot “insignificant” and ignore it.
Finally, we look to see whethe¥/, and M, are within a factor of two of each other. If
not, then we term the pivot a “disparity pivot,” meaning that it may be due to unusual networking
dynamics § 12.6.5). If the two agree within a factor of two (which experience has shown is a good
cut-off point), then we conclude that the trace pair exhibits a clock adjustment with a magnitude of
aboutMs M

12.6.4 Results of checking for adjustments

tcpanaly uses the method given §112.6.3 to check each trace pair it analyzes for clock
adjustments. Doing so, we found 36 trace pairsVinout of 2,335 (1.5%) that exhibited clock
adjustments, and 128 out of 15,492Af (0.8%). While these proportions are fairly low (and not
representative, since the behavior of the individual hosts in our study is not necessarily representa-
tive), they are high enough to argue that a large-scale measurement study for which accurate times-
tamps are important needs to take into account the possibility of clock adjustments. Furthermore,
the adjustments are only detectable due to the use of a pair of cléicksstudy uses timestamps
from only one measurement endpoint, then checking the timestamps for clock adjustments becomes
much more difficult. The median adjustments were on the order of 10-20 msec, the mean around
100 msec, and the maxima close to 1 sec. These magnitudes are unfortunately small enough to
sometimes not be glaringly obvious, but large enough to be comparable to wide-area packet transit
times, so they can introduce quite large analysis errors if undetected.

While clock adjustments are usually abrupt, this is not always the case. The adjustment-
detection method found some clock adjustments that occurred due to a short period of altered clock
frequency (i.e., temporary skew). Figure 12.14 shows a striking exdmplere, around time
T = 40 sec the sender's clock began running more quickly than the receiver's, leading to lower
sender OTTs and higher receiver OTTs. Less than 20 seconds later, the frequencies were again
equal, but the relative offsets between the clocks shifted by nearly 1 sec in the process.

12.6.5 Problems with detection method

The method given if§ 12.6.3 works well in practice, but it does sometimes fail to detect
clock adjustments. In this section we look at some cases where we identified this happening.

One-way Delay (msec)

One-way Delay (msec)

1000 150 2000

500

500

200

100

-100

Time (sec)

Figure 12.14: Clock adjustment via temporary skew

i
— - 5:‘?
w o, | L
m= F
- ER
[min]
5
T
== m =
= ' ! em=Tan
| P -_'-.i= e ® o
o 2 ; o s 10

Time (sec)

Figure 12.15: Temporary skew leading to separate pivots

208

209

2000

L}
- -
- -
- -
- = "z
s | == - 5% ==r .
Lo -
—] ' 3] -

. - - -
= - —-— - L -
g - -‘ -

- - -
= = - -
= 1= -
== (=3 1
=] = - E
o -
o
S
[
2 7 =
))
))
S o o o b e
=h =3 =y =
T T T T T T
o 50 100 150 200 250

Time (sec)

Figure 12.16: Clock adjustment masked by excessive network delays

Failure to detect adjustment via skew

In Figure 12.14 we illustrated how sometimes a clock adjustment can occur due to tem-
porary skew. Figure 12.15, however, shows such a case that the method fails to detect. The problem
here is that, due to noise in the forward direction, the two pivots located by the method do not
overlap, so the possibility of an adjustment is rejected. The lefthand vertical line marks the pivot
the method found for the data packets (solid), and the righthand vertical line marks the pivot for
the acks (hollow). In general, this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. This exatogtehowever, exhibit a
negative estimate for min-RTT(§ 12.5.1), sacpanaly still flags it as having a clock problem.

Excessive network-induced delay

Figure 12.16 shows a case where the reverse path exhibits a clear level shift around
T = 70 sec, with a magnitude of about 250 msec, but the corresponding shift on the forward path
is less clear because it is accompanied by an increase in networking delays, too. In that direction,
tcpanaly assesses the magnitude of the shift as about 730 msec. Since this is more than twice the
magnitude in the other directiottpanaly rejects the possibility of a clock adjustment.

tcpanaly flags a trace pair like this as having a “disparity pivot,” hamely common pivots
that have too great a difference in their magnitudes to be considered a clock adjustment. Disparity
pivots are quite rare (only 61 iV5). We inspected each one and found that only the one shown
above was a likely clock adjustment. The rest appear simply due to unfortuitous patterns of noise,
often in truncated trace§ (0.3.4) with few OTT timings.

5Note that the OTTs in the plot have not been “de-noised” (discussgd M6.2). Likewise, subsequent OTT plots
do not show de-noised OTTs unless so stated.

210

600
\
0
0

= Cam

=
=] H oo
S ogE § UogPl o o X, -

400
\

Ong-way Delay (msec)

Time (sec)

Figure 12.17: Clock adjustment missed because too close to end of connection

Adjustment too close to connection edge

Since our method for identifying pivot$ (12.6.3) will not accept a pivot right at the
beginning or at the end of a connectianpanaly naturally will miss this sort of adjustment
should it occur. Figure 12.17 shows an example. This one, like the one above, is still detected by
tcpanaly due to a negative estimate for min-RJT

Multiple adjustments

The development of the clock adjustment detection algorithm presumes that there is a sin-
gle clock adjustment to be detected. Sometimes a trace pair suffers from more than one adjustment,
and the algorithm either only detects one of them (which suffices, if the policy is to discard trace
pairs with any adjustments in them), or fails to detect any of them. The latter is particularly likely if
there are two adjustments in opposite directions. Figure 12.18 shows a striking example of a trace
pair with two adjustments, both effected using temporary skew. The algorithm fails to detect these
adjustments, butpanaly flags the trace pair due to a negative estimate for min-RTas well as
due to strong negative correlation between the two directi9d?.6.6 below).

Clock “hiccups”

Related to the multiple adjustments discussed in the previous subsection are clock “hic-
cups,” in which one of the clocks in a trace pair momentarily either ceases to advance or advances
very quickly. Figure 12.19 shows an example, occurring at fline 6 sec. It is possible that this
example is actually due to surprising network dynamics, as the 4 acks with lowered OTTs come
right after the only packet reordering event in the trace. While a clock glitch can change the value of

211

Time (sec)
Figure 12.19: Clock adjustment “hiccup”

=
%)
X
7
0 P
& m D
1 S
5
0 1 0 11
1 0 -9 0
I a 0 4 > 0 Lo o nm nE g T
'%LFEEE ‘G m 0 1 Iﬂ-—
il " 5 0 EED
‘ | o £ 01 ON] LR
0 o minn 1 000
o 0ooao O i
~ bt wgao 1NN
0 e 0 11
- % L
-8 > m o oo i
¢ 175} D 0, mun 1t
: = am 0 g1
i d F =} 0 m_ My
0 ° od i 0 (W] l.
L v 1
¥ m . D@w g 1] .-l
O
g 4 P L o
e o DDDD 0 0 10y
2 F o 3 L LT
: a "o '
iy il . i n
U ! 2 . '
11 i -0 ~ i
T T T T T T — T T T T T
o
009 0oy 00 0 0 oo Wv 087 097 0T 01 007
[

(v3su) feppq fem-auQ (o3su) feppq fem-auQ

212

OTTs, itcannotreorder packets on the wire! But it is difficult to see what networking mechanism
could lead to the data packets in the opposite direction simultaneously experiencing increased delay.
This hiccup is undetected hypanaly

12.6.6 Detecting adjustments via correlation

When we examine a smoothed OTT pair plot such as that in Figure 12.13, a different
approach for detecting adjustments suggests itself: look for strong negative correlation between the
forward OTTs and the reverse OTTs. In general, this approach suffers from two problems.

First, it is highly susceptible to error due to large noise elements. Periods of inflated OTT
values (such as due to an increase in queueing) tend to dominate the computation of the coefficient of
correlation. We attempted to address this difficulty by devising a “robust coefficient of correlation”
based on the direction of deviations from the median, but this proved no better: we were unable to
eliminate the dominant effects of noise.

The second problem is that strong negative correlation is also a signature for relative
clock skew, as discussed in the next section. So, by itself, it does not suffice for detecting clock
adjustments.

There is still a role for correlation testing, though. In particular, if we only consider cor-
relation significant when it is extremely strong, then the noise effects of momentary congestion
periods diminish, and the approach holds promise for detecting cases of large adjustments and rela-
tive skews. In particulawery strong correlations can detect multiple adjustments and adjustments
via skew and this property motivated us to pursue it further.

The method we devised is based on examining the intervals produced when looking for
pivots. For each interval, we compute the median of the OTT of the packets sent by the sender
(either full-sized data, or acks, depending on the direction). Calkthis Similarly, for the packets
receivedby the sender from the receiver during the interval, we compute their OTT medlian,

(We require that at least three packets were sent and another three received, otherwise we skip the
interval in our analysis.) We then computg,, the coefficient of correlation between thg,'s

and their corresponding,,;'s. Similarly, we computé, ; in the opposite direction. That is, we
construct similar intervals based on packet departures and arrivaisstéad of at.

If tcpanaly finds that bothd, ., < —0.9 andé,.; < —0.9, then it flags the trace pair as
exhibiting strong negative correlation. We then inspect the trace pair by hand (i.e., using an OTT
pair plot) to determine the source of the correlations.

We found that connections only very rarely have the property of strong negative correla-
tion. (If, however, we lower the threshold from0.9 to —0.8, quite a few more connections are
flagged, but upon inspection they do not appear to exhibit any clock anomalie§)), mly two
trace pairs were flagged. One of these was the double-adjustment shown in Figure 12/1,8&in
connections were flagged. Five of these, however, invobeed which we show below§(12.7.8)
to have highly unusual behavior in general. The sixth is an “edge” clock adjustment similar to that
shown in Figure 12.17.

The secondV; trace pair with strong negative correlation is quite interesting, however.
Figure 12.20 shows the corresponding OTT pair plot. It is clear that the correlation stems from the
tendency for the reverse-path OTTs to climb sharply, by 100-200 msec, followed shortly by the
forward-path OTTs falling by roughly the same amount. Another striking feature of the plot is the
sustained elevated level for the forward OTTs after about iime 3 sec.

213

Ong-way Delay (msec)
300 400 500
| | |

200
\

100
\

o 5 10 is

Time (sec)

Figure 12.20: An OTT pair plot showing strong negative correlation

These two features are fundamentally related. The link connecting the sender of this
connection to the rest of the Internet had a capacity of 56 Kbit/sec, or under 7 Kbyte/sec after link-
level overhead is deducted. Thus, it was not difficult for the sender to open its window sufficiently
to build up a queue at this link's router. The size of the OTT increase reflects the size of this queue.
Occasionally, the acknowledgements sent by the receiver are beingressedthat is, several of
them all arrive at a queue, and there they have their spacing compressed because they are placed
in the queue closely together. (Sg&6.3.1 for a more detailed discussion.) The signature of “ack
compression” on an OTT plot is a quick build-up in OTT (reflecting having to wait in the queue)
followed by a likewise-quick decrease in OTT (as the back-to-back acks all leave the queue closely
spaced together).

By inspecting sequence plots corresponding to this connection, we see that what is hap-
pening is that the ack compression leads to a delay at the sender as it waits for the lead ack of the
compressed group to arrive. During this delay, the queue at the 56 Kbit/s link connecting the sender
to the Internetirains, so once the acks finally arrive and the sender sends out a bunch of packets, the
first packet encounters very little queueing delay at the Internet link. This low delay is reflected in
the plot by the dip in the sender OTTs. It then immediately climbs back up as the remaining packets
in the bunch queue behind the lead sender packet.

This effect occurs quite often in connections for which there is a low-speed bottleneck
link. The example shown above, though, was the only one in which the effect was so strong as to
be detected by the negative correlation test.

12.7 Assessing relative clock skew

Many of the clock errors discussed §nl2.5.3—often skews on the order of perhaps a
second a day—might seem trivial and perhaps not worth the effort of characterizing. For purposes

214

300

\
1 mm
[}

-
|
-
- u
- -
g - - -
g g 2% Sy -
= - "= - = -
g [} - EI- :': . - e
= = -
g § I - = O = £ = - -.- -
£ 4 §. 8 oo = AR =
o - - =
= = = -
| T : < E
= =
B O fam}
= E 8 &= %8 o
= " = = = S
- = S
= =3
T T T T T T T
o 20 40 60 80 100 120

Time (sec)

Figure 12.21: An OTT pair plot showing relative clock skew

of keeping fairly good absolute time, this is true, but, for purposes of assessing network dynamics,
it is not.

To illustrate why skew is a crucial concern, consider evaluating OTTs between two hosts
s andr, for whichr's clock runs 0.01% faster thats. That is, over the course of a dajs clock
will gain about 9 seconds relative s clock, not a particularly large error for many purposes. If,
however, we are computing OTTs betweeandr, then over the course of only 10 minutes clock
will gain 60 msec oves's clock. If we assume that variations in OTT reflect queueing delays in the
network, then this minor clock drift could lead to a large false interpretation of growing congestion.
For example, ifs sends 512 byte packets tcand the bandwidth of the path between them is T1
(§ 14.7.1), then a true 60 msec increase in delay reflects the equivalent of an additional 23 packets'
worth of queueing. Thus, quite “minor” skew differences between the two endpoint clocks can lead
to quite large, erroneous assessments of queueing delay.

Because we are very interested in accurately characterizing queueing time $téld3, (
it is vital that we determine whether a given pair of clocks suffer from skew. The first issue is
then to identify a skew “signature” similar to that for clock adjustments shown in Figure 12.12.
Figure 12.21 shows an OTT pair plot that exhibits a clear skew signature: the OTTs in one direction
show a steady overall increase, while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about 120 msec over the 2 minute course of the connection, consistent
with the receiver's clock advancing about 0.1% faster than the sender's clock. It is difficult to see
what sort of network dynamics could introduce such a true combined inflation and deflation of OTTs
over a two-minute period, so we conclude that the OTT pair plot shows strong evidence of relative
clock skew.

Two other clock skew signatures we investigated were differences in round-trip times
(RTTs) reported by the endpoints in a connection, and strong negative correlations between the
forward and reverse OTTs. The difficulty with evaluating RTT differences lies in limited clock

215

resolutiorf and noise making the RTTs in the two directions slightly different even in the absence
of clock skew. The difficulty with looking for strong negative correlations is the same as discussed
in § 12.6.6 above, namely that except in instances of very strong clock skew, there is too much noise
to obtain a reliable decision based on the strength of the correlations.

In the remainder of this section we develop robust algorithms for detecting and removing
relative clock skew.

12.7.1 Defining canonical sender/receiver skew

Before we proceed with developing a method for identifying relative clock skew, we need
to define exactly what quantity it is that we wish to estimate. First, we assume that the skew trends
we identify will be linear. While we might possibly encounter non-linear skew, we did not find
any clear examples of such jx; or N5, except those shown §12.6.5. For linear skew, we can
summarize the skew using a single value that reflects the excess rate at which one clock advances
compared to the other.

To avoid ambiguity (in terms of which clock we are comparing to which), we will always
qguantify howC,, the receiver's clock, advances with respect{o Suppose’, runs a factorm
faster thanC, by which we mean that, i€’ reports that an intervahT has elapsed, thefi, will
have reported the same interval as having lemgilT". Likewise, we can say thdt, runs a factor
1/n faster tharC;. (or, a factor ofy slower).

The algorithms we develop for estimating relative skew all work in terms of linear trends
in OTT measurements. These trends are estimated based on how OTT measurements expand or
shrink with respect to time. It is important to recognize that the phrase “with respect to time” does
not mean “with respect to true time,” since we have no way of measuring true time. Instead, it
means “with respect to the packet originator's clock,” that is, the clock associated with tracing the
TCP endpoint that sent the packet.

When discussing a linear trend in the measured OTTs of the packets sent by Wwest
will quantify the trend in terms of;, the growth in the OTTs of the packets sentdySuppose
packetp; is sent at timel’}, according toC;, and arrives at timd}}, according taC;.. Likewise,
suppose packe, is sent af’? and arrives af’2. Suppose further that the transit times of the packets
are identical (no network-induced noise), so the only variation in their OTTs are due to clock skew.

The measured OTTs for the two packets are:

O = T'-T)
0, = T?-TZ2

As G, quantifies the linear growth in measured OTTs over time, we have:
Oy = 01 + G4(T? - T)).

In the absence of relative skew betwegnandC,, G5 = G, = 0.0. If C,. runs faster tha, then
the packets sent bywill exhibit increasingOTTs and those sent bywill exhibit decreasingdTTs,
so we will haveG; > 0 andG, < 0. Naturally, the reverse holdsdf, runs slower thart.

"For example, if the RTT is on the order of 100 msec, and the clock resolution is 1 msec, then only relative skews
larger than 1% can be detected; these are very large.

216

We now relatez, and G to 7, the factor by whichC,. runs faster thar';. Continuing
the example above, we have:

Oz — Oy
Gs = ——————
: T2 — T}
_ (Tr2 _Tsz) - (Trl - Tsl)
T2 - T!
_ (Tr2 - Trl) - (T52 - Tsl)
T2 - T}
- T2 —T1
S S
= n—1. (12.8)
It can similarly be shown that:
1
G, = —-—1 (12.9)
n
= ! 1 (12.10)
Gy +1 T '
Forn =1+ ¢, wherele| < 1, we have:
Gs = ¢,

G, =~ -—e.

Because clock skews are often only a few parts per thousand or ten thousand, we are usually in this
regime (but seé 12.7.7 below). Consequently, an easy inaccuracy to introduce is to assume that:

Gs = _Gra

(i.e., the slopes are equal but opposite), since this often appears to be the case when inspecting OTT
pair plots. To ensure full accuracy, we instead take care to always use Eqns 12.8 and 12.9 to express
relative clock skew in terms of, or Eqn 12.10 to translai@, to G ;. We will refer to values of7

and@, that are consistent with respect to Eqn 12.10 as “equivalent but opposite” slopes.

12.7.2 Difficulties with noise

One patrticular problem with testing for clock skew is that one of the paths can have
such highly variable OTTs due to queueing fluctuations that these completely mask the smaller-
scale trend of OTT increase or decrease due to skew, even after de-noising. Figure 12.22 shows
an example, in which congestion on the forward path completely obscures the relative clock skew,
which is apparent from the enlargement of the return path shown in Figure 12.23. Such noise most
often obscures the forward path (presumably due to extra queueing induced by the data packets), but
it can also obscure the reverse path. Thus, we cannot always rely on the signatuabegiuivalent-
but-opposite OTT trends; sometimes we must settle instead for simply a compelling trend in one
direction.

One-way Delay (msec)

One-way Delay (msec)

2000

1500

1000

500

)

(3

80

[

10

- -
‘-
-
-
- -
> = L -
- = ‘ -‘- - -‘ o™ = -
e ™ o —
_h - a — -
_ - -, .- e o
- - -
- -
-
-
£
-
- -
L}
-
L
R T T T T T T T L 1881 ATEST R8I 18101008110 i s
—
T T T T
o 10 20 30

Time (sec)

Figure 12.22: Clock skew obscured by network delays

=)
)
—) =
gﬁgﬁ - ™
= =
e =] =]
i o =
- =8 @%’@E
=
B = FED o
= SR
Doy
— -)
T T T T
o 10 20 30

Time (sec)

Figure 12.23: Enlargement of reverse path

217

218

12.7.3 Failure of line-fitting approaches

Ouir first attempt to detect relative skew was based on the idea of fitting lines to the OTT
plots. We hoped that fits with equivalent and opposite slopes would indicate clock skew, and those
without would indicate a lack of skew. One difficulty with this approach is cases of unidirectional
noise, as illustrated in the previous section. For these, we can still try to find a very clean fit in one
direction, and, if present, to then use it to deduce the presence of skew.

From Figure 12.21 it is clear that the raw OTT measurements are too noisy to hope for
clean fitting, as was also the case when testing for clock adjustments. So, we again base our analysis
on the de-noised OTT measuremesisandr; (5§ 12.6.2).

Even using de-noised measurements, least-squares fitting fails to provide solid skew de-
tection, because residual noisednand; makes it too difficult to reliably distinguish between
a skewing trend and coincidental opposite queueing trends. All it takes is one period of elevated
gueueing at either end of the connection to throw off the fit.

We expected as much, but had high hopes for the robust linear fitting technique discussed
in § 9.1.4 as a way of coping with the residual noise. Alas, even this approach fails to reliably
detect clock skew. The difficulty lies in both false positives and false negatives generated due to
gueueing fluctuations. These fluctuations are sufficient to introduce frequent non-zero slopes for
the robust fits, and sometimes these slopes happen to have equivalent magnitudes with opposite
sign. Furthermore, the fluctuations are often significant enough to alter the slopes so they no longer
have equivalent magnitude in the different directions, even though skew is present. Finally, the
robust techniques do not offer much help in distinguishing between a genuine skew trend in one
direction and noise in the othef {2.7.2), versus noise in both directions but no skew.

12.7.4 A test based on cumulative minima

Eventually we recognized that the most salient feature of relative clock skew is not simply
the overall trend (slope) of the OTT measurements, but the fact that the smallest such measurements
continually increase or decrease. This observation suggests the following statistical test, the strength
of which is that it is relatively immune to transient increases in OTT measurements due to queueing
buildups.

Suppose we have observationsX,;, 1 < i < n, wheret; is the time of the observation
and Xy, is the value of the observation. We assume that {lseare monotone increasing, and that
the X, are distinct. Further, we assume without loss of generality that we wish to test for a negative
trend inX;,. We discuss applying the same test for a positive trer§dlin.7.5 below.

Consider the indicator:

I = {1, if X;; < min;<; Xy, orif j =1, and
! 0 otherwise.
Thatis,I;; is 1 if X;; represents a new “cumulative minimum” if we inspéGt from 1 up toj (but
not all the way up t@), and 0 if there is an earliex;, that is less tharX;, .
If the X;, are independent, then:
P[It]‘ = 1] = 1/]7

because the probability that any particukgy; out of ; observations is the minimum of the group is
simply 1/3.

219

Consider now the function: ,
J
M] = Z Itia
i=1

which is the number of cumulative minima seen as we inspgcfrom the first value up to thgth

value. The key observation we make is that, in the absence of a negative trend, the distribution of
M; will tend to be close to that for independeki; ; that is, we will find a few cumulative minima

but not a great number; while, in the presence of a negative trend, we should find many cumulative
minima, since theX,, tend to get smaller and smaller.

Suppose we findf,, = k, that is, theX;, exhibit & cumulative minima. We wish to
compute the probability that we would have observed this many or more minima, given the inde-
pendence assumption. If we find the probability sufficiently low, we will reject the null hypothesis
that theX,, are independent. In its place we will accept the tentative hypothesis (which we will
further test ing 12.7.6) that theX;, exhibit a negative trend.

Let:

R(n,k) = P[M, > k].

Given0 < k < n, we can computé?(n, k) recursively, as follows:

1, if k=0,
R(n,k) = { 1/nl, if Kk =n,and (12.11)
R(n—1,k—1)(1/n) + R(n—1,k)(1 —1/n) if k <n.

The first case is the degenerate one that grounds the recursive definition: the probability that there
are at least O cumulative minima is always 1.

The second case corresponds to every siAg)ébeing a cumulative minimum. This only
occurs if theXy,'s are sorted in descending order, which, if they are independent, has probability
1/n!, since there are! permutations of theX;,, only one of which is sorted (because thig are
distinct).

The last case corresponds to conditioning on wheferis a cumulative minimum or
not. For independenk’,, it will be a cumulative minimum with probability /». In this case, for
then points to exhibit at least cumulative minima, the — 1 points prior toX;, must themselves
exhibit at leask — 1 cumulative minima, which occurs with probabiliy(n — 1, k—1). If, however,

X, is not a cumulative minimum, which occurs with probability 1 /», then then — 1 prior points
must exhibit at least cumulative minima, which occurs with probabilifgy(n — 1, k).

We can computeR(n, k) in O(n?) time using straight-forward dynamic programming.
Furthermore, if the dynamic programming is done using a “mema” function that remembers its
previously-computed results in a table, then additional computatiodf%) will benefit from
earlier computations, and the evaluation becomes extremely cheap.

Figure 12.24 shows the distribution &f(n, k) for n = 15. The key feature of the distri-
bution that makes it a powerful test for a negative trend is the rapid fall-off in probability above a
certain point, in this case arourtd= 8. Because if theX;,'s do indeed have a negative trend we
should findk quite close toe, this means we can readily distinguish between the case of a negative
trend and that of no trend, without requiring tfzdit of the X;, be increasingly negative. Thus, we
can accommodate considerable noise.

Finally, we take as for the size of the trend the slope computed by a robust linear fit
(§ 9.1.4) toX;,'s minima. This corresponds to the vallig or G, discussed ir§ 12.7.1 above.

220

10

P >=H
05

04

02
\

Figure 12.24: Distribution oR(n, k) for n = 15

12.7.5 Applying the test to a positive trend

The test developed if 12.7.4 for detecting a negative trend can also be applied to de-
tecting a positive trend, with one subtlety. At first blush one might think that, to do so, one simply
uses maxima in lieu of minima. This works in principle, but fails when applied to OTT sequences,
because of the positive additive nature of OTT noks&Z4.6.2). That is, the maxima will be often
dominated by the noisiest OTT values, rather than by OTT values that slowly rise due to skew, so
the noise will obscure any positive trend due to clock skew. This remains a problem even after
de-noising, since all it takes is a single period of elevated OTT values, long enough to span an entire
de-noising interval, to pollute the de-noised values with what will in some cases by a global max-
imum. When searching for a negative trend, such an interval will, on the other hand, simply not
include a minimum; but it will not prevent the test from finding other minima due to clock skew.

There is a simple fix for this problem, though. The key observation is that the smallest
OTT values are in general those with the least noise. So we apply the cumulative minima test to
Yy, = Xt,_;,,» Which is simplyX;, viewed in reverse. The reversal converts a positive trerdjn
to a negative trend iiir;;, which the cumulative minima algorithm then readily detects.

Finally, for a given serieX;, we need to decide whether to test it for a positive or negative
trend. We do this by first performing a robust linear fit to the observations. If the slope of the fit is
positive, we look for a positive trend; if negative, a negative trend; and if exactly zero, we decree
there is no trend.

12.7.6 Identifying skew trends

With the cumulative minima test we finally have a robust algorithm for detecting trends.
These trends, however, might not be due to clock skew but to networking effects, so we need to
develop furtheheuristicchecks to correctly detect linear skew.

221

Suppose we have two sequences of de-noised OTT measuregemdy;, correspond-
ing as usual to the full-sized data packets sent from the connection sender to the receiver, and the
acks sent back from the receiver to the data sender. For each sequence, we first determine whether
it is askew candidatas follows.

Let u; denote the given sequence. LRf(n,k) be the probability that the sequencg
matches the null hypothesis of no trend (independence) given by Eqn 12.11. We copsig&ew
candidate if either:

1. Ry(n,k) < 10°% anduy is either#;, or u; is 3; and its trend is negative. This latter test
is because queueing buildup due to the data packets sent along the forward path can often
produce a strong positive trend; or

2. R,(n,k) < 1073 andw, is tightly clusteredaround the trend line. The goal here is to allow
for a skew candidate if the, points fit quite closely to a (linear) trend, even though their
cumulative minima probability is not so small. This can happen, for example, if we do not
have a large number of points ip. For example, if we have only 7 points in, then the
smallest possible value @t,(n, k) is

1
Ru(nan) = Ru(77 7) = ﬁ 2 10_47

which will fail the R, (n, k) < 1075 test in the previous item.

Note that the limit of L0~ precludes assuming a skew candidate if there are fewerathan
points, sincel /6! ~ 1.4 - 103 (but see below).

It remains to define “tightly clustered.” To do so, we compute the inter-quartile range (75th
percentile minus 25th percentile, gg®.1.4). If it is less than or equal to the larger of the
joint clock resolution,R, ,, or 1 msec, then a large number of the de-noised OTTs lie very
closely to a pure linear trend.

We then proceed to determine whether eitheor 7, is compelling enough by itself to
accept as evidence of a skew trend; or if the pair forjoiat skew candidatéo be investigated
further; or if there is insufficient evidence for a skew trend. To do so, we first consider which of
them is individually a skew candidate, as follows:

1. If neither is a candidate, then we check to see whether(R, (n, k), R, (n,k)) < 1072, If
so, then the joint probability that both have no trend (or, more precisely, are fully independent)
is < 10~%, which we consider sufficiently low to consider them as joint skew candidates and
proceed as discussed below. If either probability excaéds, then we reject the trace pair
as a candidate for exhibiting a skew trend.

2. If 7, is a skew candidate byt is not, then we accept, as reflecting clock skew quantified
using the corresponding,.. We do so because sometimes we have no hope of detecting a
skew trend ing; due to queueing buildup, as illustrated in Figure 12.22 and Figure 12.23.

3. If §, is a skew candidate b is not, then we check the direction &fs trend. If it is negative,
then this goes against the networking tendency for a positive trend induced by the queueing of

222

the data packets along the forward path, and we acgegs reflecting clock skew quantified
usingG.

If the trend is positive, we must proceed carefully to screen out a false skew trend due to
queueing. First, we require

2 2
o3, < Ofps

that is, the variance of the de-noised OTT values along the forward path is less than that in the

reverse path. If this is not the case, then we reject the trace pair as a candidate for exhibiting
a skew trend.

Next we splits; into two halves,s;, and3;,, with the division coming at% | if s; hasn
values. IfR(n, k) for either half exceeds0=2, or if the trends for the two halves do not agree
in direction, then we also reject the possibility of a skew trend.

If 5, passes these tests, then we consigeands;, as comprising a joint skew candidate. We
reverses;, so it now has the opposite trend f, and proceed as discussed below.

4. If both 3; and7; are skew candidates, then we consider them together a joint skew candidate.

If the above procedure yields a joint skew candidate, we then evaluate the candidate as
follows:

1. If both candidates have the same trend direction, then we reject the possibility of a skew trend.

2. If not, then we translate the first candidate's skew quantification into terms of the second
candidate using Eqn 12.10. L&t andG be the corresponding skew quantifications (one of
which has been translated, so they can be directly compared). If

G+ Gy
|G1 — Ga| > —5
that is, the difference between the two exceeds their average, then we reject the pair as having
too much variation in their slopes for them to be trustworthy indicators of skew. Otherwise,

we accept the pair as indicative of a skew quantifieGras <1+,

12.7.7 Results of checking for skew

tcpanaly uses the method given §n12.7.6 to check each trace pair it analyzes for clock
skew. We found that 295 trace pairsAfi out of 2,335 (13%) exhibited clock skews, and 487 out
of 15,492 did so inV; (3%). These proportions are high enough to argue for considerable caution
when comparing timestamps from two different packet filters.

In both A/; and N>, about three-quarters of the skews were detected on the basis of
alone, not particularly surprising since often a skew treng iwill be lost in the OTT variations
due to queueing induced by the data packets. The largest skl was a whopping; = 5.5,
meaning that one clock ramore than five times faster than the othdfigure 12.25 shows how
skew like this appears in an OTT pair plot. Note that the reverse path starts d'time4 sec
becausecpanaly could not figure out any sort of useful relative clock offset. In the forward
direction, the connection's elapsed time was only 2 sec, but in the reverse direction it took 10 sec!

223

=

=3 |)

= = -

= []
]
]
= H
E=a) -

[

g s H

~ = []
—_— []
= o
3 o -
= f |
5 =
<5 = |
= -
= -
= -
=] -
S - o

- B=a]
s [=]
8. - =il
- =
- @%
- =]
- [=i)
= = =
S 7] -
' T T T T T T
-4 -2 o 2 a (S

Time (sec)

Figure 12.25: Example of extreme clock skew

This example is more than just an amusing curiosity. It occurred not once but 43 times in
Ni. Each time, the slower clock belongedaastr , and that was indeed the erroneous clock. We
know it was the broken clock of the pairs exhibiting the problem not just because it was always one
member of each problematic pair (which would be convincing by itself), but also because RTTs in
those connections computed using its timestamps are physically impossible (too small) for the long
distances traversed by the packets it sent and received. We likewise see the onset of this problem
above in Figure 12.3. Note, however, thastr 's clock was one of the ones identified§in2.5.3
as beinghighly synchronized with a number of the other sites, indicating care was being taken to
keep accurate time with it (presumably using NTP). Thus, this clock's behavior is an compelling
argument thajust because a clock is believed to be well-synchronized does not render it immune
from extreme error!

Aside fromaustr 's clock, the next largest skew we observedinwasn = 0.991, a
frequency difference of about 0.9%. This led to an OTT change of about 70 msec during an 8 sec
connection. All in all, after removing connections involviagstr , in A7 the median skew had a
magnitude of about 0.023%, and the mean 0.035%. These are small, but not negligible, as discussed
at the beginning of 12.7.

In N3, the prevalence of trace pairs exhibiting skew was significantly lower (3% versus
14%), perhaps due to the use among the participating sites of newer hardware with more reliable
clocks. Apart fronoce 's clock, which we discuss i612.7.8 below, the largest skews we observed
were on the order of 6%. One of these was the example of clock adjustment using skew in Fig-
ure 12.15 above. Figure 12.26 shows another example. The pattern is quite striking, and clearly
could lead to grossly inaccurate conclusions about network dynamics if undetected. Note that both
sites involved in this connectiomrao andustutt , were among those identified as closely syn-
chronized inV> (§ 12.5.3), again emphasizing that clocks thatiargeneralwell-synchronized can

still exhibit very large errors.

224

]
=0 .__
- -
1]
f=—3 = -
=S
= =
-
-
=
= |==a] --
(=
3 == -
= = -
e = —
—. I35 0 =
<
=] =i
a - =
= =
= = -
= []
o . =
o — -r-
- [
- -]
- - =]
-]
| _
=2 -l =
[
. -
T T T T T T
o 2 a [S3 8 10

Time (sec)

Figure 12.26: Strong relative clock skew of 6%

If we removeoce 's connections and those with skews larger than 1%, then the median
skew magnitude of the remainder My, is about 0.011%, and the mean around 0.016%. These are
a factor of two smaller than those iv;, but still not completely negligible for assessing queueing
in longer-lived connections.

12.7.8 oce's puzzling dynamics

When testing theV, trace pairs for clock skew, we repeatedly encountered puzzling dy-
namics (or clock behavior) for some of the connections originateacby and, to a lesser degree,
some of those in whichce was the receiver of the TCP transfer. (This did not occunfer con-
nections inNi.) Figures 12.27 and 12.28 show the general pattern of behavior. The connections
have exceptionally high RTTs, more than 2 sec. These times far exceed the intrinsic propagation
delay from the remote sites t@e . Furthermoretraceroutes from oce to other sites often show
a first hop RTT on the order of 2 sec; thus, almost all of the delay is occurring righe & border
to the Internet.

Another part of the puzzle is the shift in OTTs from almost all of the total delay being in-
curred by the acks incoming te , to almost all of it being incurred by the data packets outbound
from oce, back to the incoming acks again. The pattern is sometimes a bit different. Figure 12.29
shows a trace for which during most of the trace's 7.5 minute lifetime, the ack OTTs were virtu-
ally constant, while those for the data packets fluctuated enormously (1000's of msec). Then, at
T = 235 sec, the ack OTTs suddenly begin to increase by a whopping 8 seconds, only to return to
1 sec again after a 75 second outage.

One possible explanation is that the network path betweerand the rest of the Internet
exhibits what we terrhalf-duplex self-interferencé hat is, somewhere on the path, probably at the
first hop, there is a half-duplex link that does not fairly arbitrate between traffic in the two directions.

225

[1 [] o DD@DDDEW

]
Ny o i

[T T .=D %@a

Sulily !—HF.II.-..-._- ImEn

o %Emeﬁmmm t=—l=|=

DD s M
i W
o ml
B U n
oo n
0 n
0 '
, , , !
000€ 000¢ 0007 0

(v3su) feppq fem-auQ

10

Time (sec)

Figure 12.27: Example of puzzlingce behavior

,
0009

,
0007

000E 000C

(o3su) feppq fem-auQ

,
000 0

Time (sec)

Figure 12.28: Another example of puzzlinge behavior

226

8000
\

g - - - L |
= S - |]
5 = = -
=5 -
= é‘ -
= -. -
= - -
oD P u
E g = -
- =]
] mn

2000
\
il

Time (sec)

Figure 12.29: One more example of puzzlimge behavior

Initially, the data packets get first use of the link, and the acks must wait for their turn. Eventually,
the phasing between which end of the link has preference shifts, so the acks gain preference and the
data packets must wait, and with time it then shifts back.

One can imagine half-duplex self-interference occurring on any heavily-loaded half du-
plex link that does not explicitly guarantee fairness between the hosts using the link. For example,
Ethernet networks can exhibit a “capture effect” in which the host using the network is unfairly able
to continue using it longer than intended [RY94]. Another half-duplex networking technology that
can exhibit unfairness on small time scales is FDDI, in which a single host can continue to use the
ring for up to the “token holding time” [Jai90]. We have observed “ack compressipatE.1)
on high-speed network paths in which it appears that the compression is not due to network-layer
gqueueing, but instead to link-layer delays, in which a TCP connection's acks wind up waiting for an
FDDI token that is being hoarded by the same connection's data packets traveling in the opposite
direction.

While half-duplex self-interference would explain the interplay betweewndbeorward
and reverse OTT variations, it does not by itself explain the very large first-hop delay associated
with the behavior. It may be that reversing the direction in which the link is being used is a very
expensive operation (perhaps because of low-layer errors and retries; it seems unlikely such an
expensive mechanism would be designed into a data link). othestaff was unable to obtain
an explanation for the phenomenon from their networking providee does have a firewall in
place through which the NPD traffic must transit, but it would be extremely poor performance for a
firewall to add 2 seconds of latency to every packet it forwarded.

The final part of the puzzle concernse's clock. As discussed if 12.5.3, its clock
was the least-well synchronized in both andA>,. Even for thoseV; oce connections that did
not exhibit this sort of behavior (and many did not), the clock often exhibited skew. It is possible
thatoce's puzzling network dynamics makes synchronizing the clock difficult. But it is also quite

227

possible that at least some of the puzzling dynamics are due to the clock itself (i.e., measurement
artifacts), since the variations resemble quite closely the signature of a clock that is varying its rate
over short time scales. The only problem with this explanation is the fact that the connections much
more often start with elevated OTTs for the return path that then decrease as the forward path OTTs
increase (Figure 12.27 and Figure 12.28) than the other way around (Figure 12.29). If the behavior
were due to a variable-rate clock, then we would instead expect the clock to be equally likely to
start the connection running at an elevated rate as at a depressed rate. For the OTT patterns to be
due entirely to a misbehaving clock requires that somehow fluctuations in the clock's variable rate
are tied with the host computer's network traffic. It is difficult to see what sort of mechanism could
create this linkage, however.

Because the magnitude of the effect is sometimes so large, and because we could not rule
out clock behavior as a source for the behavior or part of the behavior, we decided to eliminate all
of the NV, oce connections from any analysis that involved timestamps produced by its clock. (But,
for example, we still analyze its connections for statistics like proportion of packets lost, since these
do not rely on timestamps.)

12.7.9 Removing relative skew

As discussed in the previous section, a non-negligible proportion of the trace pairs in our
study suffer from relative clock skew. We would like to remove this skew so we can then reliably
include those traces in our analysis of network dynamics. Fortunately, the skew almost always
appears well-described as linear, which means it is straight-forward to remove it.

To remove skew of magnitudg we simply modify all the timestamp$ generated by
C, using:

tr' =17 + G (t] — 1), (12.12)

whered,. is given by Eqn 12.9 andj; is the first timestamp generated by. To understand this
transformation, recall fron§ 12.7.1 thatG, gives the trend in how OTTs for packets sentsby
change with time. If7,. > 0, then the OTTs increase with time, indicating thatruns more slowly
thanCy, and to adjust it we need to increase the timestamps it generatés <if0, then the OTTs
decrease with time, and we need to decr&ase timestamps to effectively it slow down.

A key point is that applying Eqn 12.12 doest necessarily rectify’,'s skew with respect
to true time It only rectifies it with respect t6’;. It could be that the correct action to take in terms
of true skew removal is to apply an analogous transformatiati;te timestampastead We have
no way of knowing which clock is in error, but by Eqn 12.12 we can at least make the two sets of
timestamps consistent.

Indeed, both clocks could be skewed with respect to true time, in which case neither
action will correct them in an absolute sense. Bufpurposes of comparing the clocks' timestamps
to compute OTTs and infer queueing delays from them, the most important consideration is that
the two clocks have no relative skeWrovided the absolute skew is small (sayl%), then its
only effect is that the magnitude of the computed OTTs (and RTTs) will be off by an equally small
amount. By correcting the relative skew, we remove potentially quite large, artificialt@mndls
and there lies our primary goal.

tcpanaly uses Egn 12.12 to take out relative clock skew if its magnitude is less than
1%. If it is larger, then it flags the trace pair as having large relative skew and will not do any

228

timing-based analysis.

Finally, aftertcpanaly removes relative skew, it re-analyzes the clock. If it still detects
relative skew, then either its initial assessment that the trace pair had relative skew was wrong, or
the skew was not linear. It flags this case separately, and also then refrains from any further timing
analysis. Thus, re-analysis provides a self-consistency test for the soundness of our skew detection.
Only 1 of the 295V trace pairs flagged as having relative skew failed this additional test, and only
10 of the 487N trace pairs failed. Of these 13, three involved the puzaliteg behavior discussed
in § 12.7.8, seven appear to have been false skew assessments due to network noise, and one had
definite skew but enough noise along the reverse path to lead to misassessment of the magnitude of
the skew.

12.8 Additional clock consistency checks

Along with testing the timestamps in trace pairs for clock adjustments and relative skew
using the methods developed above, we apply two final self-consistency checks to the timestamps
in an attempt to calibrate their accuracy.

12.8.1 Non-positive min-RTT,,

We stated ir§ 12.5.1 that min-RT],, as given by Eqn 12.7, should always be positive.
tcpanaly flags any trace pair for which it is non-positive. It also checks for whether a non-positive
min-RTT,, was theonly indication of a clock problem, as this means that our main heuristics failed
to detect a measurement problem. This happened four timgs and twelve times inVs, rarely
enough to give us considerable confidence in our heuristics.

Most of the missed clock problems were due to one of the following: failing to detect skew
in the presence of considerable noise; failing to detect adjustments due to noise or their occurrence
at the edge of a connectiof 12.6.5); or dealing with connections for which the RTT is on the order
of the clock accuracy (some betwesintefl andsintef2).

Of the three remaining problems flagged only by the min-RTdheck, one was due
to tcpanaly failing to detect unreliable packet filter timestamg@s10.3.6), and the other two
were due to a bizarre packet filter timing problem in which the filter appears to have waited many
seconds before starting to timestamp packets at the beginning of a connection. Thus, for example,
a connection betweestdsc in San Diego andtorea , on the other side of the Pacific, had packet
filter timestamps from th&orea tracing machine showing that the initial SYN handshake took
only 4 msec to complete, while the San Diego packet filter reported it took 510 msec! Physically
the first value is impossible, as the propagation time across the Pacific is much larger than 4 msec.
Further inspection shows that packet timings orkitrea end varied wildly at the beginning of the
connection, yielding a swing of more than 10 seconds in the OTTs, after which they settled down
and remained quite even. Figure 12.30 shows the corresponding OTT pair plot. Had this occurred
in only one trace then we would have concluded the measurement had the bad luck to encounter a
clock adjustment right at the connection's beginning, but it happened similarly in a dewead
trace, indicating instead a packet filter timing problem associated with the beginning of a connection
trace.

229

6000
\

0 2000 4000
\

Ong-way Delay (msec)
1

-2000
\

RN BT ol

4000
\
0

1
1
f-

T T T T T T T T
o 20 40 60 80 100 120 140

Time (sec)

Figure 12.30: Initial packet filter timing glitch

12.8.2 Gap analysis

The final self-consistency check is based on the following observation. Suppose host
sends a packet at timeg, measured by’s, and it arrives at at timer,, according taC,.. Later,r
sends a packet ag, arriving ats,. It should always be the case that:

So— 81 >T9— T, (12.13)

because; reflects an event that occurrafter s;, andr, reflects an event that occurredforess.
Put another way, if all of the timestamps were accurate, then we would have:

S1 <11 <rg <S89,

and, even ifC’; andC, have a relative offsefAC; ; between them, as long as the offset is fixed,
then the inequality in Egn 12.13 follows, since the subtractions remove the effects of the offset.
Eqn 12.13 mighnhot hold, however, ifC; is running slower thaiw., or if C is adjusted backward
(or C,. forward) in between; ands; (in betweerr; andrs).

We term checking whether Eqn 12.13 holds as “gap analysis.” Exhaustively testing all of
the packet arrivals and departures for consistency with Eqn 12.13 reqiré$ time forn. packets,
since each departure of a sender packet can be paired with the departures of any of the receiver's
packets sent after it. To avoid this cashanaly instead employs a strategy of “burning the candle
at both ends,” namely it checks Eqn 12.13 for the first packet and the last ack; then for the next packet
and the penultimate ack; and so on, until it works its way to the middle of the connection. Doing
so reduce®)(n?) time toO(n), at the cost of perhaps missing some instances in which Eqn 12.13
fails to hold, though the strategy still spans a wide range of gap interuglanaly also does
gap analysis from the receiver's perspectives (whdgethe host generating acks andhe host

230

| Dataset| Relative offset| Likelihood of adjustment

Ny < 1sec 1.4%
Ny > 1 sec 1.6 %
No < 1sec 0.75 %
No > 1sec 0.95 %

Table XVI: Relationship between relative clock accuracy and clock adjustments

generating subsequent data packets). It needs to check both perspectives in order to detect relative
skew and adjustments in whidither of the two clocks runs faster than the other.

Gap analysis finds some but by no means all of the clock adjustment and skew prob-
lems uncovered by the more robust techniques developed earlier. However, it also serves as a
self-consistency check: we would like to know that the robust techniquesifinéithe clock prob-
lems, so we would hope that gap analysis never uncovers a problem missed by the others. It did so
only once, the problem being a clock “hiccu’X2.6.5) in which a connection with OTTs of about
3 msec (fronibl tosandia) had a single packet with an OTT of 438ec!

12.9 Clock synchronization vs. stability

We finish our study of clock calibration with an investigation into the question of whether
highly-synchronized clocks tend to be free of problems such as adjustments and skew. We will term
clocks free of such problems as “stable.”

We might hope that highly-synchronized clocks would also be stable, because freedom
from such problems would tend to greatly aid a clock in maintaining synchronization. On the other
hand, if good synchronization is maintained by frequently adjusting an errant clock to match an
external notion of accurate time, then such clocks mightnioee likely to exhibit adjustments or
skew § 12.2), and hence be less stable than other clocks.

The issue is an important one because it is quite cheap to determine whether a remote
clock's offset is close to that of a local clock 12.5.1). If relative accuracy is a good indicator
that the remote clock is stable, then we can quickly determine that we can rely on the soundness
of the timestamps generated by the remote clock, without having to go through all the effort of the
methods developed in this chapter for detecting adjustments and skew. Such a quick determination
could prove invaluable for a transport protocol that needs to decide whether it can trust the timing
feedback information being returned from a remote peer. The hope is that the protocol can do so by
looking at just a few initial timestamps.

Table XVI shows the relationship between relative clock accuracy and the likelihood of
observing a clock adjustment. We see that closely synchronized clocks, i.e., those with a relative
offset under 1 sec, are only slightly less likely to exhibit a clock adjustment than less closely syn-
chronized clocks. Thus, relative clock accuracy is not a good predictor of the absence of clock
adjustments.

Table XVII shows the relationship between relative clock accuracy and the likelihood of

231

| Dataset| Relative offset| Likelihood of skew]|

M < 0.01 sec 0.95%
M < 0.1 sec 5.6%
M < 1sec 13 %
M > 1sec 12 %
No < 0.001 sec 1.3%
No < 0.01 sec 0.88 %
No < 0.1 sec 1.3%
No < 1sec 1.8%
No > 1sec 5.3%

Table XVII: Relationship between relative clock accuracy and clock skew

observing relative clock skefiv.For A7, clock synchronization only provides an advantage if the
clocks are highly synchronized, with a relative offset under 100 msec and preferably under 10 msec.
For V5, however, synchronization of under 1 sec provides a definite advantage in predicting a lower
likelihood of skew, though much better synchronization provides little additional predictive power.
For both; and N, not even very close synchronization reduces the likelihood of encountering
clock skew to a negligible level (i.e., appreciably lower than 1%).

In summary, we conclude that relative clock accuracy provides no benefit in assuring that
clock adjustments will be unlikely, and some benefit in assuring that clock skew is less likely, but
not to such a degree that we can ignore the possibility of clock skew when analyzing more than a
handful of measurements.

In addition, we conjecture that the closely-synchronized hosts in our study are most likely
synchronized using NTP. If so, then the use of NTP dueseduce the likelihood of clock adjust-
ments introducing systematic errors when measuring packet transit times, and reduces but does not
eliminate the likelihood of clock skew introducing systematic errors. This finding doesiean
that NTP fails to keep good time. Rather, the timescales on which it does so significantly exceed
those of our connections. NTP keeps good time on large time scales precisely by altering clock
behavior on small time scales.

Thus, prudent large-scale measurement and analysis of packet timings should include
algorithms such as those developed in this chapter as self-consistency checks to detect possible
systematic errors, even in the presence of NTP-synchronization. We further argue that even pairs
of clocks using a more direct external synchronization source such as GPS should be subjected to
such checks, as a means of assuring that no timing errors have crept in between the original, highly
accurate time source, and the timestamps ultimately produced by the packet filters.

8The percentages given in the table include the outlier sitegistr in A; andoce in A». However, these sites
only affect the> 1 sec row, since their relative offsets were large; and, it seems legitimate to leave them in the summaries
since they are indeed instances of large relative offsets indicating an increased likelihood of clock skew.

232

Chapter 13

Network Pathologies

After correcting for packet filter errors (Chapter 10) and TCP behavior (Chapter 11), we
next turn to analyzing network behavior we might consider “pathological,” meaning unusual or
unexpected. When we present a series of packets to the network for delivery to a remote endpoint,
a number of things might happen. The network can:

(i) deliver them as we asked,;
(ii) fail to deliver them at all (packet loss, cf. Chapter 15);

(i) unduly delay them (packet delay, cf. Chapter 16), where “unduly” does not have a precise
definition, except perhaps “causing unnecessary retransmission”;

(iv) deliver them in a different order than sent (out-of-order delived3.1);
(v) deliver them more than once (packet replicatipa3.2);
(vi) deliver imperfect copies of them (packet corrupti®ri,3.3).

All but “deliver them as we asked” are in some sense unusual or unexpected, though to varying
degrees. The first two unusual behaviors are in fact often expected; we devote two subsequent
chapters to analyzing them in depth. The last three are less often expected, and we discuss them in
the remainder of this chapter. It is important thagtanaly recognize these sorts of pathological
behaviors so that its subsequent analysis of packet loss and delay is not skewed by the presence of
pathologies. For example, it is very difficult to perform any sort of sound queueing delay analysis

in the presence of out-of-order delivery, since the latter indicates that a first-in-first-out (FIFO)
queueing model of the network does not apply.

13.1 Out-of-order delivery

While Internet routers almost always employ FIFO queueing, the packet-switched nature
of the network provides one common mechanism for reordering packets so that they arrive in a
different order than sent: whenever the routes taken by two packets differ, and the second packet
enjoys a sufficiently shorter transit time than the first, then reordering can occur [M092]. The

233

designers of TCP were well aware of this fact, and engineered TCP for resilience in the face of
out-of-order delivery, as well as the other pathologies enumerated above.

In the context of a transport protocol like TCP that sequences its data stream, we need
to make a distinction betweesut-of-orderdelivery, which is caused by the network, amat-of-
sequencealelivery, which is caused by the either the network (due to packet loss), or the transport
protocol (due to retransmission).

From a trace recorded at a TCP receiver, we cannot always distinguish between these two,
though two heuristics often work well. The first is checking whether the IP “id” figlti((3.5) of
two packets exhibits a small backward skip. Since each IP packet sent by a host typically increments
the field by one, a backward skip usually only occurs due to reordering. The second is to look at the
length of time between the arrival of the first (out-of-order or out-of-sequence) packet and that of
the second. If it is on the order of the round trip time (RTT) or higher, then it is likely that the first
packet is a retransmission. If it is quite short, then it is likely due to network reordering.

Since we have traces recorded at both ends of each TCP connection, and since we can
reliably pair departures recorded in one trace with arrivals in the oiHgr.5), we can more directly
detect network reorderingcpanaly does this as follows.

13.1.1 Detecting out-of-order delivery

To analyze network reordering between endpointnd , with corresponding packet
tracesT, and7,, we first check to see whether we have previously determined-thaacket filter
suffers from resequencing (0.3.6), or if we were unable to pair the packets in the two traces due
to ambiguities § 10.5). If either of these occurred, we skip further analysis. Otherwise, we scan the
packet arrivals ir¥,.. For each arriving packet recorded in the trace, we check whether it was sent
after the last non-reordered packet;. If so, then we sep + p;, and proceed to the next arrival.

If, however,p; was sent beforgy, then we counp;'s arrival as an instance of a network
reordering. So, for example, if a flight of ten packets all arrive in the order sent except the last
one arrives before all of the others, we consider this to reflect 9 reordered packets rather than 1.
Likewise, if the first arrives after all the others, and otherwise all arrivals are in order, we consider
this as reflecting 1 reordered packet. Using this definition emphasizes “late” arrivals rather than
“premature” arrivals. It turns out that counting late arrivals gives somewhat higher numbers than
counting premature arrivals, but the difference is not that gre&506).

tcpanaly further computes statistics on how many packets were sent bewyeamd
pn, how many of these arrived prior jgy, and how much time elapsed between the arrival,; of
and that ofpyy. After analyzing packets sent frogito r, it then repeats the process for those sent
fromr to s.

13.1.2 Results of out-of-order analysis

Out-of-order packet delivery proved much more prevalent in the Internet than we had
expected (prior to the routing pathology analysisiB). In N7, 36% of the traces included at
least one packet (data or ack) delivered out of order, whil&in12% did. Overall, 2.0% of all
of the N} data packets and 0.61% of the acks arrived out of order, whiléithe corresponding
figures fell to 0.26% and 0.10%. It is not surprising that data packets are significantly more often
reordered than acks, because they are frequently sent closer together than acknowledgements due

234

to ack-every-other acking policie§ 1£1.6.1), and so reordering for data packets requires less of a
difference in transit times than reordering for acks.

We shouldhotinfer from the differences between reordering\inand\; that reordering
became less likely over the course of 1995, because out-of-order delivery varies greatly from site
to site. For example, 15% of the data packets sentdoy during \; arrived out of order, far ex-
ceeding the average for the entire dataset. Likewise, reordering is highly asymmetric. For example,
only 1.5% of the data packets saatucol during N arrived out of order. Furthermore, while for
some sites out-of-order delivery of packets demn the site strongly correlated with out-of-order
delivery of those sertb the site, for other sites (such asol andwustl) the two directions were
uncorrelated. This means a TCP cannot soundly infer whether the packets it sends are likely to be
reordered, based on observations of the acks it receives. This is unfortunate, because, if a TCP could
make this assumption, then it could more accurately determine the correct duplicate ack threshold
to use for fast retransmission (sg&3.1.3 below).

The site-to-site variation in reordering directly matches our findings concerning route
flutter (§ 6.6). In that analysis, we identified two sites as particularly exhibiting fluited, and
wustl . For the part of\; during whichwustl exhibited route flutter, 24% of all of the data packets
it sent arrived out of order, a rather stunning degree of reordering. If we eliminateandwustl
from the analysis, then the proportion of all of thé data packets delivered out-of-order falls by
a factor of two. Clearly, these two sites heavily dominafereordering. Finally, we note that, in
N3, data packets sent hycol were reordered only 25 times out of nearly 100,000 sent, though
3.3% of the data packets sdntucol arrived out of order, dramatizing how, over long time scales,
site-specific effects can completely change.

Thus, we should not interpret the prevalence of out-of-order delivery summarized above
as giving any sort of representative numbers for the Internet, but should instead form the rule of
thumb: Internet paths arsometimesubject to a high incidence of reordering, but the effect is
strongly site-dependent, and highly correlated with route fluttering.

The extremes of out-of-order delivery are interesting because they represent situations of
network behavior far from normal. Such true pathologies sometimes illuminate unforeseen interac-
tions between transport protocols and the network.

Figure 13.1 shows the single worst trace in our data in terms of out-of-order delivery,

from wustl tonrao in A;. 74 packets out of 205 sent arrived out-of-order, a proportion of 36%
(the worst inNy was 28%). The plot includes a line linking adjacent packets to highlight the
effect. Every time the line heads downward to the right it indicates an out-of-order delivery. It is
interesting to note that while this connection endured major reordering, it did not anff@acket
loss, and only one needless retransmission, that due to the Solaris TCP's insufficiently large initial
retransmission timeout (RTO), discussedsii1.5.10. In particular, the timexas able to cope
with significant fluctuations in round-trip time. This may appear surprising in light of the problems
previously uncovered with the Solaris timer adaption algoritgril(5.1). However, out-of-order
packets elicitduplicateacks from the network, corresponding to the temporarily missing packets.
If the RTO adaptation only uses timings based on acks that advance the window, then it will tend to
see timings reflecting the longer of the two routes over which the packets travel. This is, fortunately,
exactly the right RTT timing to which one should adapt the RTO, since it represents the worst-case
on how long it can take for a packet to traverse the network and be acknowledged.

While we found earlier in this section that data packets are significantly more likely to be

235

Sequence #
40900 50900 60900

30900

20900

1.2 1.4 1.6 1.8 2.0 2.2 2.9
Time

Figure 13.1: Sequence plot showing a connection with 36% of data packets delivered out-of-order

reordered than acks, this does not necessarily apply to the extremes of behavior. Indéedein
observed 12 connections in which 20% or more of the acks were reordered, with an extreme value
of 33% reordered. (I, the extreme value was 13%.)

Figure 13.2 shows thiargestout-of-order gap we found. In this/; trace fromadv to
harv , all the packets shown in the plot were sent in sequence. After data packet 61,953 arrives, the
next arrival is 89,601, sent 54 packets later!

While at first blush it might appear that the reordering in Figure 13.2 is due to a routing
change at sequencing 89,601, the evidence indicates it is in fact due to a different effect. Figure 13.3
shows a similar massive reordering event. Here, however, the higher-sequence number packets
nearly lie on a line. Indeed, fitting a line to them yields a data rate of a little over 170 Kbyte/sec.
This rate is a compelling value because it agrees with a T1 bottlejebk 7.1). Furthermore, it
agrees with the remainder of the trace, which is shown in its entirety in Figure 13.4. Indeed, from
that figure it is clear both that the slope of the packets delivéatsin Figure 13.3 is aberrant,
and that the late packets were abnormally delayed, rather than the high-sequence packets arriving
early due to a routing change. Finally, the slope of the late packets, if we factor in the number of
high-sequence packets arriving in their midst, is just under 1 Mbyte/sec, consistent with an Ethernet
bottleneck.

We analyze this behavior as follows. A router quite close to the receiver (such that the
bottleneck bandwidth between the router and the receiver corresponds to Ethernet speed) stopped
forwarding packets just as 72,705 arrived. The most likely explanation for its 110 msec lull is that it
had a routing update to process, as these can take considerable time and many routers cease forward-
ing packets during the update [FJ94]. After the processing finished, which occurred just between
the arrival of 91,137 and 91,649, the router began forwarding packets normally again. Thus, the
higher-sequence packets, which arrived at the router at T1 speeds since that is the upstream bottle-
neck, continued through the router unaltered. Meanwhile, the router had queued some 35 packets

Sequence #

80900 90900 109000

70900

60900

236

Figure 13.2: Sequence plot showing a connection with an out-of-order gap of 54 packets

Sequence #

85900

95?00 100900

90900

80900

75?00

Figure 13.3: Out-of-order delivery with two distinct slopes

237

8 ? 0 100@00
\\

60900

Sequence #

20?00 40900
N
N

Time

Figure 13.4: Sequence plot of entire connection shown in previous figure

while it processed the update, and these were now finally forwarded whenever the router had time
(was not processing a newly arriving packet). Thus, they went out as quickly as possible, namely at
Ethernet speed.

We observed this pattern a number of times in our data—not frequent enough to conclude
that it is anything but a pathology, but often enough to suggest that significant momentary increases
in networking delay can be due to effects different from both queueing and route changes; most
likely due to router “pauses.”

Striking reordering is not confined to data packets. Figure 13.5 shows a SYN-ack packet,
still advertising a (relatively) small initial window (shown in the plot by the circle above the ack),
arriving a full second after it was sent, after 19 subsequent acks have already arrived. Even more
striking is the trace shown in Figure 13.6. Here, two acks, the first for 47,617 and the second for
48,129, arrive a fultlwelveseconds after they were sent (and long after the packets they acknow-
ledged were needlessly retransmitted). Just where in the network they spent those 12 seconds, and
what led to their eventual release, remains a mystery! One clue, however, is that they arrived with
a remaining TTL of 40, while all the other acks had TTL's of 41 remaining. They may have taken
a different route through the network. This is not certain, however, because the router that detained
them may instead have additionally decremented the TTL field to reflect the long gldl&2y1).

13.1.3 Impact of reordering

While out-of-order delivery can violate one's assumptions about how the network
works—in particular, the abstraction that the network is well-modeled as a series of FIFO queue-
ing servers—it often is no more than a nuisance in terms of its impact on transport protocols such
as TCP. For example, Figure 13.1 above shows the trace that endured the largest proportion of
out-of-order packet delivery of the more than 20,000 traces we studied; yet it did not suffer any

= g
= H
=3 -
g R
p=1 =
= =
= -
i =
[-
f=3 -
S =
S = =
E -
= =
a =
s E -
== g - ="
B ST H
= _ .
- E [=]
- = o
p=3 =
o — -
S - - = . -
H =
= &
g S
o = = o
o 2.2 2.9 2.6 2.8 3.0 3.
Time
Figure 13.5: Sequence plot of ack delivered out-of-order
s =z
g . _z8
= = T
-
- ==
= =
S =
B E
-
=
. 8/ N
=2 -
8 = =s
s -
= =
= g
w 8 ==
g | e
3] ==
_:
= e
S -z°
- s - o
- . - E
-:
[- E' -
= g
g .=
2 =
2‘0 2‘5 30
Time

238

Figure 13.6: Sequence plot of two acks delivered out-of-order and very late

239

retransmissions, and in fact had its performance limited by the small advertised receiver window,
rather than by any effects from the reordering.

Where reordering makes a difference, however, is when one wishes to make a quick de-
cision whether or not to retransmit an unacknowledged pdcketparticular, if the network never
exhibited reordering, then, as soon as the receiver observed the arrival of a packet that created a
sequence “hole,” it would know that the expected in-sequence packet had been dropped, and could
signal this information to the sender to call for prompt retransmission. Because of reordering, how-
ever, the receiver doe®t know whether the packet in fact was dropped; it may instead have simply
been reordered and will arrive shortly. In this latter case, the receiver shotddll for retransmis-
sion, as retransmission is unnecessary and will thus needlessly consume network resources.

TCP addresses this problem as follows. When a TCP receives a packet above a sequence
hole, it may generate a dup ack for the sequence hole. (Indeed, all TCPs in our study except SunOS
generate such acks; sgd1.6.2.) If a TCP receives a certain threshold nunigiof dup acks, it
then can enter &ast retransmitphase § 9.2.7). PresentlyN, = 3, a value chosen so that “false”
dup acks generated by out-of-order delivery are unlikely to lead to spurious retransmissions.

The value ofN; = 3 was chosen primarily to assure that the threshold was conservative
and needless retransmission avoided. Large-scale measurement studies were not available to further
guide the selection of the threshold. In this section we examine whether the fast retransmit mech-
anism could be improved in two different ways: by delaying the generation of dup acks in order
to better disambiguate packet loss from out-of-order delivery, and by choosing a different threshold
value to improve the balance between increasing opportunities to retransmit quickly, and avoiding
unneeded retransmissions due to out-of-order delivery.

We first look at packet reordering time scales to determine whether a TCP could profitably
wait a short period of time upon receiving a packet above a sequence hole before generating a dup
ack. We only look at the time scales of data packet reorderings, since ack reordering time scales
do not affect the fast retransmission process. Indeed, since TCP acks are cumulative, out-of-order
delivery of acks has essentially no effect on the performance of a TCP connection.

Figure 13.7 shows the distribution of the amount of time between an out-of-order data
packet arrival and the later arrival of the last packet sent before it. The plot is log-scaled and
thus reflects a wide range in reordering times. The distribution exhibits several artifacts meriting
investigation. For example, the central step in the distribution occurring around 50% probability lies
at exactly 10 msec, and corresponds to a common clock resolgtith4.2). Likewise, the smaller
step a bit to the right of it is at 20 msec, another common resolution.

The skip at the upper right of the plot is more interesting, as it is not a measurement
artifact per se. It lies right at 81 msec, which initially seems a strange value. However, one of the
sites in our study was linked to the Internet durikg via a 56 Kbit/sec link ¢onnix). Using the
methodology developed in Chapter 14, we found this site's bottleneck bandwidth was right around
6,320 user data bytes/sec. If a remote site is sending 512 byte packets, and if they are reordered
upstream from the 56 Kbit/sec bottleneck link, then the packets can aoigbserthan:

512 bytes
——————— =81.0 msec
6, 320 bytes/sec

it can also make a significant difference for a TCP receiver that does not retain above-sequence data, as we saw for
Trumpet/Winsock irf 11.7.3. Such a TCP will force retransmission of every packet delivered out of order.

240

10

08

06
\

04

02

00
\

T T T T
10™-6 10™-4 10N-2 10M0

Delivery Gap (sec)

Figure 13.7: Distribution of out-of-order delivery interval {&f; data packets

Thus, we see that reordering can have associated witmihemumtime which can be quite large.
This effect, however, will diminish with time as faster links replace slower ones.

Figure 13.8 shows the same distribution Ads (solid), with A/; added (dotted) for com-
parison. It likewise exhibits timer resolution steps and the 56 Kbit/sec minimum reordering time, as
well as a slightly smaller minimum time of 70 msec, corresponding to 64 Kbit/sec links delivering
about 7,300 bytes/sec. The most noteworthy aspect of the plot, however, is the strong shift towards
lower values. The median of th¥; intervals was 10 msec, and the geometric mean 9 msec, while
for N5 these dropped by more than a factor of two, both to around 4 msec. We suspect the change is
due to the deployment of faster links within the Internet infrastructufeso, then again we expect
reordering times to diminish as the infrastructure is further upgraded.

Even with theN intervals, a strategy of waiting 20 msec would identify 70% of the
out-of-order deliveries. For th&; intervals, the same proportion can be achieved waiting 8 msec.

However, a more basic question is: are false fast retransmit signals due to out-of-order
deliveries actually a problem? To find an answer, we addedpanaly analysis of duplicate
acks as follows. For each trace pair it analyzes, it inspects each series of duplicate acks arriving at
the sending TCP and classifies the sequence as one of:

good: indeed due to a missing packet requiring retransmission;

21t is not due to better clock resolutions i¥, compared to those inV;. If we eliminate the 9-11 msec and 19—
21 msec spikes in the distributions shown in Figure 13.7 and Figure 13.8, we still find a virtually identical shift between
the two datasets.

3tcpanaly only considers an ack as a duplicate of the preceding ackiif @cknowledges the same sequence
number;(ii) contains the same offered window; afiid) is a “pure” ack packet, one not containing any data. This test
can still mistake a series of acknowledgements for “zero window” probes as triggering a fast retransmit. However, such
probes were exceedingly rare in our traces: only 6 instanca$ jrand none inV,. Of the 6 inA7, only one persisted
long enough to elicit more than a single ack in reply (it elicited two such acks).

241

10

06
\

04

02
\

Delivery Gap (sec)

Figure 13.8: Distribution of data packet out-of-order delivery intervalNfpdotted) andV> (solid)

bad: actually due to a temporary sequence hole caused by out-of-order delivery; or,
top: corresponding to the top sequence number sent so far.

The termsgood and bad reflect the perspective of using the series of duplicate acks as a signal
for fast retransmissiontop series reflect situations in which the TCP has already needlessly re-
transmitted. When a needless retransmission arrives at the receiver, because it is below-sequence it
will immediately trigger the generation of a duplicate aglo(2.7). top series can lead to further
needless retransmission (thus perpetuating the cycle), but the TCP can employ a simple heuristic to
avoid these, discussed below.

In addition to classifying each duplicate ack seriepanaly assigns a lengtlv corre-
sponding to the number of duplicate acks in the series.gbod duplicate ack seriesgpanaly
also associatessavingssS indicating how much time would have been saved if the fast retransmit
thresholdN,; had been equal t®, and thus the series had led to retransmission. o 3, S is
often negative, because in fact the packet was already transmitted upon receipt of the third duplicate,
rather than waiting for alD packets.

Forbad duplicate ack serieg;panaly associates waiting timelV/, indicating how long
the TCP would have had to wait in order to recognize that the sequence hole was due to out-of-order
delivery rather than to packet loss.

When considering a refinement to the fast retransmission mechgnism, our interest lies
in the resulting ratio ofoodto bad, R,.;, which is controlled by bottiV; and W, the minimum
amount of time that the receiving TCP would wait prior to generating a duplicate; and the mean
ensuing savings' of how much more quickly the TCP can retransmit as a result of the refinement.

We first consider the current state of affairs, in whi¥h = 3 duplicates andV = 0,
namely duplicate acks are generated immediately as called foX/; e find Ry, = 22, and in
Ny Ry, = 300! (That s, inA71, each incorrect fast retransmit was countered, overall, by 22 correct

242

fast retransmits, and, iN,, by 300 correct retransmits.) The order of magnitude improvement
betweenN; and N, is likely mostly due to the use in, of bigger windows § 9.3), and hence
much more opportunity fogood duplicate ack series. (We do not evaluate the savisgd the
current mechanism, because it is what we are measuring against.)

Because the current scheme works well, we do not investigate increasing the threshold in
detail. We note, however, thaf; = 4 improvesR,., by about a factor of 2.5, but diminishes the
number of fast retransmit opportunities by about 30%, a significant loss.

We might instead consider whether the threshold can be safely lowered from 3 to 2. For
N, = 2, we gain about 65-70% more fast retransmit opportunities gioed dup ack sequences), a
hefty improvement. Furthermore, the mean savifider these new opportunities is 1.65-1.73 sec,
because we are avoiding retransmission timeouts. The cost, however, I $hitlls by about a
factor of three, in both\V; andA%5.

If, however, the receiving TCP waitdd = 20 msec before generating a second dup
(avoiding doing so if the missing packet arrived, and immediately doing so if another out-of-order
arrival called for a third dup), then, fov;, Ry, only falls from 22 to 15, while foVs it does not
fall at all.

Thus, the simplest change of just lowering from 3 to 2 gains a large proportion of
quicker retransmissions, but at the cost of three times as many unnecessary retransmissions. A com-
panion change to TCPs to delay fof = 20 msec when sending a second duplicate ack ameliorates
almost all of the drawbacks of lowering, to 2. However, there are considerable deployment differ-
ences between these two modifications. The firstis a one-line change in most TCP implementations
and garners benefits (and drawbacks) even if onlysémadingTCP has been modified and it is
communicating with an unmodified receiving TCP. The receiving TCP change involves additional
timer management and so is not necessarily a simple change, and it only garners bieokbfihd
sending and receiving TCP have been modified (it does not do much harm if the sender has not,
however). But lowering the retransmit threshold to two duplicate acks is only a sound dhalege
ployed simultaneously with thd” = 20 msec change. Such widespread simultaneous deployment,
however, is virtually infeasible due to the size of the Internet. Therefore, we would have to live with
partial deployment for a lengthy period of time, and, for that time, significantly more unneeded
retransmissions. In summary, if we require changing both the sender and the receiver, then, while
the change is appealing, it is likely impractical considering the size of the Internet's installed base
of TCP implementations.

Another approach would be to modgnderdo wait 20 msec before respondingg =
2 duplicate acks with a fast retransmission. This pause would then generally allow, in the case of
out-of-order delivery, sufficient time for another ack to arrive indicating that the temporarily missing
data packet was successfully delivered. We do not evaluate this approach in detail here, but note
that it has several drawbacks. First, it requires additional timer management, which, as mentioned
above, is not always a simple change. Second, delay variations along the return path taken by the
acks might require a significantly larger valuel&fto avoid unnecessary retransmissions. Third, if
the ack return path suffers from loss, then the “clarifying” ack that identifies the first two dups as
due to a reordering event might be lost, again leading to unnecessary retransmissions.

*We show in§ 15.2 that losses along the forward and reverse directions of an Internet path are, overall, nearly uncor-
related, so we could quite plausibly have a situation in which “clarifying” acks are dropped, but there is no loss along the
forward path, and hence no retransmission necessary.

243

We note that the TCBelective acknowledgemefiBACK”) option, now pending stan-
dardization, also holds promise for honing TCP retransmission [MMFR96]. SACK provides suf-
ficiently fine-grained acknowledgement information that the sending TCP can generally tell which
packets require retransmission and which have safely arriv&é8.6). To gain any benefits from
SACK, however, requires that both the sender and the receiver support the option, so the deployment
problems are similar to those discussed above. Furthermore, use of SACK aids a TCP in determin-
ing what to retransmit, but notvhento retransmit. Because these considerations are orthogonal,
investigating the effects of lowerin, to 2 merits investigation, even in face of impending deploy-
ment of SACK.

Perhaps needless to say, loweriNg all the way to a single dup ack is a disast&.,
falls by a factor of 10 from its value fav,; = 3. For A5, using a 20 msec delay before generating
a dup ack wins back most of the loss (changing the factor to 1.5), but/foit still falls by a
factor of 3.

The final category of duplicate ack series analyzedcbgnaly istop. These are quite
common, due primarily to broken retransmission timé¢rd1.5.10), but also due to imperfect re-
covery during retransmission. #®p series occurs when the original ack (of which all the others
are then duplicates) had acknowledgdidof the outstanding data (hence, tiop of the sequence
space). When this occurs, subsequent duplicates for that ackvweagsdue to an unnecessary re-
transmission arriving at the receiving TCP, until the sending TCP sends new data. Even when it
does, subsequent duplicates are still due to redundant packets until at least a round-trip time has
elapsed after sending the new data.

Figure 13.9 shows a retransmission event leadingttpaeries. The sender has opened
a large window of about 50 packets when data packet 45,025 is lost, as are the 17 packets following
it. A river of dup acks pours in as 54,673 and above successfully arrive. The third dup triggers fast
retransmit, but since nearly half the window was lost, the many dup acks are not enough to induce
fast recovery, so no more packets are in flight, and hence no more dups arrive signaling that 45,561
was also lost. Thus, 45,561 times out, and a slow-start sequence begirs at6.

The first four flights of this sequence all work to fill the large sequence hole due to the
18 dropped packets, but the fifth flight, considerably larger than the fourth, transmits almost entirely
redundant data already safely received at the other end. The arrival of these unnecessary packets
then causes another sequence of duplicate acks. Figure 13.10 shows the rexukieiges. The
first ack for 67,001 is not a dup but instead indicates that the sequence hole has beel dilsed.
advances the windqvgo 13 new packets are sent, beginning with 67,537. Shortly after, the first of
the dups arrive, and, after three, 67,537 is sgatin due to fast retransmission, and more packets
are sent on the additional dups due to fast recovery. Since fast recovery is enabled, however, no
more spurious retransmissions result, ending the cycle, and the connection proceeds normally once
fast recovery terminates about tirfile= 2.85.

Top series are about 10 times rarer thgood series, but that still makes them the cause
of between 2 and 15 times as many unnecessary retransmissiofmthseries due to out-of-order
delivery. They are, however, preventable, using the following heuristic. Whenever a TCP receives
an ack, it notes whether the ack covers all of the data sent so far. If so, it then ignores any duplicates
it receives for the ack, otherwise it acts on them in accordance with the usual fast retransmission
mechanism.

The only drawback to this method is if the TCP sends a flight of new data after receiving

244

mmEERg,, O0O0pg
[11 0o
ammngg O 0Og g

Bo
L1 DDDDDD

o
"= " 00000g
LLLLY)] [uiufulal
anER0On
[Tl

LLLTTTT] Uo
----------- B0oog g, 0
[T}

L]

u}

DDDDDDDm
u]

I3T()

22}55

ZZT()

J_TES

]_T()

oomom

oowom oomow

oomoo oowom

99uanbas

Time

Figure 13.9: Sequence plot showing retransmission event leadiog tuplicate ack series

245

Sequence #
72000 74000 76000 78000
| | | |

70000
|

68000
|

66000
|

T
2.78 2.80 2.82 2.84 2.86
Time

Figure 13.10: Enlargement tfp duplicate ack series

the first top ack, and the first packet of the flight is lost, then the subsequent dups generated by the
arrival of the remainder of the flight will fail to trigger fast retransmission for the missing packet,

and so the connection will stall pending a timeout retransmission. This deficiency can be addressed
by allowing the TCP to honor dup acks if they arrive at least one round-trip time (RTT) after the
TCP sent new data. This requires, however, that the TCP maintain an estimate of the minimal RTT,
which most present implementations do not. (The retransmission timeout is based on an estimate
of the maximumRTT.) Use of SACK will also eliminatéop dup ack series, since SACK allows

the sender to disambiguate between dups due to needless retransmission and dups due to a genuine
missing packet. But the heuristic we propose has the attractive benefit of not requiring that both the
sender and receiver implement it. It works fine if just the sender uses it.

13.2 Packet replication

In this section we look apacket replication meaning instances in which the network
delivers multiple copies of the same single packet. While with out-of-order delivery we can readily
picture a causal mechanism, namely uneven path delays, it is difficult to see how the network can
replicate a packet given to it. Our imaginations notwithstanding, it does occur, albeit very rarely.
We suspect the mechanism may involve links whose link-level technology includes a notion of
retransmission, and for which the sender of a packet on the link incorrectly believes the packet was
not successfully received, so it sends the packet again. A related mechanism, pointed out by Van
Jacobson, would occur on a token ring network if the sender's network interface sometimes failed
to promptly drain the packet from the ring, such that it made multiple circuits.

In N1, we observed only one instance of packet replication. Figure 13.11 shows the
corresponding sequence plot, recorded at the data sender. Two acks, one for 43,009 and one for
44,033, arrive a’ = 1.86. They then arrive again, and again, and again, for a total of 9 pairs of

246

Sequence #
34000 36000 38000 40000 42000 44000 46000 48000

Figure 13.11: Two acks replicated 8 times each

arrivals, each pair coming 32 msec after the last. Since the replication invaleasfferent acks,
the multiple arrivals do not constitute a duplicate ack series, and so no fast retransmission occurs
(§9.2.7). The fact that two packets were together replicated does not fit with the explanations offered
above for how a single packet could be replicated, since link-layer effects would only replicate one
packet at a time. Finally, the replication in Figure 13.11 was accompanied by a routing change along
the path from the data sender to the receiver. It seems likely the two events were somehow related.

In N5, however, we observed 65 instances of the network infrastructure replicating a
packet. Figure 13.12 shows the most striking of these, a single data packet 78,337 being replicated
22 times by the network (two extended blurs in the plot). The receiving TCP dutifully generates
dup acks for each additional arrival, though it experiences a processing lull of about 7 msec while
doing so.

All of the packet replications i, were of a single packet, indicating perhaps a different
mechanism than that fok/;'s lone replication event. Several sites dominatedtheeplication
events: in particular, the two Trondheim sitegitefl andsintef2 , accounted for half of the
events (almost all of these involvirgintefl). Of the remainder, the two British sites;l and
ukc , accounted for nearly half again. But after eliminating all of these, we still observed replication
events among connections between 7 different sites, so the effect is not completely isolated to one
or two locations.

Surprisingly, packets can also be replicated at the sender. Figure 13.13 shows an example.
Here, the ack arriving in the lower left corner of the plot has liberated 19 new packets (the receiver
is a Solaris system and the ack reflects the Solaris slow-start acking strategy discigssedih).
The packets are sent at nearly Ethernet speed, but, 4 msec after it was first sent, packet 91,649
shows up again. The second occurrence is a replication and not a temporary routing loop, because

Sequence #

Sequence #

79500

79000

78500

78000

90000 92000 94000 96000

88000

————— [—— (T
-]
T T T T T T
1.220 1.225 1.230 1.235 1.240 1.245
Time

Figure 13.12: Data packet replicated 22 times

1.580 1.585 1.590 1.595

Time

Figure 13.13: Data packet replicated at sender

247

248

both copies show up at the receiveEurthermore, the second copy had a TTL field one less than
that in the first copy, indicating that the replicant did indeed take a slight detour before showing up
again on the local link. While there were no sender-replicated packefs,in/s had 17 instances,

12 involving sintefl and the remainder involvingonnix . For both sites, the replicated packet
was always out-bound, sometimes an ack and sometimes a data packet.

13.3 Packet corruption

The final pathology we look at isacket corruptionin which the network delivers to the
receiver an imperfect copy of the original packet. Packet corruption is a well-known problem and
a great deal of effort has been devoted to coding schemes and checksums in order to detect and
correct for transmission errors. For TCP/IP, the IP header includes a hédaerchecksum that
is computed over the IP header bytes. It doesinclude the TCP header or the TCP data bytes.

It is supposed to be checked at each forwarding hop (though it is not clear whether all high-speed
routers do so). If the checksum fails to match the header, the packet is discarded, because it cannot
be reliably forwarded (who knows what is the true destination address?).

TCP packets are further protected by a 16 bit checksum for the entire data contents of
the packet, as well as the TCP header and part of the IP header. This checksum is intended as an
end-to-endchecksum, the merits of which are persuasively argued in [SRC84].

We discussettpanaly ‘s checksum analysis §111.2 and; 11.4.2. One issue we men-
tioned was the fact that whatpanaly is actually detecting are packets ignored by the TCP re-
ceiver, which we then presume are due to checksum failures. An important point is that packets can
be ignored due to other effects, such as the kernel having exhausted its available buffer space for
keeping the packet until the TCP receiver can process it, or the network card dropping the incoming
packet for the same sort of reason. In particular, the vantage-point proplEdnd) can render the
distinction between a checksum failure and other problems difficult to make.

We address this difficulty by observing that packet filters running on the same host as the
TCP receivers should only see packets also seen by the receiver: if the network interface or kernel
lacked resources for delivering the packet to the TCP, then the filter should not have received a copy,
either® Packet filters running on separate hosts, on the other hétidsee both kinds of receiver
losses, those due to checksum failures and those due to other causes. Thus, if a significant portion
of tcpanaly 's inferred checksum errors are actually packets discarded for a different reason, then
we should find the sites with separate packet filter hosts more likely to detect purported checksum
errors than those with the packet filter running on the same host as the TCP.

We do not, however, find much of a disparity: Afy, after eliminatingbli (see below),
we find that 3.3% of the traces recorded by separate-host packet filters included a purported check-
sum error, while about 3.0% of those recorded by same-host filters did. Accordingly, we argue that
the vast majority of checksum errors inferredtbyanaly are indeed due to packet corruption.

We now present analysis based on this assumptionV;lrtcpanaly flagged 75 traces
(2.9%) as exhibiting a total of 105 checksum errors, with an overall proportion of 0.02% of the

*We verified that both copies include the same value in the IP “id” field.

51t might be possible that, on some systems, the kernel may find it has sufficient resources to give a copy of a packet
to the packet filter, but not a separate copy to the TCP receiver. We would expect, though, that this sort of borderline case
would manifest itself only rarely.

249

received packets corrupted by checksum errors\Vinhowever, the figures climbed to 748 traces
(4.4%) exhibiting 1,982 checksum errors, for an overall proportion of 0.06% of the received packets.

The apparent trend, however, is not significant. Itis all due to an increase in the checksum
errors seen for data packets receivedty . In A7, only 4% of the traces with data checksum
errors were tdbli as the receiver. Vs, however, 33% were. Furthermorbli in Ay was
particularly prone to checksum bursts like those shown in Figure 11.3. If we eliminate from our
analysis thoséV; traces withibli as the receiver, then the proportion of traces with errors falls
to 3.0% and the proportion of received packets falls to 0.02%, essentially the sami’ashifier
doing so, no patrticular site stands out as being exceptionally plagued by checksum errors. Thus, the
evidence is good that, as a rule of thumb, the proportion of Internet data packets corrupted in transit
is around 1 in 5,000.

A corruption rate of 1 packet in 5,000 is low but certainly not negligible, because TCP
protects its data with a mere 16-bit checksum. Consequently, on average one bad packet out of
65,536 will be erroneously accepted by the receiving TCP, resultingdetected data corruption
If the rates in our study are typical, which seems plausible (but see below), then about one in every
300 million Internet packets is accepted with corruption. As the Internet carries far more data than
300 million packets per ddyijt appears likely that bad data is being accepted by a number of TCPs
around the Internet every dayThus, these statistics argue that TCP's 16-bit checksum is no longer
adequate, if the goal is that globally in the Internet there are very few corrupted packets accepted by
TCP implementations.

We noted above thdbli showed a strong increase in the prevalence of corrupted data
packets received betweevl; and NV,. Sincelbli ‘s Internet link is via an ISDN line, it appears
quite likely that the change is due to an increase in noise on the ISDN channels. That the errors most
likely occur on an ISDN link also suggests why we observe bursts of checksum errors. The link in
guestion uses SLIP compression (CSLIP) in order to transmit the TCP/IP header information very
succinctly over the link [Jac90]. CSLIP works by encoding the header as differences with respect to
the header of the connection's previous packet. Thus, if the link suffers an undetected error, not only
will the current packet be corrupted, but so will every subsequent packet whose header is expressed
in terms of differences with respect to the current packet's corrupted header. CSLIP consequently
produces a stream of corrupted packets until the compression is reset (which happens when the
originally-corrupted packet is retransmitted). This is exactly the behavior seen in Figure 11.3—the
errors stop as soon as the first corrupted packet is retransmitted. (We frequently see this pattern with
checksum bursts.) This means that, atphgsicallayer, probably only one error occurs, but the
use of compression magnifies this error and turns it into a burst. From a networking perspective,
this is quite unfortunate, as it results in a spate of what should have been unneeded retransmissions.
The correct fix for this problem is probably to ensure that the link layer uses a strong checksum, so
it can discard corrupted packets without even presenting them to CSLIP for decompression; and to

"If we assume single-bit uniformly-distributed errors, along with 512 byte data packets having 40 bytes of TCP/IP
header, then this corruption rate corresponds to a Bit Error Rate of &out0™®.

A 37 minute trace of the busy Internet exchange point-RFVEST captured on June 21, 1995, logged slightly under
1,000,000 packets per minutet{p://www.nlanr.net/Flowsresearch/fixstats.21.6.html]

9This analysis assumes that corruptions result in uniformly-distributed checksum alterations. See [PHS95] for a more
detailed analysis of data corruption checksum patterns, which can make the failure rate for accepting bad data significantly
higher. In general, our data does not enable us to check for these other patterns, since our traces do not include packet
contents.

250

ensure that CSLIP can resynchronize its compression state in the presence of such discards.

Finally, we note that the data checksum error rate of 0.02% of the packets is much higher
than that found for pure ack§ {1.2). For pure acks, we found only 1 corruption out of 313,730 acks
in A1, and 26 out of 1,839,824 acks ivh,. Of the 26 inN>, however, 25 were received liyli
which we removed from our analysis above since it showed a clear prevalence of checksum errors
far exceeding any other site. We thus need to reconcile an error rateldf* for data packets
versus one of betweeh- 1075 (V;) and6 - 10~7 (N>) for pure acks, a ratio of between 60:1
and 300:1.

A first question to address is whether part of the difference is due to a tendency for data
packet corruptions to come in bursts, as discussed above. However, othidtitharhis is not the
case—for other sites, corruption events were usually confined to isolated packets.

If we assume that corruption is due to uniformly distributed single bit errors, then a
packet's likelihood of corruption will be directly proportional to the packet's size. Since pure acks
have 40 bytes of TCP/IP header while data packets in our study were usually about 14 times larger
(though sometimes as much as 37 times), the difference in size alone does not appear to reconcile
the discrepancy.

Note, however, that the IP header has its own checksum, which is supposedly verified at
each hop taken by a packet. We add the caveat “supposedly” because it is not clear whether all high-
speed routers verify checksums, a potentially costly packet-forwarding step as it requires inspecting
the entire IP header, which might otherwise be avoidable.

Thus, if a packet is corrupted on a link so that its IP header is altered, then the router
receiving the packet is supposed to discard it. Furthermore, if either of the 16-bit port fields in the
TCP header are corrupted, then the packet filter used in our study would have rejected the packet, so
we would not have had an opportunity to observe the checksum error. The net effect is that, from the
perspective of the number of corruptible-yet-observable bits, pure acks have a size of only 16 bytes.
(The number of corruptible-yet-observable bits in data packets likewise diminishes, but by a much
smaller fraction.) This effect, plus the factor of 14 difference in size, reduces the weighted error rate
ratio to between about 2:1 and 10:1.

In addition, if a compression technique such as that in CSLIP is used, then pure acks as
transmitted on a link can take much less than 40 bytes (as little as 5 bytes using CSLIP), while
data packets take only slightly less than their full TCP/IP size. The size difference can therefore
expand from 14:1 to 100:1 or even larger. However, it is not clear whether CSLIP is used on any
but quite slow links, since for faster links, the performance cost of compressing and decompressing
the packet headers might outweigh the gains due to the reduced transmission times.

Another possibility is that errors aret uniformly distributed across the bits in a packet.

We could imagine a scenario, for example, in which each time a new packet is sent, the beginning
of the transmission of a packet on a link serves to synchronize the sender and receiver on the link.
It could then be that for longer packets there is more opportunity for the sender and receiver to drift
out of synchronization, adding noise to the signhals used to communicate the bits. Investigating this
possibility, however, is beyond the scope of our study—doing so would require capturing entire
packets in order to assess the distribution of errors within them.

In summary, we can make a somewhat plausible, but not compelling, argument that we
can reconcile the discrepancies in checksum failure rates. If we accept the argument, then the
compression effect's large role in reconciling the two error rate estimates suggests that errors tend

251

to occur most often on point-to-point links, since those are the ones for which compression is widely
used; and furthermore, most likely on slow point-to-point links, as those are the ones for which it is
particularly appealing to use compression. Such links might also plausibly be relatively more prone
to link errors, since the underlying technology will be pushed hard to try to squeeze out as much
bandwidth as possible.

Finally, we note that packet corruption combined with CSLIP can produce surprising
errors. Because CSLIP highly compresses the representation of the IP and TCP headers, but does
not utilize an additional checksum to protect the compact representation, a bit error can result in
packets that appear in many respects perfectly reasonable, albeit different than what was originally
sent! We refer to these as “desynchronization errors,” since one of the elements leading to them is
that the CSLIP sender and receiver have lost agreement upon their common state.

One benign form of desynchronization error exhibits itself as a change in the IP “id” field
(§ 10.3.5). This has virtually no effect upon the packet's integrity as far as TCP is concerned, though
it can introduce ambiguities when attempting to match up packets in pairs of tfab@$).

A considerably nastier form of desynchronization error occurs when a packet alters in a
plausible fashion. If undetected by the checksum, these packets will often match what the TCP
receiving them expects, leading to a fundamental mismatch between the connection state at the
two TCP endpoints. We observed several such instances, &l @nd all involving packets sent
to or fromibli . In one, an acknowledgement for sequence 1 (corresponding to an ack for the
receiver's SYN-ack) arrived at the receiver with an ack for sequence 33 instead, and similarly for
the next packet; then two more packets after those arrived with acknowledgements for sequence 65.
Needless to say, the receiver had never sent any of this data! In others, packets sent without any
data arrived with 512 bytes of in-sequence data, and other packets changed size in flight. All of
these failed their checksum tests. But the ability of a CSLIP link to turn bit errors into plausible
header fields, which is somewhat inevitable due to its clever, heavy use of compression, means that,
when a corrupted packet finaljoespass the checksum test, it is considerably more likely to both
be accepted by the receiving TCP as valid and to desynchronize the TCP's state with respect to that
of its remote peer.

252

Chapter 14

Bottleneck Bandwidth

In this chapter we discuss one of the fundamental properties of a network connection, the
bottleneck bandwidtthat sets the upper limit on how quickly the network can deliver the sender's
data to the receiver. 1R 14.1 we discuss the general notion of bottleneck bandwidth and why we
consider it a fundamental quantity. 14.2 discusses “packet pair,” the technique used in previous
work, and§ 14.3 discusses why for our study we gain significant benefits using “receiver-based
packet pair,” in which the measurements used in the estimation are those recorded by the receiver,
rather than the ack “echoes” that the sender later receives.

While packet pair often works well, i§114.4 we illustrate four difficulties with the tech-
nique, three surmountable and the fourth fundamental. Motivated by these problems, we develop
a robust estimation algorithm, “packet bunch modes” (PBM). To do so, we fifsflih5 discuss
an alternative estimation technique based on measurements of the “peak rate” (PR) achieved by the
connection, for use in calibrating the PBM technique, which we then develop in deallir6. In
§ 14.7, we analyze the estimated bottleneck bandwidths for the Internet paths in our study, and in
§ 14.8 we finish with a comparison of the efficacy of the various techniques.

14.1 Bottleneck bandwidth as a fundamental quantity

Each element in the end-to-end chain between a data sender and the data receiver has
somemaximum rateat which it can forward data. These maxima may arise directly from physical
properties of the element, such as the frequency bandwidth of a wire, or from more complex prop-
erties, such as the minimum amount of time required by a router to look up an address to determine
how to forward a packet. The first of these situations often dominates, and accordingly the term
bandwidthis used to denote the maximum rate, even if the maximum does not come directly from
a physical bandwidth limitation.

Because sending data involves forwarding the data along an end-tdaimbf network-
ing elements, thelowestelement in the entire chain sets thettleneck bandwidth.e., the max-
imum rate at which data can be sent along the chain. The usual assumption is that the bottleneck
element is a networlink with a limited bandwidth, although this need not be the case.

Note that from our data we cannot say anything meaningful aboulotiaion of the
bottleneck along the network path, since our methodology gives us only end-to-end measurements
(though se€ 15.4). Furthermore, there may be multiple elements along the network path, each

253

limited to the same bottleneck rate. Thus, our analysis is confined to an assessment of the bottleneck
bandwidth as an end-to-end path property, rather than as the property of a particular element in the
path.

We must make a crucial distinction betweleattleneckbandwidth andavailable band-
width. The former gives an upper bound on how fast a connectiopassiblytransmit data, while
the less-well-defined latter term denotes how fast the connection icdattansmit data, or in some
cases how fast ghouldtransmit data to preserve network stability, even though it could transmit
faster. Thus, the available bandwidth never exceeds the bottleneck bandwidth, and can in fact be
much smaller. Bottleneck bandwidth is often presumed to be a fairly static quantity, while available
bandwidth is often recognized as intimately reflecting current network traffic levels (congestion).
Using the above terminology, the bottleneck location(s), if we were able to pinpoint them, would
generally not change during the course of a connection, unless the network path used by the connec-
tion underwent a routing changes. But the networking element(s) limiting the available bandwidth
might readily change over the lifetime of a connection.

TCP's congestion avoidance and control algorithms reflect an attempt to confine each
connection to the available bandwidth. For this purpose, the bottleneck bandwidth is essentially
irrelevant. For connectioperformancehowever, the bottleneck bandwidth is a fundamental quan-
tity, because it indicates a limit on what the connection can hope to achieve. If the sender tries to
transmit any faster, not only is it guaranteed to fail, but the additional traffic it generates in doing
so will either lead to queueing delays somewhere in the network, or packet drops, if the overloaded
element lacks sufficient buffer capacity.

We discuss available bandwidth further§ri6.5, and for the remainder of this chapter
focus on assessing bottleneck bandwidth.

The bottleneck bandwidth is further a fundamental quantity because it determines what we
term theself-interference time-constar®,.), measures the amount of time required to forward
a given packet through the bottleneck element. Thigsjs identical to the service time at the
bottleneck element; we use the term “self-interference time-constant” instead because of the central
role O, plays in determining when packet transit times are necessarily correlated, as discussed
below.

If a packet carries a total éfbytes and the bottleneck bandwidttyig byte/sec, then:

Qy=— (14.1)
PB

in units of seconds. We use the term “self-interference” because if the sender transniisytieo
packets with an intervahT; < Q) between them, then the second one is guaranteed to have to wait
behind the first one at the bottleneck element (hence the uge’db“denote “queueing”).

We use the notatio)), instead of the more functional notati@p(b) because we will
assume unless otherwise stated that, for a particular trace paiiixed to the maximum segment
size (MSS;§ 9.2.2). We note that full-sized packets dmeger than MSS, due to overhead from
transport, network, and link-layer headers. However, while it might at first appear that this overhead
is known (except for the link-layer) and can thus be safely addedjiftthe bottleneck link along a
path usetieader compressiof§ 13.3) then the header as transmitted might take much less data than
would appear from tallying the number of bytes in the header. Since many of the most significant
bottleneck links in our study also use header compression, we decided to perform all of our analysis

254

of the bottleneck bandwidth in terms of the maximum rate at which a connection can trasemit
data

For our measurement analysis, accurate assessméptiotritical. Suppose we observe
a sender transmitting; andp,, bothb bytes in size, and that they are sent an intelNa}, apart. If

ATS < Qba

then we know thap, had to wait a time), — AT at the bottleneck elemerit while p; was being
forwarded acros®. (This assumes that andp, take the same path through the network, a point
we address in detail later in this chapter.)
Thus, if ATs; < @y, the delays experienced by andp, are perforce correlated If
AT > @y, then ifpy experiences greater delay than the increase is not due to self-interference
but some other source (such as additional traffic from other connections, or processing delays).
We use(, to analyze packet timings and remove self-interference effects in Chapter 16.
In this chapter, we focus on sound estimatioli)pf as we must have this in order for the subsequent
timing analysis to be likewise sound.

14.2 Packet pair

The fundamental idea behind thacket pairestimation technique is that, if two packets
are transmitted by the sender with an interddl’y < @, between them, then when they arrive at
the bottleneck they will be spread out in time by the transmission delay of the first packet across
the bottleneck: after completing transmission through the bottleneck, their spacing will be exactly
Q. Barring subsequent delay variations (due to downstream queueing or processing lulls), they will
then arrive at the receiver spaced A, apart, butAT,. = ;. The sizeh then enables computation
of pp via Eqn 14.1

The principle of the bottleneck spacing effect was noted in Jacobson's classic congestion
paper [Ja88], where itin turn leads to the “self-clocking” mechanistZ.5). Keshav subsequently
formally analyzed the behavior of packet pair for a network in which all of the routers obey the
“fair queueing” scheduling discipline, and developed a provably stable flow control scheme based
on packet pair measurements [Ke91Both Jacobson and Keshav were interested in estimating
availablerather tharbottleneckbandwidth, and for thigsariationsfrom @, due to queueing are of
primary concern{ 16.5). But if, as for us, the goal is to estimaig, then these variations instead
become noise we must deal with.

To use Jacobson's self-clocking model to estimate bottleneck bandwidth requires an as-
sumption that delay variation in the network is small comparedjo Using Keshav's scheme
requires fair queueing. Internet paths, however, often suffer considerable delay variation (Chap-
ter 16), and Internet routers do not employ fair queueing. Thus, efforts to espmaising packet
pair must deal with considerable noise issues. The first step in dealing with measurement noise is

Lif the two packets in the pair have different siZzgsandb,, then which to use depends on how we interpret the
timestamps for the packets. If the timestamps reflect when the pbeganto arrive at the packet filter's monitoring
point, thenb; should be used, since that is how much data was transmitted between the timestamps of the two packets.
If the timestamps reflect when the packieishedarriving, thenb, should be used. In practice, a packet's timestamp is
recorded some timafter the packet has finished arriving, ggt0.2, and so ib; # b2, tcpanaly usesh,.

2Keshav also coined the term “packet pair.”

255

to analyze as large a number of pairs as feasible, with an eye to the tradeoff between measurement
accuracy and undue loading of the network by the measurement traffic.

Bolot used a stream of packets sent at fixed intervals to probe several Internet paths in
order to characterize delay and loss behavior [Bo93]. He measured round-trip delay of UDP echo
packets and, among other analyses, applied the packet pair technigue to form estimates of bottleneck
bandwidths. He found good agreement with known link capacities, though a limitation of his study
is that the measurements were confined to a small number of Internet paths. One of our goals is to
address this limitation by determining how well packet pair techniques work across diverse Internet
conditions.

Recent work by Carter and Crovella also investigates the utility of using packet pair in the
Internet for estimating bottleneck bandwidth [CC96a]. Their work focussépmibe , a tool they
devised for estimating bottleneck bandwidth by transmitting 10 consecutive ICMP echo packets
and recording the arrival times of the corresponding repbpsbe then repeats this process with
varying (and carefully chosen) packet sizes. Much of the effort in develggingbe concerns
how to filter the resulting raw measurements in order to form a solid estirbatebe currently
filters by first widening each estimate into an interval by adding an (unspecified) error term, and then
finding the point at which the largest number of intervals overlap. The authors also undertook to
calibratebprobe by testing its performance for a number of Internet paths with known bottlenecks.
They found in general it worked well, though some paths exhibited sufficient noise to sometimes
produce erroneous estimates. Finally, they note that measurements made using larger echo packets
yielded more accurate estimates than those made using smaller packets, which bodes well for our
interest in measuring, for b = MSS.

One limitation of both studies is that they were based on measurements made only at the
data sender§(9.1.3). Since in both studies the packets echoed back from the remote end were the
same size as those sent to it, neither analysis was able to distinguish whether the bottleneck along
the forward and reverse paths was the same, or whether it was present in only one direction. The bot-
tleneck could differ in the two directions due the packets traversing different physical links because
of asymmetric routing§ 8), or because some media, such as satellite links, can have significant
bandwidth asymmetries depending on the direction traversed [DMT96].

For the study in [CC964a], this is not a problem, because the authors' ultimate goal was to
determine which Web server to pick for a document available from a number of different servers.
Since Web transfers are request/response, and hence bidirectional (albeit potentially asymmetric in
the volume of data sent in each direction), the bottleneck for the combined forward and reverse path
is indeed a figure of interest. For general TCP traffic, however, this is not always the case, since for a
unidirectional transfer—especially for FTP transfers, which can sometimes be quite huge [PF95]—
the data packets sent along the forward path are much larger than the acks returned along the reverse
path. Thus, even if the reverse path has a significantly lower bottleneck bandwidth, this is unlikely to
limit the connection's maximum rate. However, for estimating bottleneck bandwidth by measuring
TCP traffic a second problem arises: if the only measurements available are those at the sender, then
ack compressior§(16.3.1) can significantly alter the spacing of the small ack packets as they return
through the network, distorting the bandwidth estimate. We investigate the degree of this problem
below.

3Gathering large samples, however, can conflict with another goal, that of forming an estinikly, briefly
discussed at the end of the chapter.

256

10000
\

8000

Sequence #
6000
|

2000 4000
\

|
!

Time

Figure 14.1: Paired sequence plot showing timing of data packets at sender (black squares) and
when received (arrowheads)

14.3 Receiver-based packet pair

For our analysis, we consider what we teroeiverbased packet pair (RBPP), in which
we look at the pattern of data packet arrivals at the receiver. We also utilize knowledge of the
pattern in which the data packets were originally sent, so we assume that the receiver has full timing
information available to it. In particular, we assume that the receiver knows when the packets sent
werenot stretched out by the network, and can reject these as candidates for RBPP analysis.

RBPP is considerably more accurate than sender-based packet pair (SBPP4.&),
since it eliminates the additional noise and possible asymmetry of the return path, as well as noise
due to delays in generating the acks themselyekl(6.4). Figure 14.1 showspaired sequence
plot for data transferred over a path known to have a 56 Kbit/sec bottleneck link. The centers of the
filled black squares indicate the times at which the sender transmitted the successive data packets,
and the arrowheads point to the times at which they arrived at the receiver. (We have adjusted the
relative clock offset per the methodology givensiri2.5). The packet pair effect is quite strong:
while the sender tends to transmit packets in groups of two back-to-back (due to slow start opening
the congestion window), this timing structure has been completely removed by the time the packets
arrive, and instead they come in at a nearly constant rate of about 6,200 byte/sec.

Figure 14.2 shows the same trace pair with the acknowledgements added. They are offset
slightly lower than the sequence number they acknowledge for legibility. The arrows start at the
point in time at which the ack was generated by the receiver, and continue until received by the
sender. We can see that some acks are generated immediately, but others (such as 4,096) are delayed.
Furthermore, there is considerable variation among the transit times of the acks, eventtieyugh
are almost certainly too small to be subject to stretching at the bottleneck link along the return path.
If we follow the ack arrowheads by eye, it is clear that the strikingly smooth pattern in Figure 14.1

257

=
p=1 -—
S
=1 -
-— s
-
P=3
p=d | -3
S
o -—
-
-—
P=1 -
. —
o b= -,
=
> -
=
D -
(5] P=3
g -
= -
-—
-
=
S -——
p=1
<
-
-
-
=Y — = >
T T T T T T T
0o.0 0.5 1.0 1.5 2.0 2.5 3.0

Time

Figure 14.2: Same plot with acks included

has been blurred by the ack delays, which have nothing to do with the quantity of interest, namely
Q@ on the forward path.

14.4 Difficulties with packet pair

As shown in the Bolot and Carter/Crovella studies ([Bo93, CC96a]), packet pair tech-
nigues often provide good estimates of bottleneck bandwidth. We are interested both in estimating
the bottleneck bandwidth of the Internet paths in our study, and, furthermore, whether the packet-
pair technique is robust enough that an Internet transport protocol might profitably use it in order to
make decisions based 6.

A preliminary investigation of our data revealed four potential problems with packet pair
techniques, even if receiver-based. Three of these can often be satisfactorily addressed, but the
fourth is more fundamental. We discuss each in turn.

14.4.1 Out-of-order delivery

The first problem stems from the fact that, for some Internet paths, out-of-order packet
delivery occurs quite frequently; 13.1). Clearly, packet pairs delivered out of order completely
destroy the packet pair technique, since they resulh® < 0, which then leads to a negative
estimate forpp. The receiver sequence plot in Figure 14.3 illustrates the basic problem. (Compare
with the clean arrivals in Figure 14.1.)

Out-of-order delivery is symptomatic of a more general problem, namely that the two
packets in a pair may not take the same route through the network, which then violates the as-
sumption that the second queues behind the first at the bottleneck. In a sense, out-of-order delivery
is a blessing, because the receiver can usuhdigctthe event (based on sequence numbers, and

258

Sequence #
40000 45000 50000
\ \ \

35000
\

30000
\

25000
\

Time

Figure 14.3: Receiver sequence plot illustrating difficulties of packet-pair bottleneck bandwidth
estimation in the presence of out-of-order arrivals

possibly IP “id” fields for retransmitted packets; §f10.5). More insidious are packets pairs that
traverse different paths but still arrive in order. The interval computed from their arrivals may have
nothing to do with the bottleneck bandwidth, and yet it is difficult to recognize this case and discard
the measurement from subsequent analysis. We discuss a particularly problematic instance of this
problem ing 14.4.4 below.

14.4.2 Limitations due to clock resolution

Another problem relates to the receiver's clock resolutign(§ 12.3). C,. can introduce
large margins of error around estimatesp@f. Suppose twd-byte packets arrive at the receiver
with a spacing oA7,. We want to estimatgp from Eqn 14.1 using

ATr = Qb
= p—B,
and hence
= b (14.2)
PB = AT)

However, we cannot measuferl’, exactly, but only estimate an interval in which it lies, using:

max(AT, — C,,0) < AT, < AT, + C,, (14.3)

259

whereAT, is the value reported by the receiver's clock for the spacing between the two packets.
Combining Eqn 14.2 with Eqn 14.3 gives us:

~

Py =

>‘®

b
r

b
AT, +C,

b
max(AT, — C,,0)

N >

(14.4)

In the case wherdT, < C,, i.e., the two packets arrived with the clock advancing at most once,
we cannot provide any upper bound gnat all. Thus, for example, i€, = 10 msec, a common
value on older hardware (12.4.2), then fob = 512 bytes, from the arrival of a single packet pair
we cannot distinguish between

012

and
pPB = 0.

This means we cannot distinguish between a fairly pedestrian T1 link of under 200 Kbyte/sec, and
a blindingly fast (today!) OC-12 link of about 80 Mbyte/sec.

For C, = 1 msec, the threshold rises to 512,000 byte/sec, still much too low for mean-
ingful estimation for high-speed networks. For today's netwotks— 100 usec almost allows
us to distinguish between T3 speeds of a bit over 5 Mbyte/sec and higher speeds. Since some of
the clocks in our study had finer resolution, we view this problem as tractable with today's (better)
hardware. It is not clear, however, whether in the future processor clock resolution will grow finer
at a rate to match how network bandwidths grow faster (and@judecreases).

While some of today's hardware provides sufficient resolution for packet-pair analysis,
other platforms do not, so we still need to find a way to deal with low-resolution clocks. In line with
the argument in the previous paragraph, doing so also potentially benefits measurement of future
networks, since their bandwidth growth may outpace that of clock resolution.

A basic technique for coping with poor clock resolution is to use paualethrather than
packet paif: The idea behind packet bunch, in whikh> 2 back-to-back packets are used, is that
bunches should be less prone to noise, since individual packet variations are smoothed over a single
large interval rather thah — 1 small intervals. This idea has not been thoroughly tested, and one
might argue the opposite: if packets are occasionally subject to large transient delays due to bursts
of cross traffic, than the largéris, the greater the likelihood that a bunch will be disrupted by a
significant delay, leading to underestimationpgf. We investigate this concern below. However,
another benefit of packet bunch is that the overall time intedVBf spanned by thé packets will
be aboutk — 1 times larger than that spanned by a single packet pair. Accordingly, by choosing
sufficiently largek we can diminish the adverse effects of poor clock resolution, except for the
problem mentioned above of encountering spurious delays and underestipatsg result.

“The term “packet bunch” has been in informal use for at least several years; however, we were unable to find any
appearance of it in the networking literature. Tiation appears in [BP95a], in the discussion of the “Vegas-*" variant,
which attempts to estimate available bandwidth using a four-packet version of packet pair; and in [Ho96], which uses an
estimate derived from the timing of three consecutive acks.

260

60900 80?00 100@00

Sequence #

40900

20900

Figure 14.4: Receiver sequence plot showing two distinct bottleneck bandwidths

14.4.3 Changes in bottleneck bandwidth

Another problem thatinybottleneck bandwidth estimation must deal with is the possibil-
ity that the bottleneckhangesver the course of the connection. Figure 14.4 shows a trace in which
this happened. We have shown the entire trace, but only the data packets and not the corresponding
acks. While the details are lost, the eye immediately picks out a transition between one overall slope
to another, just aftef’ = 6. The first slope corresponds to about 6,600 byte/sec, while the second
is about 13,300 byte/sec, and increase of about a factor of two.

For this example, we know enough about one of the endpdisits () to fully describe
what occurred.lbli 's Internet connection is via an ISDN link. The link has tel@nnels each
nominally capable of 64 Kbyte/sec. Whii initially uses the ISDN link, the router only acti-
vates one channel (to reduce the expense). Howeubli, if makes sustained use of the link, then
the router activates the second channel, doubling the bandwidth.

While for this particular example the mechanism leading to the bottleneck shift is specific
to the underlying link technology, therinciple that the bottleneck can change with time is both
important and general. It is important to detect such an event, because it has a major impact on
the ensuing behavior of the connection. Furthermore, bottlenecks can shift for reasons other than
multi-channel links. In particular, routing changes might alter the bottleneck in a significant way.

Packet pair studies to date have focussed on identifyismgle bottleneck bandwidth
[B093, CC96a]. Unfortunately, in the presence of a bottleneck shift, any technique shaped to esti-
mate a single, unchanging bottleneck will fail: it will either return a bogus compromise estimate,
or, if care is taken to remove noise, select one bottleneck and reject the other. In both cases, the
salient fact that the bottleneck shifted is overlooked. We attempt to address this problem in the
development of our robust estimation algorith§r4.6).

261

Sequence #
65?00 70900 75900 80900

60900

55?00

Time

Figure 14.5: Enlargement of part of the previous figure

14.4.4 Multi-channel bottleneck links

We now turn to a more fundamental problem with packet-pair techniques, namely bot-
tleneck estimation in the face of multi-channel links. Here we do not concern ourselves with the
problem of detecting that the bottleneck ledmangeddue to the activation or deactivation of the
link's additional channel§(14.4.3). We instead illustrate a situation in which packet pair yields
incorrect overestimatesven in the absence of any delay noise.

Figure 14.5 expands a portion of Figure 14.4. The slope of the large linear trend in the
plot corresponds to 13,300 byte/sec, as earlier noted. However, we see that the line is actually made
up of pairs of packets. Figure 14.6 expands the plot again, showing quite clearly the pairing pattern.
The slope between the pairs of packets corresponds to a data rate of about 160 Kbyte/sec, even
though we know that the ISDN link has a hard limit of 128 Kbit/sec = 16 Kbyte/sec, a factor of ten
smaller! Clearly, an estimate of

P» =~ 160 Kbyte/sec

must be wrong, yet that is what a packet-pair calculation will yield.

The question then is: where is the spacing corresponding to 160 Kbyte/sec coming from?
A clue to the answer lies in the number itself. It is not far below the user data rates achieved over
T1 circuits, typically on the order of 170 Kbyte/sec. Itis as though every other packet were immune
to queueing behind its predecessor at the known 16 Kbyte/sec bottleneck, but instead queued behind
it at a downstream T1 bottleneck.

Indeed, this is exactly what is happening. As discussedlih.4.3, the bottleneck ISDN
link has two channels. These operatgarallel. That is, when the link is idle and a packet arrives,
it goes out over the first channel, and when another packet arrives shortly after, it goes out over the
other channel. If a third packet then arrives, it has to wait until one of the channels becomes free.
Effectively, it is queued behind not its immediate predecessor but its predecessor's predecessor, the

262

Sequence #
61000 62000
| |

60000
\
1

59000
\
1

8.80 8.85 8.90 8.95 9.00 9.05

Time

Figure 14.6: Enlargement of part of the previous figure

first packet in the series, and it is queued not for a 16 Kbyte/sec link but for an 8 Kbyte/sec channel
making up just part of the link.

As queues build up at the router utilizing the multi-channel link, often both channels will
remain busy for an extended period of time. In this case, additional traffic arriving at the router, or
processing delays, can alter the “phase” between the two channels, meaning the offset between when
the first begins sending a packet and when the second does so. Thus, we do not always get an arrival
pattern clearly reflecting the downstream bottleneck as shown in Figure 14.6. We can instead get a
pairing pattern somewhere between the downstream bottleneck and the true bottleneck. Figure 14.7
shows an earlier part of the same connection where a change in phase quite clearly occurs a bit
beforeT = 8. Here the pair slope shifts from about 23 Kbyte/sec up to 160 Kbyte/sec. Note that
the overall rate at which new data arrives at the receiver has not changed at all during this transition,
only the fine-scale timing structure has changed.

We conclude that, in the presence of multi-channel links, packet-pair techniques can give
completely misleading estimates fpg. Worse, these estimates will often be much too high. The
fundamental problem is the assumption with packet pair that there is only a single path through the
network, and that therefore packets queue behind one another at the bottleneck.

We should stress that the problem is more general than the circumstances shown in this
example, in two important ways. First, while in this example the parallelism leading to the esti-
mation error came from a single link with two separate (and parallel) physical channels, the exact
same effect could come from a router that balances its outgoing load across two different links. If
these links have different propagation times, then the likely result is out-of-order arrivals, which can
be detected by the receiver and removed from the analysid.4.1). But if the links have equal
or almost equal propagation times, then the parallelism they offer can completely obscure the true
bottleneck bandwidth.

Second, it may be tempting to dismiss this problem as correctable by using packet bunch

263

45000 50000
| |

Sequence #

40000
|

35000
|

Time

Figure 14.7: Multi-channel phasing effect

(8§ 14.4.2) withk = 3 instead of packet pair. This argument is not compelling without further investi-
gation, however, because packet bunch is potentially more prone to error; and, more fundamentally,
k = 3 only works if the parallelism comes frotwo channels. If it came fronthree channels (or
load-balancing links), theh = 3 will still yield misleading estimates.

We now turn to developing techniques to address these difficulties.

14,5 Peak rate estimation

In this section we discuss a simple, cheap-to-compute, and not particularly accurate tech-
nique for estimating the bottleneck bandwidth along a network path. We term this teclpaigkie
rate and subsequently refer to it as PR. Our interest in PR lies in provihfigration for the robust
technique developed in the next section, based on packet-bunch modes (“PBM”). We develop two
PR-based estimates, a “conservative” estimafe, very unlikely to be an overestimate, and an
“optimistic” estimate PR, which is more likely to be accurate but is also prone to overestimation.
Armed with these estimates, we then can compare them with results given by PBM. If the robust
technique yields an estimate less tRIR, or higher tharPR’, then the discrepancy merits investi-
gation. If they generally agree, then perhaps we can use the simpler PR techniques instead of PBM
without losing accuracy (though it would be surprising to find that PR techniques suffice, per the
discussion below).

PR is based on the observation that the peak rate the connection ever manages to transmit
along the path should give a lower bound on the bottleneck rate. PR is a necessassful
technique in that it requires loading the network to capacity to assure accuracy. As such, we would
prefer not to use PR as an active measurement methodology, but it works fine for situations in which
the measurements being analyzed are due to traffic initiated for some reason other than bottleneck
measurement. Thus, PR makes sense as a candidate algorithm for adding to a transport protocol.

264

In contrast, packet pair and PBM do not necessarily require stressing the network for accuracy, so
they are attractive both as additions to transport protocols to aid in their decision-making, and as
independent network analysis tools.

At its simplest, PR consists of just dividing the amount of data transferred by the duration
of the connection. This technique, however, often grossly underestimates the true bottleneck band-
width, because transmission lulls due to slow-start, insufficient window, or retransmission timeouts
can greatly inflate the connection duration.

To reduce the error in PR requires confining the proportion of the connection on which we
calculate the peak rate to a region during which none of these lulls impeded transmission. Avoiding
slow-start and timeout delays is easy, since these regions are relatively simple to identify. Identifying
times of insufficient window, however, is more difficult, because the correct window is a function of
both the round-trip time (RTT) and the available bandwidth, and the latter is shaped in part by the
bottleneck bandwidth, which is what we are trying to estimate.

If the connection was at some point not window-limited, then by definition it achieved
a sustained rate (over at least one RTT) at or exceeding the available capacity. Since the hope
embodied in PR is that at some point the available capacity matched the bottleneck bandwidth,
we address the problem of insufficient window by forming our estimate from the maximum rate
achieved over a single RTT.

tcpanaly computes a PR-based estimate by advancing through the data packet arrivals
at the TCP receiver as follows. For each arrival, it computes the amount of data (in bytes) that
arrived between that arrival and the next data packet comingogygindthe edge of a temporal
window equal to the minimum RTT, RTd,. (RTTmin is computed as the smallest interval between
a full-sized packet's departure from the sender and the arrival at the sender of an acknowledgement
for that packet.) Suppose we fidgl bytes arrived in a total timé\T,. > RTTmi,, and that the
interval spanned by the departure of the packets when transmitted by the seadgriisFinally,
if any of the packets arrived out of order, then we exclude the group of packets from any further
analysis.

Otherwise, we compute thexpansion factor

AT, + C,

Esr = m,

(14.5)
whereC;, andC, are the resolutions of the sender's and receiver's cl§ck&.8). ¢, measures the
factor by which the group of packets was spread out by the network. If less than 1, then the packets
were not spread out by the network and hence not shaped by the bottleneck. Thus, calculations
based on their arrival times should not be used in estimating the bottleneck. In practice, however,
two effects complicate the simple rule of rejecting timing&;if < 1. The first is that, iiC; is con-
siderably different (orders of magnitude larger or smaller) iiarthen¢, , can vary considerably,

even if the magnitudes akhT, and AT, are close. The second problem is that sometimes due to
“self-clocking” (§ 9.2.5), a connection rapidly settles into a pattern of transmitting packets at very
close to the bottleneck bandwidth, in which case we mightgindslightly less than 1 even though

it allows for a solid estimate giz. To address these concerns, we use a slightly different definition

SHere, B doesnotinclude the bytes carried by the first packet of the group, since we assume that the packet timestamps
reflect when packef#nishedarriving, so the first packet's bytes arrived before the point in time indicated by its timestamp.
Also see the footnote i14.2.

265

of & , than that given by Eqn 14.5:
>~ AT, +C,
s,r — ATS + Cra
namely,C, is used in both the numerator and the denominator, which eliminates large swings in
&s,r due to discrepancies betweéh andC;. This is a bit of a “fudge factor,” and in retrospect
a better solution would have been to use+ Cj; but, we find it works well in practice. The
other fudge factor is thatpanaly allows estimates f(ﬁs,,« > 0.95, to accommodate self-clocking
effects.

(14.6)

After taking into account these considerations, we then form the PR-based estimate:

—c B

The ¢ superscript indicates that the estimatocamservative Since it requireAT > RT T, it
may be an underestimate if the connection never managed to “fill the pipe,” which we illustrate
shortly.

For the same group of packetspanaly also computes an “optimistic” estimate corre-
sponding to the group minus the final packet (the one that arrived more thapRafter the first
packet):

F/)\RO = ?)
AT, +C,

where B~ is the number of bytes received after subtracting those for the last packet in the group,
and AT, is likewise the interval over which the group arrived, excluding the final packet. (Thus,

we always haveAT,” < RTTmin.) tcpanaly does not place any restriction on the expansion
factor for the packets used in this estimate, because sometimes the data packets were in fact com-
pressed by the network {, < 1) but still give reliable estimates, because they queued at the
bottleneck link behind earlier packets transmitted by the sengemaly does require, however,

that eitherAT,~ > %RTTmm, or that B is equal to the offered window (i.e., the connection was
certainly window-limited), to ensure that compression of a small number of packets does not skew
the estimaté.

We compute the final estimates as the maximBRfandPR . Note that the algorithms
described above work best with cooperation between the sender and the receiver, in order to detect
out-of-order arrivals, and to form a good estimate for Ril, Twhich can be quite difficult to assess
from the receiver's vantage point because it cannot reliably infer the sender's congestion window.

Figure 14.8 illustrates the difference between compuEhAﬁé and PR’ for a window-
limited connection. RT i, is about 110 msec. 8 packets arrive, starting at 1.5. The optimistic
estimate is based on the 3,584 bytes arriving 22 msec after the first packet, for a rate of about
163 Kbyte/sec. The conservative estimate includes the 9th packet arriving significantly later than
the first 8 (due to the window limit). The corresponding estimate is 4,096 bytes arriving in 115 msec,
for a rate of about 36 Kbyte/sec. In this case, the optimistic estimate is much more accurate, as the
limiting bandwidth is in fact that of a T1 circuit, corresponding to about 170 Kbyte/sec of user data.
In this example, the connection is limited by thiéeredwindow, which is easy to detect. Very of-
ten, however, connections are instead limited by the congestion window, due earlier retransmission

(14.8)

5The precise method used is a bit more complicated, since it includes the possibility of different-sized packets arriving.

266

3,584 bytes / 22 msec =
163,000 bytes / sec

12000
|

Sequence #
10000
|

4,096 bytes / 115 msec =
36,000 bytes/sec

8000
\

6000
\

Figure 14.8: Peak-rate optimistic and conservative bottleneck estimates, window-limited connection

events. This limit is more difficult for the receiver to detect. THIE often forms a considerable
underestimate.
On the other hand, Figure 14.9 shows an instance in wRRhis a large overestimate.
The optimistic and conservative estimates for this trace both occurred for the group of packets
arriving at timeT" = 1.5, in the middle of the figure. As can be seen from the surrounding groups,
the true bottleneck capacity is about 170 Kbyte/sec (T1). The packet gré@ug-dt5, however, has
beencompressedby the network (cf§ 16.3.2), and it all arrives d&thernetspeed. Thus, PR forms
a gross overestimate f&R . Furthermoregven if¢;, were checked when forming this estimate
the estimate would have been accepted, since the pdekdise sender at Ethernet speed, too! In
addition,PR is again a serious underestimate because the connection is again window-limited.
Thus, while PR is fairly simple to compute, it often fails to provide reliable estimates. We
need a more robust estimation technique.

14.6 Robust bottleneck estimation

Motivated by the shortcomings of packet pair and PR estimation techniques, we developed
a significantly more robust procedure, “packet bunch modes” (PBM). The main observation behind
PBM is that dealing with the shortcomings of the other techniques involves both forming a range
of estimates based on different packet bunch sizes, and to analyze the result with the possibility in
mind of finding more than one bottleneck value.

By considering different bunch sizes, we can accommodate limited receiver clock reso-
lutions § 14.4.2) and the possibility of multiple channels or load-balancing across multiple links
(§ 14.4.4), while still avoiding the risk of underestimation due to noise diluting larger bunches, or
window limitations § 14.5), since we also consider small bunch sizes.

267

55900

50900

Sequence #
45?00

40900

35900

Figure 14.9: Erroneous optimistic estimate due to data packet compression

By allowing for finding multiple bottleneck values, we both again accommodate multi-
channel (and multi-link) effects, and also the possibility of a bottlerdbeinge(s 14.4.3). Further-
more, these two effects can be distinguished from one another: multiple bottleneck values due to
multi-channel effect®verlap while those due to bottleneck changes fall into separate regions in
time.

In the remainder of this section we discuss a number of details of PBM. Many are heuristic
in nature and evolved out of an iterative process of refining PBM to avoid a number of obvious
estimation errors. It is unfortunate that PBM has a large heuristic component, as it makes it more
difficult to understand. On the other hand, we were unable to otherwise satisfactorily deal with the
considerable problem of noise in the packet arrival times. We hope that the basic ideas underlying
PBM—searching for multiple modes and interpreting the ways they overlap in terms of bottleneck
changes and multi-channel paths—might be revisited in the future, in an attempt to put them on a
more systematic basis.

14.6.1 Forming estimates for each “extent”

PBM works by stepping through an increasing series of packet bunch sizes, and, for each,
computing from the receiver trace all of the corresponding bottleneck estimates. We term the bunch
size as thextentand denote it byt. For each extent, we advance a window over the arrivals at the
receiver. The window is nominally packets in size, but is extended as needed so that it always
includesk - MSS bytes of data (so we can include less-than-full packets in our analysis). We do not,
however, do this extension fér= 1, as that can obscure multi-channel effects.

"For higher extentsk(> 1), this extension does not obscure multi-channel effects, because we detecte multi-channel
bottlenecks based on comparing estimateskfet 1 with estimates folk = m, wherem is the number of multiple
channels. Thus, the main concern is to not confusé thel estimate.

268

We also extend the window to include more packets8Tf. < C,, that s, if all the arrivals
occurred without the receiver's clock advancing.

If any of the arrivals within the window occurred out of order, or if they were transmitted
due to a timeout retransmission, we skip analysis of the group of packets, as the arrival timings will
likely not reflect the bottleneck bandwidth.

If when the last packet in the group was sent, the sender had fewet gaaukets in flight,
then some unusual event occurred during the flight (such as retransmission or receipt of an ICMP
source quench), and we likewise skip analysis of the group.

We next compute bounds a\T7;, using Eqn 14.3:

AT = max(AT, — C},0)

r

AT = AT, +C,.

r

We also compute twexpansion factorassociated with the group, similar to that in Eqn 14.6. The

first is more conservative:
AT, — C,

(GO
S AT, + C,’
where ATy again is the difference in time between the departure of the last packet and that of the

first. The additional conservatism comes from usik@, — C, in the numerator. The second is
likely to be overall the more accurate, but subject to fluctuations due to limited clock resolution:

(14.9)

AT,

o __
S AT, + C,’

We term it “optimistic” since it yields expansion factors larger tigap.
If the last packet group we inspected spanned an intervalBf, then we perform a
heuristic test. If:

AT, + C,

AT+ C, > 2, (14.10)
then this group was spaced out more than twice as much as the previous group, and we skip the group
(after assigning\T, « AT,), because it is likely to reflect sporadic arrivals. In some cases, this
decision will be wrong; in particular, after a compression event such as that shown in Figure 14.9,
we will often skip the immediately following packet group. However, this will be the only group we
skip after the event, so, unless a trace is riddled with compression, our estimation does not suffer.

We then test whetheg? . > 0.95 (where use of 0.95 rather than 1 is again an attempt to

accommodate the self-clocking effect, per the discussion of Eqn 14.6). If so, we “accept” the group,
meaning we treat it as providing a reliable estimate. (We will further analyze the accepted estimates,
as discussed below.) Lé& denote the number of bytes in the group (excluding those in the first
packet, as also done §14.5). With theith such estimate (corresponding to title acceptable
group), we associate six quantities:

1. p{, an index identifying the first packet in the group;
2. pt, anindex identifying the last packet in the group;

3. pi = B/AT,, the bandwidth estimate;

269

4. p; = B/AT,+, the lower bound on the estimate due to the clock resoluiign
5. p;” = B/AT,—, the upper bound on the estimate; and
6. &7, the conservative expansion factor corresponding to that given by Eqn 14.9.

We will refer to this set of quantities collectively ds.

One unusual, additional heuristic we use is thagyif < 0.2, i.e., the data packets were
grossly compressed, then vaso accept the estimate given by the corresponding group. (So we
reject the estimate #.2 < {7, < 0.95.) This reasoning behind this heuristic is the same as that ac-
companying the discussion of Eqn 14.8, namely, that data packets can be highly compressed but still
reflect the bottleneck bandwidth due to queueing at the bottleneck behind earlier packets transmitted
by the sender. Finally, we note that this heuristic does not generally lead to problems accepting es-
timates based on compressed data that would otherwise be rejected, because the compression needs
to be rampant for PBM to erroneously accept it as a bona fide estimate.

Finally, from a computational perspective, we would like to have an upper bound on the
maximum extent; for which we do this analysis. The nominal upper bound we uge4s4. If,
however, the bounds on the estimates obtained: fer 4 are unsatisfactorily wide due to limited
clock resolution, or if we found a new candidate bottleneck:fer 4, then we continue increasirig
until both the bounds become satisfactory and we have not produced any new bottleneck candidates.
These issues are discussed in more detail in the next section.

14.6.2 Searching for bottleneck bandwidth modes

In this section we discuss how we reduce a set of bottleneck bandwidth estimates into
a small set of one or more values. L&fk) be the set of bottleneck estimates formed using the
procedure outlined in the previous section, for an exterit phckets. Let;,, denote the number of
estimates, andV the total number of packets that arrived at the receiver. If:

ng < max(g,f)),
then we reject further analysis @f(%) because it consists of too few estimates. Otherwise, consider
U (k) as comprising a sound set of estimates, and turn to the problem of extracting the best estimate
from the set.

Previous bottleneck estimation work has focussed on identifying a single best estimate
[B0o93, CC96a]. As discussed at the beginning; df4.6, we must instead accommodate the pos-
sibility of forming multiple estimates. This then rules out the use of the most common robust
estimator, the median, since it presupposes unimodality. We instead turn to techniques for identi-
fying modesi.e., local maxima in the density function of the distribution of the estimates. Using
modal techniques gives PBM the ability to distinguish between a number of situations (bottleneck
changes, multi-channel links) that previous techniques cannot.

Clustering the estimates

Because modes are properties of density functions, in trying to identify them we run into
the usual problem of estimating density from a finite set of samples drawn from an (essentially)

270

continuous distribution. [PFTV86] gives one procedure for doing so, based on passingka size-
window over sorted samples ;) to see whereX ;1) — X(;) is minimal. [X(;), X(;yx—1)] then
corresponds to the region of highest density, since it packs the most datapoints into the least change
in X. We experimented with this algorithm but found the results it produced for our estimation
unsatisfactory, because there is no obviously correct choide ford different values yield different
estimates.

We then devised an algorithm based on a similar principle of conceptually passing a win-
dow over the sorted data. Instead of parameterizing the algorithm with a window, sieuse an
“error-factor,” o, for o > 1. We then proceed through the sorted data, and, for &aghwe search
for anl satisfying: <! < n such that:

Xo < 0X@) < Xary-

In other words, we look ahead to find two estimates that straddle the value of addatger than
X ;). The first estimate, with indei), is within a factoro of X(;), while the second(/ + 1), is
beyond it. If there is no such(which can only happen iX,,) < 0X(;)), then we consideX, as
the end of the range of the modal peak.

We termC; = [— i 4+ 1 thecluster sizeas it gives us the number of points that lie within
a factor ofo of X(;). If C; < 3, then we consider the clusteivial, and disregard it. Otherwise,
we take as the cluster's mode its central observation,X.&,%i). If this is identical to that of a

previously observed cluster, weergethe two clusters. We then continue advancing the window
until we have definea cluster tuples. The final step is to prune out any clusters that overlap with
a larger cluster.

We now turn to how to seleet. We decided to regard as consistent any bottleneck esti-
mates that fall withint-20% of the central bottleneck estimate. We found that using smaller error
bars (less thar-20%) can lead to PBM finding spurious multiple peaks, while larger ones can wash
out true, separate peaks.

Consequently, we will accept as falling within the estimate's bounds

and
Xoy=12-X, .

However,o is in terms of the ratio betweeX(l), the high end of the bottleneck estimate's range,
and X;), the low end. Itis easy to show that the above two relationships can hele-ifl.5, so
that is the value we choose. Note, though, that we do not define the estimate's bounds in terms of
+20%, but as

[min(X), p.), - - -, max(X(y,)], (14.11)
wherep_ is the minimum bound OIX(H&) due to clock resolution limits, ang is the maximum
such bound. In the absence of clock rezsolution limits, the bounds will often be tightei-ttiga;
but in the presence of such limits, they will often be wider.

The final result isb (%), a list of disjoint, non-trivial clusters associated wiiti%), sorted
by descending cluster size, and each with associated error bars given by Eqn 14.11.

8This can happen because of repeated observations yielding the same bottleneck estimates, due to clock resolution
granularities and constant packet sizes.

271

Reducing the clusters

It is possible thatb(k) is empty, becaus@& (k) did not contain any non-trivial clusters.

This can happen eveniif, is large, if the individual estimates differ sufficiently. In this case, we
consider the extent-analysis as having failed, and proceed to the next extent, or stop i.

Otherwise, we inspect the estimate reflected by each cluster to determine its suitability,
as follows. First, we comput{af(‘r’o) andfic(%) as the 50th and 95th percentiles of the conservative
expansion factorg{ associated with each of the estimaggswvithin the cluster (per Eqn 14.9).

We next examine all of the estimates that fall within the cluster's error bars (nominally,
+20%), to determine the clusterrange where in the trace we first and last encountered packets
leading to estimates consistent with the cluster. When determining the cluster's range, we only
consider estimates for whicff > min(ff(50), 1.1), to ensure that we base the cluster's range on
sound estimates (those derived from definite expansion, if present very often; otherwise, those in
the upper 50% of the expansions). Without this filtering, a cluster's range can be artificially inflated
due to self-clocking and spurious noise, which in turn can mask a bottleneck change.

We next inspect all of the extertestimates derived from packets falling withifi s inner
range, to determing;, the proportion of these estimates consistent with the cluster (within the error
bars given by Eqn 14.11); is the cluster'docal proportion and reflects how well it captures the
behavior within its associated range. A valueyphear 1 indicates that, over its range, the evidence
was very consistent for the given bottleneck estimate, while a lower value indicates the evidence for
the bottleneck was diluted by the presence of numerous inconsistent measuremgnts012, or
if &k = 2 (i.e., we are looking at packet pair estimates) anet 0.3, we reject the estimate reflected
by the cluster as too feeble. This heuristic prunes out the vast majority of estimates that have made
it this far in the process, since most of them are due to spurious noise effects. It keeps, however,
those that appear to dominate the region over which we found them.

It at first appears that a threshold of 0.2 or 0.3 is considerably too lenient, but in fact it
works well in practice, and using a higher threshold runs the risk of failing to detect multi-channel
effects, which can split the estimates into two or three different regions. For example, in Figure 14.7
we can readily see that a number of different slopes emerge.

An estimate that has made it this far is promising. The next step is to see whether we
have already made essentially the same estimate. We do so by inspecting the previously accepted
(“solid”) estimates to see whether the new estimate overlaps. If so, we consolidate the two estimates.
The details of the consolidation are numerous and tedidte. will not develop them here, except
to note that this is the point where a solid estimate with a large error intefvak(p;’) can tighten
its error interval based on the observation that we have independent evidence for the same estimate
at a different extent, and the new evidence has a smaller associated error (due to the higher extent).
This is also the point where we determine whether to increasméxémum exterdassociated with
an estimate. Doing so is important when hunting for multi-channel bottleneck links, as these should
exhibit one bandwidth estimate with a maximum extent exactly equal to the number of parallel
channels.

If we do not consolidate a new estimate with any previous solid ones, then we add it to
the set of solid estimates.

°And can be gleaned from thepanaly ~ source code.

272

Forming the final estimates

After executing the process outlined in the previous two subsections, we have produced
T, a set of “solid” estimates. It then remains to further analjze determine whether the estimates
indicate the presence of a multi-channel link or a bottleneck change. Note that in the process we may
additionally merge some of the estimates; we have not yet constructed the set of “final” estimates!

If T is empty, then we failed to produce any solid bandwidth estimates. This is rare but
occasionally happens, for one of the following reasons:

1. so many packet losses that too few groups arrived at the receiver to form a reliable estimate;

2. so many retransmission events that the connection never opened its congestion window suffi-
ciently to produce a viable stream of packet pairs;

3. such a small receiver window that the connection could never produce a viable stream of
packet pairs; or,

4. the trace of the connection was so truncated that it did not include enough packet arrivals
(§ 10.3.4).

In N1, we encountered 37 failures; iy, only 1, presumably because the bigger windows used in
N3 (§ 9.3) gave more opportunity of observing a packet group spaced out by the bottleneck link.
Interestingly, no estimation failed on account of too many out-of-order packet deliveries. Even
those with 25% of the arrivals occurring out of order provided enough in-order arrivals to form a
bottleneck estimate.

AssumingY is not empty, then if it includes more than one solid estimate, we compare
the different estimates as follows. First, we definelhse estimatep*, as the first solid estimate
we produced. No other estimate was formed using a smaller extenpthaince we generated
estimates in order of increasing extent.

If p* was formed using an extent bf= 2, and if Y includes additional estimates that were
only observed fok = 2 (i.e., for higher extents we never found a compatible estimate with which
to consolidate them), then we assess whether these estimates are “weak.” An estimate is weak if it is
low compared t@*; the overall proportion of the trace in accordance with the estimate is small; and
the estimate's expansiog 50) andfic(%) are low. If these all hold, then the estimate fits the profile
of a spurious bandwidth peak (due, for example, to the relatively slow pace at which duplicate acks
clock out new packets during “fast recovery”, 39.2.7), and we discard the estimate.

We now can (at last!) proceed to producing a set of final bandwidth estimates. We begin
with the base estimatgy*. We next inspect the other surviving estimates as follows. For each
estimate, we test to see whether its range overlaps any of the final estimates. If so, then we check
whether the two estimates might reflect a two-channel bottleneck link, which requires:

1. One of the estimates must have a maximum exterit ef 2 and the other must have a
minimum extent oft > 3. Call theseFs and E53. This requirement splits the estimates into
one that reflects the downstream bottleneck, which is only observed for packetipair®, (
since fork > 2 the effect cannot be observed for a two-channel bottleneck), and the other
that reflects the true link bandwidth (which can only be observed for 2, sincek = 2 is
obscured by the multi-channel effect).

273

2. E3 must span at least as much of the tracdzas|t may span more due to phase effects, as
illustrated in Figure 14.7.

3. UnlessE; spans almost the entire trace, we require that:
3
& > min(76". 2).

This requirement assures thaj was at least occasionally observed for a considerable expan-
sion factor, or, if not, then neither wds,. The goal here is to not be fooled by & that

was only generated by self-clocking (i.e., no opportunity to observe a higher bandwidth for
an extent: > 2).

4. The bandwidth estimate correspondingt9 must be at least a factor of 1.5 different than
that from E», to avoid confusing a single very broad peak with two distinct peaks.

If the two estimates meet these requirements, then we classify the trace as exhibiting a
multi-channel bottleneck link.

We originally performed the same analysis fék(Ey), that is, for overlapping estimates,
one with extenk = 3 and one withk > 4. A three-channel bottleneck would produce estimates for
both. We did not find any traces that plausibly exhibited three-channel bottleneck links, though, and
did endure a number of false findings, so we omit three-channel analysis from PBM. If we have the
opportunity in the future to obtain traces from paths with known three-channel bottlenecks, then we
presume we could devise a refinement to the present methodology that would reliably detect their
presence.

If two estimates overlap but fail the above test for a multi-channel bottleneck, and if either
has both a higher bandwidth estimate and accords with twice as many measurements as the other,
then we discard the weaker estimate and use the stronger in its place.

If they overlap but neither dominates, then if one has a minimum extent larger than the
other's maximum extent, and larger than= 3 (to avoid erroneously discarding multi-channel
estimates), then we discard it as almost certainly reflecting spurious measurements.

If two estimates overlap and none of the three procedures above resolve the conflict, then
PBM reports that it has found conflicting estimates. This never happened when anal§zikgr
N3, we found only 10 instances. 7 involii , which frequently exhibits both a bottleneck change
and a multi-channel bottleneck, per Figures 14.4 and 14.5. The other three all exhibit a great deal
of delay variation, leading to the conflicting estimates.

If the newly considered estimate does not overlap, then, after some final sanity checks to
screen out spurious measurements (which can otherwise remain undetected, if they happen to occur
at the very beginning or end of the trace, and thus do not overlap with the main estimate), we add
it to the collection of final estimates. At this point, we conclude that the trace exhibits a bottleneck
change.

Completing the above steps results in one or more final estimates. For each final estimate
pB, we then associate bounds:

pp < pB < Ph (14.12)
wherepy andpg reflect Eqn 14.11, i.e., the smallest and largest estimates wit?d6 of pp, or

the bounds o itself due to limited clock resolutior§(14.4.2), if larger. In the latter case, we
term the estimate agdock-limited

274

N1 N
Results of estimation # | % # | %
Single bottleneck 2,018| 90% | 14,483| 94%
Estimate failure 37| 1.7% 1 —
Broken estimate 46 | 2.1% 72 | 0.05%

Ambiguous estimate] 139 | 6.2% 779 | 5.1%
change 94 | 4.2% 594 | 3.9%
multi-channel 74| 3.3% 506 | 3.3%
conflicting 0| 0.0% 11| 0.07%

Total trace pairs 2,240| 100% | 15,335| 100%

Table XVIII: Types of results of bottleneck estimation f&f and\>

M Ny
Results of estimatior # | % # | %
Single bottleneck 1,929| 95% || 14,134 98%
Estimate failure 37| 1.8% 1 —
Broken estimate 19| 0.9% 61| 0.04%
Ambiguous estimate 48 | 2.3% 204 | 1.4%
change 71 0.34% 67| 0.47%
multi-channel 41| 2.0% 135 0.9%
conflicting 0| 0.0% 3| 0.02%
Total trace pairs 2,033| 100% | 14,400| 100%

Table XIX: Types of results after eliminating trace pairs witf

14.7 Analysis of bottleneck bandwidths in the Internet

We applied the bottleneck estimation algorithms developetl 1.5 and§ 14.6 to the
trace pairs inV; and N, for which the clock analysis described in Chapter 12 did not uncover
any uncorrectable problems. These comprised a total of 2,240 and 15,335 trace pairs, respectively.
Table XVIII summarizes the types of results we obtained. “Single bottleneck” refers to traces
for which we found solid evidence for a single, well-defined bottleneck bandwidth. An “estimate
failure” occurs when PBM is unable to find any persuasive estimate p§aks.§.2). “Broken
estimate” summarizes traces for which PBM yielded a single uncontested estimate, but subsequent
gueueing analysis found counter-evidence indicating the estimate was inaccurate. (We describe this
self-consistency test ifi 16.2.6.) “Ambiguous estimate” means that the trace pair did not exhibit
a single, well-defined bottleneck: it included either evidence of a bottleneck change, or a multi-
channel bottleneck link, or both; or it had conflicting estimates, already discus§ddtif.2.

The ambiguous estimates were clearly dominatedbly , no doubt because its ISDN
link routinely exhibited both bottleneck changes and multi-channel effects (since when it activates
the second ISDN channel, the bandwidth doubles and a parallel path arises). Table XIX summarizes

275

the types of results after removing all trace pairs Mith as sender or receiver. We see that PBM
almost always finds a single bottleneck. The results also exhibit a general trend bétfyeed
N, towards fewer problematic estimates. We suspect the difference is due to two effects: the lower
prevalence of out-of-order delivery ik, compared toV;, and the use of bigger windows ik,
(§ 9.3), which provides more opportunity for generating tightly-spaced packet pairs and packet
bunches.

In the remainder of this section, we analyze each of the different types of estimated bot-
tlenecks.

14.7.1 Single bottlenecks

Far and away the most common result of applying PBM to our traces was that we obtained
a single estimated bottleneck bandwidth. Unlike [CC96a], we darmtori know the bottleneck
bandwidths for many of the paths in our study. We thus must fall back on self-consistency checks
in order to gauge the accuracy of PBM. Figures 14.10 and 14.11 show histograms of the estimates
formed for\; and N5, where the histogram binning is done using the logarithms of the estimates,
so the ratio of the sizes of adjacent bins remains constant through the plot.

There are a number of readily apparent peaksNin we find the strongest at about
170 Kbyte/sec, and another strong one at 6.5 Kbyte/sec. Secondary peaks occur at about 100,
330, 80, and 50 Kbyte/sec, with lesser peaks at 30 Kbyte/sec, 500 Kbyte/sec, and at a bit over
1 Mbyte/sec. The pattern iV, is a bit different. The 170 Kbyte/sec peak clearly dominates,
and the 6.5 Kbyte/sec peak has shifted over to about 7.5 Kbyte/sec. The peaks between 50 and
100 Kbyte/sec are no longer much apparent, and the 330 Kbyte/sec peak has diminished while the
30, 500 and 1 Mbyte/sec peaks have grown. Finally, a new, somewhat broad peak has emerged at
13-14 Kbyte/sec.

We calibrate these peaks using a combination of external knowledge about popular link
speeds, and by inspecting which sites tend to predominate for a given peak. Several common
slower link speeds are 56, 64, 128, and 256 Kbit/sec. Common faster links are 1.544 Mbit/sec
(“T1"—primarily used in North America), 2.048 Mbit/sec (“E1"—used outside North America),
and 10 Mbit/sec (Ethernet). Certainly faster links are in use in the Internet, but we omit discussion
of them since none of the bottlenecks in our study exceeded 10 Mbit/sec; we note, however, that it
is the use of faster wide-area links that enables a local-area limit such as Ethernet to wind up as a
connection's bottleneck.

The link speeds discussed above reflectrdng capacity of the links. Not all of this
capacity is available to carry user data. Often a portion of the capacity is permanently set aside
for framing and signaling. Furthermore, transmitting a packet of user data using TCP requires
encapsulating the data in link-layer, IP, and TCP headers. The size of the link-layer header varies
with the link technology. The IP and TCP headers nominally require at least 40 bytes, more if IP or
TCP options are used. Use of IP options for TCP connections is rare, and none of the connections in
our study did so. TCP options are common, especially in the initial SYN packets. Thus, we might
take 40 bytes as a solid lower bound on the TCP/IP header overhead. An exception, however, is links
utilizing header compressiq(13.3), which, depending on the homogeneity of the traffic traversing
the link, can greatly reduce the bytes required to transmit the headers. Header compression works by
leveraging off of the large degree of redundancy between the headers of a connection's successive
packets. For example, under optimal conditions, CSLIP compression can reduce the 40 bytes to

MT1
o
o —
=

5
o 6 Kbps
O —
m —
o
o —
N
§ | 64 Kbps

5E1 El
2T1
10 msec
clock STl
256 Kbps
128 Kbps P 3T1 ETPﬁR

o _ [

I I I I I l

5 10 50 100 500

KBytes/sec

Figure 14.10: Histogram of different single-bottleneck estimated/or

276

277

3000 4000 5000 6000
|

2000
|

64 Kbps El

128 Kbps - ETHER
H‘L 256 Kbps 3T1

5 10 50 100 500

1000

0

KBytes/sec

Figure 14.11: Histogram of different single-bottleneck estimated/tor

278

| Raw rate p) | User data ratep(;) | Notes

56 Kbit/sec ~ 6.2 Kbyte/sec
64 Kbit/sec ~ 7.1 Kbyte/sec
128 Kbit/sec | ~ 14.2 Kbyte/sec
256 Kbit/sec | ~ 28.4 Kbyte/sec
1.544 Mbit/sec| ~ 171 Kbyte/sec | T1
2.048 Mbit/sec| ~ 227 Kbyte/sec | E1

10 Mbit/sec ~ 1.1 Mbyte/sec | Ethernet

Table XX: Raw and user-data rates of different common links

5 bytes. Finally, some links ustata compressiotechniques to reduce the number of bytes required
to transmit the user data. We presume these techniques did not affect the connections in our study
because NPD sends a pseudo-random sequence of bytes (to avoid just this effect).

Given these sundry considerations, we do not hope to nail down a single figure for each
link technology reflecting the user data rate it delivers. Instead, we make “ballpark” estimates, as
follows. For high-speed links, the framing and signaling overhead consumes about 4.5% of the raw
bandwidth [Ta96]. We compromise on the issues of header compression versus additional bytes
required for link-layer headers and TCP options by assuming 40 bytes of overhead for each TCP/IP
packet. Finally, we assume that a “typical” data packet carries 512 bytes of user data. This is
the most commonly observed value in our traces, though certainly not the only one. Given these
assumptions, the user data rate available from a link with a raw ratg ist

512
o~ (99) (50

~ .886pg.

)PR

Table XX summarizes the corresponding estimated user-data rates for the common raw link rates
discussed above. From the table, it is clear that the strong 170 Kbyte/sec peak in Figure 14.10 and
Figure 14.11 reflect T1 bottlenecks. Likewise, the 6.5 Kbyte/sec peak reflects 56 Kbit/sec links, and
may be slightly higher than the estimate in the Table due to the likely use of header compression. Its
shift to 7.5 Kbyte/sec reflects upgrading of 56 Kbit/sec links to 64 Kbit/sec. The 13-14 Kbyte/sec
peak reflects 128 Kbit/sec links and the 30 Kbyte/sec peak, 256 Kbit/sec. The 1 Mbyte/sec peaks
are clearly due to Ethernet bottlenecks.

These identifications still leave us with some unexplained peaks from the bottleneck es-
timates. We speculate that the 330 Kbyte/sec peak reflects use of two T1 circuits in parallel,
500 Kbyte/sec reflects three T1 circuits (not half an Ethernet, since there is no easy way to sub-
divide an Ethernet's bandwidth), and 80 Kbyte/sec comes from use of half of a T1.

We then have only two unexplained peaks remaining: 50 and 100 Kbyte/sec. The
50 Kbyte/sec peak is only prominent jvi;. We find that this peak in fact reflects vagueness due
to limited clock resolution: ir§ 14.4.2 we showed that, for packet pair, the fastest bandwidth a
10 msec clock can yield for 512 byte packets is 51.2 Kbyte/sec. Thus, the 50 Kbyte/sec peak is
a measurement artifact, though it also indicates the presence of connections for which PBM was
unable to tighten its bottleneck estimate using higher extents (which would reduce uncertainties due

279

to clock resolution), presumably because the connection rarely had more than two packets delivered
to the receiver at the bottleneck rate, due to extensive queueing noise.

The 100 Kbyte/sec peak, on the other hand, most likely is due to splitting a single E1
circuit in half. Indeed, we find non-North American sites predominating these connections, as
well exhibiting peaks at 200-220 Kbyte/sec, above the T1 rate and just a bit below E1. This peak
is, however, absent from North American connections. (See also Figure 14.12 and accompanying
discussion, below.)

In summary, we believe we can offer plausible explanations for all of the peaks. Passing
this self-consistency test in turn argues that PBM is indeed detecting true bottleneck bandwidths. We
next turn to variation in bottleneck rates. We would expect to observe strong site-specific variations
in bottleneck rates, since some of the limits arise directly from the speed of the link connecting the
site to the rest of the Internet.

Figure 14.12 clearly shows this effect. The figure shows a “box plotldgy, of the bot-
tleneck estimates for each of thé receiving sites. In these plots, we draw a box spanning the inner
two quartiles (that is, from 25% to 75%). A dot shows the median and the “whiskers” extend out
to 1.5 times the inter-quartile range. The plot shows any values beyond the whiskers as individual
points. The horizontal line marks 171 Kbyte/sec, the popular T1 user data rate (Table XX).

The plot clearly shows considerable site-to-site variation. While all sites reflect some
64 and 128 Kbit/sec bottlenecks, we quickly see thatr2 has virtually only 128 Kbit/sec bot-
tlenecks, indicating it almost certainly uses a link with that rate for its Internet connecigtr (,
on the other hand, has at least E1 connectivityi) generally does not have a single bottleneck
above 64 Kbit/sec (it often has a bottleneztkangethat includes 128 Kbit/sec, but in this section
we only consider traces exhibiting a single, unchanged bottleneck)lblTheestimates tend to be
quite sharply defined. Of those larger than 7 Kbyte/sec, 96% lay within a 30 byte/sec range centered
about 7,791 byte/sec. The other site with a narrow bottleneck bandwidth regioa,isvhich has
a 64 Kbit/sec link to the Internet, as clearly evidenced by the plot, except for a cluster of outliers
at 17 Kbyte/sec. All of the outliers were localized to a 1 day period, perhaps a time aghen
momentarily enjoyed faster connectivity.

In the main, the plot exhibits a large number of sites with median bottlenecks at T1 rate.
A few have slightly higher median bottlenecks, and these tend to be non-North American sites,
consistent with E1 links. Two sites have occasional values just belgy = 1.5, corresponding
to 256 Kbit/sec links. These sites arel andukc, both located in Britain, so we suspect these
bottlenecks reflect a British circuit or set of circuits. Some sites also exhibit a fair number of
bottlenecks exceeding 1 Mbyte/sdml , Ibl , mid, near , panix , andwustl (as well as, more
rarely, a number of others), indicating these all enjoyed Ethernet-limited Internet connectivity.

We next investigate the stability of bottleneck bandwidth over time. We confine this in-
vestigation toV5, since it includes many more connections between the same sender/receiver pairs,
spaced over a large range of time. We begin by constructing for each sender/receiver pair two
sequences)\7, , andR, ., giving the difference in time between the beginning of successive con-
nections from the sender to the receiver, and the ratio of the estimated bottleneck rate for the second
of the connections to that of the first.

As noted in§ 9.3, we varied the mean time between successive connections between
sender/receiver pairs, and, in addition, our methodology would sometimes include “revisiting” a
pair at a later date. AccordinglA7; . exhibits considerable range: its median is 8 minutes, its 90th

280

s o o e} | o oo om0
— ———— —3 -
Hr o o o o oo o ormn
[Hewo 000 me —o
oo HH e o w00 o omom
- B —C [+ —3 -
o 0 omon mof{ || 0w oo o0 voo voo s @
H_m P avomno
- T —3 - —
— ——— 1} — —3 -
00 oo oo mmmme [[[] ——Jas o oo o
E— | f— — — — —3
e e e e
- o o cmmom o
—_ b~ — [-
A
EC—p — —3 -
—_— 34— —3 -
o @ 0 cmem000 mm— F{l—mma a om0
—- B— —{—{— —3 -
O — —3 =
B~ — — 9 —3 -
HEE -
- - - [J—a -
-
- = f— [} —F .
[-
_ 4 4 4 4
0¢€ 9¢ 0¢ e 071

99S/salkqyl 0TH07

Figure 14.12: Box plots of bottlenecks for differekft receiving sites

281

10

04

02
\

T T T T T
1072 1073 104 1075 1076

Time Until Shift (sec)

Figure 14.13: Time until a 20% shift in bottleneck bandwidth, if ever observed

percentile is 104 minutes, but its mean is about 7 hours, due to revisiting.

The bottleneck ratide , overall shows little variation. Its median is exactly 1.0. Evalu-
atingR, ,'s distribution directly can be misleading, because it will tend tecbkeas often as> 1,
depending on whether the second of a pair of estimates was lower or higher than the first. What is
more relevant is the “magnitude” of the ratio between successive estimates, which we define as:

|R|s,r = exp[| log Rs,r“a

that is, the ratio of the larger of the two estimates to the smaller. The media&)of is 1.0175,
indicating that 50% of the successive estimates differ by less than 1.75% from the previous estimate.
We find that 80% of the successive estimates differ by less than 10%, and 98% differ by less than a
factor of two.

We consider two different assessments of the stability of the bottleneck rate over time.
First, we examine the correlation betweg|; , and AT, ,.. If bottlenecks fluctuate significantly
over time, then we would expect the magnitude of the ratio to correlate with the time separating
the connections. If fluctuations are mainly due to measurement imprecision, then the two should be
uncorrelated.

For AT, < 1 hour (85% of the successive measurements), we find very slight positive
correlation betweetiR|s,, and A7, with a coefficient of correlation equal to 0.03. We obtain
a coefficient of about this size regardless of whether we first apply logarithmic transformations to
either or both of R |, , andAT; , in an attempt to curb the influence of outliers. Bof, . > 1 hour,
the coefficient of correlation rises to about 0.09. This is still not strong positive correlation, and
indicates that bottleneck bandwidth is quite stable over periods of time ranging from minutes to
days (the mean A7, ,, conditioned on it exceeding 1 hour, is 52 hours).

We can also assess stability in terms of the time required to observe a significant change.
To do so, for each sender/receiver pair we take the first bottleneck estimate as a “base measurement”

282

and then look to see when we find two consecutive later estimates that both differ from the base
measurement by more than 20%, and that both agree in terms of the direction of the change (20%
larger or smaller). We look for consecutive estimates to weed out spurious changes due to isolated
measurement errors. We find that only about a fifth of the sender/receiveeyatiexhibited a shift
of this magnitude. Furthermore, the amount of time between the first measurement and the first of
the pair constituting the shift has a striking distribution, shown in Figure 14.13. The distribution
appears almost uniform, except that thaxis is logarithmically scaled, indicating that shifts in
bottleneck bandwidth occur over a wide range of time scales. This finding qualitatively matches that
in Chapter 7 that the time over which different routes persist varies over a wide range of scales. We
would expect general agreement since one obvious mechanism for a shift in bottleneck bandwidth
is a routing change, though some routing changes will not alter the bottleneck.

The last property of bottleneck bandwidth we study in this section is its symmetry: how
often is the bottleneck from hogtto hostB the same as that frofd to A? We know from Chapter 8
that Internet routes often exhibit major routing asymmetries, with the route fraB differing
from the reverse of3 to A by at least one city about 50% of the timeAfy. It is quite possible
that these asymmetries will also lead to bottleneck asymmetries, an important consideration because
sender-based “echo” bottleneck measurement techniques such as those explored in [Bo93, CC96a]
will observe thaninimumbottleneck of the two directions.

Figure 14.14 shows a scatter plot of thedianbottleneck rate estimated in the two direc-
tions for the hosts in our study. The plot uses logarithmic scaling on both axes to accommodate the
wide range of bottleneck rates. For each pair of hastand B for which we had successful mea-
surements in both directions, we plot a point correspondingd’ tomedian estimate on theaxis,
andB's median estimate on theaxis. The solid diagonal line has slope one and offset zero. Points
falling on it have equal estimates in the two directions. The dashed diagonal lines mark the extent of
estimates 20% above or below the solid line. About 45% of the points fall withi¥h of equality,
and 80% within+20% (i.e., within the dashed lines). But about 20% of the estimates differ by
considerably more. For example, some paths are T1 limited in one direction but Ethernet limited in
the other, a major difference.

Of the considerably different estimates, the median ratio between the two estimates is 40%
and the mean is 65%. In light of these variations, we see that sender-based bottleneck measurement
provides a good rough estimate, but will sometimes yield quite inaccurate results.

14.7.2 Bottleneck changes

We now turn to analyzing how frequently the bottleneck bandwidth changes during a
single TCP connection. From the results in the previous section, we expect such changes to occur
only rarely, and indeed this is the case. If we disregfard , which, as noted if§ 14.4.3, frequently
exhibits a bottleneck change due to the activation of its second ISDN channel, then, as shown in
Table XIX, only about 1 connection in 250 (0.4%) exhibited a bottleneck change. The changes
are all large, by definition (since we merge bottleneck estimates with minor differences), with the
median ratio between the two bottlenecks in the range 3-6.

Figure 14.15 illustrates one of the smaller changes. At afdout 2.3, the bottleneck
decreases from an estimated 168 Kbyte/sec to an estimated 99 Kbyte/sec. The effect here is not
self-clocking, as the one-way delays of the packets show a considerable incréase2a as well.
Contrast this behavior with that at abdlit= 2.1, where we see a momentary decrease. In this

Median Bottlneck Rate (KBytes/sec), B -> A

1000

500

|

100

50

|

10

283

l

|

i~
///
- __/_./
—— -
u / []
- 4 /
- sE
/ -
-, /- e = =
< g .
///.:"
[] / /- -
% /
% /
% /
/_/
% /
y /
[| / /
Y /
/ [|
/T- I I I [
10 50 100 500 1000

Median Bottlneck Rate (KBytes/sec), A -> B

Figure 14.14: Symmetry of median bottleneck rate

284

=
p=1 f
=8
S
S
= '_J"!
J.,J'
[=—3 f
S
=]
L o
P 1
e s |
D S
=5 ©
4
w
s £ *
S
S
= /
s " *
=
s /
=
o~ rFJ
1le 1ls 2lo 212 2la 2le

Time

Figure 14.15: Sequence plot reflecting halving of bottleneck rate

case, the slow-down is not accompanied by an increase in transit time, and is instead a self-clocking
“echo” of the slow-down af” = 1.9.

Since 99 Kbyte/sec is not a particularly compelling link rate vis-a-vis Table XX, we might
consider that the bottleneck rate did not in fact change, but instéad-22.3 a constant-ratesource
of competing traffic began arriving at the bottleneck link, diluting the bandwidth available to our
connection and hence widening the spacing between arriving data packets. This may well be the
case. We note, however, thettectivelythis situation is the same as a change in the bottleneck rate:
if the additional traffic is indeed constant rate, and not adaptive to the presence of our traffic, then
we might as well have suffered a reduction in the basic bottleneck link rate, since that is exactly the
effect our connection will experience. So we argue that, in this casejaméto regard the change
as due to a bottleneck shift, rather than due to congestion.

A few of the bottleneck “changes” appear spurious, however. These apparently stem from
connections with sufficient delay noise to completely wash out the true bottleneck spacing, and
which coincidentally produce a common set of packet spacings that lead to a false bottleneck peak.
Most changes, however, appear genuine. In both datasets, about 15% of the changes differ by about
a factor of two, suggesting that a link had been split or two sub-links merged following a failure or
repair at the physical layer.

14.7.3 Multi-channel bottlenecks

The final type of bottleneck we analyze are those exhibitingrto#i-channeleffect dis-
cussed irg 14.4.4. As shown in Table XIX, except for connections involMinlg , known to have a
2-channel bottleneck link, we found few multi-channel bottlenecks. However, after exclatiling
we still found a tendency for a few sites to predominate among those exhibiting multi-channel bot-
tlenecks:inria , ukc, andustutt , in both datasets, angustl in N;. The presence of this last

285

Sequence #
35900 40900 45900

30900

25900

20?00

Time

Figure 14.16: Excerpt from a trace exhibiting a false “multi-channel” bottleneck

site in the list is not surprising, since we know that due to route “flutter” many of its connections
used two very different paths to each remote ité.6).

However, we cannot confidently claim that any of the figin- purported multi-channel
bottlenecks are in fact due to multi-channel links, since we find that very often the trace in question
is plagued with delay noise, and lacks the compelling pattern shown in Figure 14.6. The ratios
between the nominal bandwidths of extént 2 andk > 3 bunches also generally tend to &ie2,
which from our experience often instead indicates excessive measurement noise smearing out the
bottleneck signature.

Even when the measurements appear quite clean, we must exercise caution. Figure 14.16
shows a portion of a/; trace fromukc to ucl with a pattern very similar to that in Figure 14.6.

Most of the trace looks exactly like the pattern shown. PBM analyzes this trace as exhibiting a
multi-channel bottleneck with an upper rate of 477 Kbyte/sec and a slower rate of 18 Kbyte/sec.
However, detailed analysis of the trace reveals a few packet buncheg withthat arrived spaced

at 477 Kbyte/sec, evidence that either the bunches samgpresseds§ 16.3.2) subsequent to the
multi-channel bottleneck, or the bottleneck is in fact not multi-channel. Further analysis reveals that
the sending TCP was limited by a sender-windgwi{.3.2), and that the ack-every-other policy
used by the receiver led to almost perfect self-clocking of flights of two packets arriving at the
true bottleneck rate, followed by a self-clocking lull, followed by another flight of two, and so
on. While PBM includes heuristics based 5;1, (Egn 14.6) that attempt to discard traces like
these as multi-channel candidates, this one passed the heuristic due to some unfortuitous packet
bunch expansion early in the trace. Had the sending TCP not been window-limited, it would have
continued expanding the window as the self-clocking set in, leading to numerous flights of
packets all arriving at the faster link rate, and PBM would have determined that in fact the link was
not multi-channel.

In summary, we are not able to make quantitative statements about multi-channel bottle-

286

100‘000
N,

60900 80?00

Sequence #

20900 40?00

LA

0

Figure 14.17: Self-clocking TCP “fast recovery”

necks in the Internet, except that in any case they are quite rare; that at least one link technology
(ISDN) definitely exhibits them; and that some sites exhibit either true such links, or at least noise
patterns resembling the multi-channel signature.

14.7.4 Estimation errors due to TCP behavior

In the previous section, we noted how TCP “self-clocking” can lead to a packet arrival
pattern that matches that expected for a multi-channel bottleneck link quite closely, even though
the bottleneck link is not in fact multi-channel. In this section we briefly illustrate another form of
TCP behavior that can lead to false bottleneck estimates. Figure 14.17 shows a sequence plot of a
connection clearly dominated by an unusually smooth and slow middle period.

What has occurred is that a single packet was dropped at dbetit0.7. Enough ad-
ditional packets were in flight that 4 duplicate acks came back to the sender. The first 3 sufficed
to trigger “fast retransmit” § 9.2.7), and the congestion window was such that the 4th led to the
transmission of an additional packet carrying new data via the “fast recovery” mecharisin/).
However, the first packet retransmitted via fast retransmit was also dropped, while the fast-recovery
packet carrying new data arrived successfully. This meant that the TCP receiver still had a sequence
hole reflecting the original lost packet, so it sent another dup ack. The arrival of that duplicate then
liberated another packet via fast recovery, and the cycle repeated 50 more times, until the original
lost packet was finally retransmitted again, this time due to a timeout. Its retransmission filled the
sequence hole and the connection proceeded normally from that point on.

Since the connection had an RTT of about 22 msec and only one fast recovery packet or
dup ack was in flight at any given time, during the retransmission epoch the connection transmitted

287

using “stop-and-go,” with an effective rate of:

512 bytes

= 23 Kbyte/sec
0.22 sec 3 Kby

PBM finds this peak rather than the true bottleneck of 1 Mbyte/sec, because the true bottleneck is
obscured by the receiver's 1 msec clock resolution.

The TCP dynamics shown in the figure are quite striking. We note, however, that use of
the SACK selective-acknowledgement option [MMFR96], now in the TCP standardization pipeline,
will give the sender enough information to avoid situations like this one. We also note that, while
this sort of TCP behavior is not exceptionally rare, this was the only such trace that we know PBM
to have misanalyzed.

14.8 Efficacy of other estimation techniques

We finish with a look at how other, simpler bottleneck estimation techniques perform
compared to PBM. Since PBM is quite complex, it would be useful to know if we can use a simpler
method to get comparably sound results. In this context, the development of PBM serves as a way to
calibrate the other methods. We confine our analysis to those traces for which PBM found a single
bottleneck, as the other techniques all assume such a situation to begin with.

We further associate error bars with each PBM estimate. These either span the range of
“consistent” estimates we found, where estimates are considered consistent if they lieh&{fitn
of the main PBM estimate§(14.6.2); or, if larger, the error bars reflect the inherent uncertainty
in the PBM estimate due to limited clock resolutidh14.4.2). If another technique produces an
estimate lying within the error bars, then we consider it as performing as well as PBM, otherwise
not.

14.8.1 Efficacy of PR

In this section we evaluate the “conservative” and “optimistic” peak-rate (PR) estimators
developed ir§ 14.5. These estimators were developed primarily as calibration checks for PBM, and
we noted in their discussion that they will tend to underestimate the true bottleneck rate. Still, since
they are simple to compute, it behooves us to evaluate their efficacy. We only evaluate tiém for
since they rely on the sending TCP enjoying a large enough window that it could “fill the pipe” and
send at a rate equal to or exceeding the bottleneck §&e].

As we might expect, we find that the conservative estirﬁ/ﬁtcegiven by Eqn 14.7 often
underestimates the bottleneck: 60% of the time\in PR was below the lower bound given by
PBM; 39% of the time, it was in agreement; and 2% of the time it exceeded the upper bound, due
to packet compression effecX6.3).

Unfortunately, the more optimistic estimagR given by Eqn 14.8 only fares slightly
better, underestimating 43% of the time, agreeing 52%, and overestimating 5% of the time.

We conclude that neither peak-rate estimator is trustworthy: they both often underesti-
mate, because connections fail to fill the pipe due to congestion levels high enough to preclude an
RTT's worth of access to the full link bandwidth.

288

14.8.2 Efficacy of RBPP

Receiver-based packet pdiri4.3) is equivalent to PBM with the extent limitedio= 2.
(That is, it uses PBM's clustering algorithm to pick the best 2 estimate.) Consequently, we
would expect it to do quite well in terms of agreeing with PBM, with disagreement potentially
arising only due to clock resolution limitations for= 2 (§ 14.4.2); delay noise on very short time
scales such that pairs of packets are perturbed and do not yield a clear bandwidth estimate peak, but
larger extents do; and multi-channel bottlenecks (not further evaluated in this section), one of the
main motivations for PBM in the first place.

We find the RBPP estimate is almost always withid0% of PBM's, disagreeing in;
and NV, by more only 2-3% of the time. The two estimates are identical about 80% of the time,
indicating PBM was usually unable to further hone RBPP's estimate by considering larger extents.
Thus, if (1) PBM's general clustering and filtering algorithms are applied to packet pair, (2) we do
packet pair estimation at threceiver (3) the receiver benefits from sender timing information, so
it can reliably detect out-of-order delivery and lack of bottleneck “expansion,” and (4) we are not
concerned with multi-channel effects, then packet pair is a viable and relatively simple means to
estimate the bottleneck bandwidth.

14.8.3 Efficacy of SBPP

We finish with an evaluation of one form eéndefbased packet pair (SBPP). SBPP is of
considerable interest because a sender can use it without any cooperation from the receiver. This
property makes SBPP greatly appealing for use by TCP in the Internet, because it works with only
partial deploymentThat is, SBPP can enhance a TCP implementation’s decision-making for every
transfer it makes, even if the receiver is an old, unmodified TCP. We expect SBPP to have difficulties,
though, due to noise induced by networking delays experienced by the acks, as well as variations in
the TCP receiver' eesponse delayis generating the acks themselvgsl(.6.4).

The bottleneck bandwidth estimators previously studied are both sender-based
[Bo93, CC96a]. They differ from how sender-based TCP packet pair would work in that those
schemes use “echo” packets. As noted in the discussion of Figure 14.14, Internet paths do not al-
ways have symmetric bottlenecks in the forward and reverse directions. Consequently, echo-based
techniques will sometimes perforce give erroneous answers for the forward path's bottleneck rate.
For TCP's use, however, the “echo” is the acknowledgement of the data packet. Except for con-
nections sending data in both directions simultaneously, which are rare, these echoes are therefore
returned in quite small ack packets. Consequently, bottleneck asymmetry will not in general perturb
SBPP for TCP. Another significant difference is that, for TCP, usually an echo is only generated for
every other data packeg (1.6.1). Consequently, the interval between each pair of acks arriving
at the sender echoes the difference in time between the arrived®afata packets at the receiver,
rather than the arrivals of consecutive data packets. Because of this loss of fine-scaled timing in-
formation, TCP SBPP cannot detect the presence of multi-channel links, since doing so requires
observing per-packet timing differences. (It will instead see timings corresponding to an extent of
k = 4, which, for 2-channel and 3-channel links, is in fact the true bottleneck rate.)

To fairly evaluate SBPP, we assume use by the sender of the following considerations for
generating “good” bandwidth estimates:

1. The sender always correctly determines how many user data bytes arrived at the receiver

289

between when it sent the two acks.

2. The sender does not consider pairs of acks if the first ack was for all the outstanding data, as
such a pair is guaranteed to have a spurious RTT delay between the first and second ack.

3. The sender never bases an estimate on an ack that is for only a single packet's worth of data
(MSS), as these often are delayed acks, and the sender lacks sufficient information to remove
the timer-induced additional delay.

4. The sender never bases an estimate on an ack that does not acknowledge new data. This
prevents the sender from using inaccurate timing information due to packet loss or reordering.

5. The sender keeps track of the sending times for its data packets, so it can detersemeléne
expansion facto(§ 14.5):
> AT, +C
8,8 — ATd + Cs’
where AT, is the elapsed time between the arrival of successive axky,is the elapsed
time between the departure of the first and last data packet being acknowledgél,isitite
sender's clock resolution.

The sender rejects an estimatési,fs < 0.9. We use 0.9 instead of 1.0 as a “fudge factor” to
account for self-clocking, which sometimes occurs at exactly the bottleneck rate.

The sender also computes “acceptable” estimates, which are those that do not conform to
all of the above considerations, but at least conform to the first two. (These estimates will be used
if SBPP cannot form enough “good” estimates.)

After collecting “good” and “acceptable” estimates for the entire trace, we then see
whether we managed to collect 5 or more “good” estimates. If so, we take their 95th percentile
as the bottleneck estimate (allowing for the last 5% to have been corrupted by ack compression, per
§ 16.3.1). If not, then we take the median of the “acceptable” estimates as our best guess.

We find, unfortunately, that SBPP does not work especially well. In both datasets, the
SBPP bottleneck estimate lies withii20% of the PBM estimate only about 60% of the time.
About one third of the estimates are too low, reflecting inaccuracies induced by excessive delays
incurred by the acks on their return, with the median amount of underestimation being a factor of
two (and the mean, more than a factor of four). The remaining 5-6% are overestimates, reflecting
frequent ack compressior§ (L6.3.1), with anN; median overestimation of 60% and a mean of
175%, though inV; these dropped to 45% and 75%.

A final interesting phenomenon K is that, about 2% of the time, SBPP was unable to
form any sound estimate. These all entailed connections to receivers that generated only one ack
for each entire slow-start “flight3(11.6.1). Since one of the considerations outlined above requires
that the first ack of a pair not be an ack for all outstanding data (to avoid introducing a round-trip
time lull that has nothing to do with the bottleneck spacing), if the network does not drop any data
packets, then such a receiver vatly generate acks for all outstanding data, so the SBPP algorithm
above fails to find any acceptable measurements.

290

14.8.4 Summary of different bottleneck estimators

In our evaluation of the different bottleneck rate estimators, we found that PBM overall
appears quite strong. It produces many bandwidth estimates that accord with known link speeds, and
produces few erroneous results, except for a tendency to misdiagnose a multiple-channel bottleneck
link in the presence of considerable delay noise.

Using PBM then as our benchmark, we found that the stressful “peak rate” (PR) tech-
niques perform poorly, frequently underestimating the bottleneck, as we surmised they probably
would when developing them n14.5. They did, however, serve as useful calibration tests when de-
veloping PBM, since they pointed up traces for which we needed to investigate why PBM produced
an estimate less than that of the conservative PR technique, or greater than that of the optimistic
PR technique.

We also found that receiver-based packet pair (RBPP) performs virtually identically to
PBM, provided that we observe the requirements outline§lin.8.2, and are not concerned with
detecting multi-channel bottleneck links. Unfortunately, one requirement for RBPP is sender co-
operation in timestamping the packets it sends, so the receiver can detect out-of-order delivery and
data packet compression. We have not investigated the degree to which these requirements can be
eased, but this would be a natural area for future work.

We unfortunately found that sender-based packet pair (SBPP) does not fare nearly as well
as RBPP. Even taking care to use only measurements the sender can deduce should be solid, SBPP
suffers from ack arrival timings perturbed by queueing delays and ack compression. As a result, it
renders accurate results less than 2/3's of the time.

Thus, receiver-based bottleneck measurement appears to hold intrinsic advantages over
sender-based measurement, and fairly simple receiver packet pair techniques, with sender coopera-
tion, gain all of the advantages of the more complex PBM, unless we are concerned with detecting
multi-channel bottleneck links.

Finally, a particularly interesting question for future work to address is duaiakly these
techniques can form solid estimates. If we envision a transport connection using an estimate of the
bottleneck bandwidth to aid in its transmission decisions, then we would want to form these esti-
mates as early in the connection as possible, particularly since most TCP connections are short-lived
and hence have little opportunity to adapt to network conditions they observe [DJCME92, Pa94a].

201

Chapter 15

Packet Loss

In a packet-switched network that does not provide mechanisms for reserving resources
within the network on behalf of a particular packet “flow”, loss is inevitable under conditions
of load. The Internet is such a network. According to traditional network traffic theory, based
on Poisson models that emphasize at most fleeting correlations between packet arrivals, one
can generally engineer a packet-switched network to have as low a packet loss rate as desired.
Operational experience, however, has been quite contrary and brutal to the Poisson framework
[JR86, GO0, FL91, DIJCME92, PF95], which appears woefully inadequate for accurately predicting
actual network behavior. Recent years have seen the riselfeimilar traffic models, in which
correlations are extremely long-lived and have a fractal structure, leading to “burstiness on all time
scales” [LTWW94]. Fractal models predict that packet loss is extremely hard to avoid, due to the
great burstiness of network traffic, and, more generally, due to the lack of a binglgtime scale
for which one can then engineer the network to accommodate.

We should note that packet loss is not unequivocally a problem. TCP makes splendid
use of packet loss as amplicit signal that the network is under stress and the TCP sender should
reduce its sending rate [Ja88]. If the network had immense buffering within it to avoid packet loss,
this over-engineering would defeat TCP's congestion signal. Furthermore, such bufferimgptioes
guarantee that the network can promise to always deliver useful throughput [Na87], and, actually,
things would be worse off, since TCP senders then could not adapt their transmission rates to the
limited capacity of the bottleneck link.

In this chapter we look at what our measurements tell us about packet loss in the Internet:
how frequently it occurs and with what general patteghs.1); differences between loss rates of
data packets and ack$ 15.2); the degree to which it occurs in burss b.3); the degree to which
losses occur at the bottleneck link15.4); how loss rates evolve over tinfgl5.5); and how well
TCP retransmission matches genuine 1¢sk(.6).

15.1 Lossrates

A fundamental issue in measuring packet loss is to avoid confusing measurement drops
with genuine losses. Doing so can often be difficult unless the measurement apparatus takes pains to
accurately report measurement drops. As we saidid.3.1, some do and some do not. Here is one
of the analysis areas where the effort to ensurettipahaly understands the details of the many

292

10

08

06

04

02

00

T T T T
O.5 5.0 50.0 500.0

Connection Duration (sec)

Figure 15.1: Connection durations f&f; (solid) andN; (dotted)

TCP implementations in our study pays off extremely well. Because we can determine whether
traces suffer from measurement drops, we can exclude those that do from our packet loss analysis
and avoid what could otherwise be significant inaccuracies. Since, for the most part, measurement
drops will be uncorrelated with the presence of true network drops, excluding these tainted traces
should not bias our subsequent analysis. An exception would be if the measurement drops are due to
large bursts of traffic on the local network overrunning the packet filter's ability to record the burst,
and if such bursts were coupled with true loss on the local network. Since our interest lies in loss in
the Internet-in-the-large, and not in loss in local networks (even though local loss also contributes
to the end-to-end chain), we regard this source of bias as minor.

Our measurements do, however, suffer from one form of bias: due to their limited duration
(§ 9.3), we will fail to successfully measure and analyze connections that suffered such high packet
loss rates that they required more than 10 minutes to transfer 100 Kbyte. When these measurement
attempts reach the 10-minute lifetime without having successfully completed, the entire measure-
ment attempt is aborted, and trace data is retrieved from the NPDs conducting the measurement.

Unfortunately, due to the centralized control of the experiment, we cannot accurately
assess how often a measurement failed for this reason, and how often for a different reason, such as
a loss of connectivity betweeaipd control and one of the remote NPDg%.2,§ 9.3). Thus, the
statistics presented in this section wiliderestimaténternet packet loss rates somewhat.

We argue, however, that the bias is, overall, fairly small. Figure 15.1 shows the distribu-
tion of the connection durations fav; (solid line) andV, (dotted line). The vertical line on the
righthand side of the plot marks the 10-minute maximum duration. ZFhgis is logarithmically
scales, so we see that a large number of the connections in our study completed much sooner than
the 10 minute upper lifetime. This in turn suggests that the lifetime was generally not a limita-
tion. At the end of this section, however, we show thalid significantly bias European loss rates
towards underestimation.

293

We begin our analysis with looking at aggregate packet loss over the course of entire
connections. InVi, out of about 714 thousand packets (data and ack) transmitted, 3.0% failed to
arrive at the other end. W5, for 4.66 million packets, the figure rose to 4.6%, a significant increase
that merits further investigation.

On immediate question is whether the use of additional sitéé,ifand the absence of a
few of the N; sites) skewed these basic numbers. Indeed, it didtadwdrds underestimating the
increasé Of the sites in common, iV, 2.7% of the packets were lost, while M, this figure
nearly doubled to 5.2%. Conventional wisdom among TCP researchers holds that a loss rate of 5%
has a significant adverse effect on TCP performance, because it will greatly limit the size of the
congestion window and hence the transfer rate, while 3% is often substantially less serious. Thus, it
behooves us to try to understand the circumstances and details of the increase as much as possible.

First, we need to address the question of whether the increase in loss rate was due to the
use of bigger windows i\ than inA; (§ 9.3). Such could easily be the case, since with larger
windows the transfers will often have significantly more data in flight, and, consequently, will load
the router queues along the path much more. We can assess the impact of larger windows by looking
at loss rates ofiata packets versus those fack packets. Data packets contribute to queueing and
having more in flight stresses the forward path. On the other hand, the rate at which a TCP transmits
data packetadaptsto current conditions. Ack packets contribute almost no additional load along
the reverse path, other than occupying a buffer when queued, so having more of them in flight at one
time should not significantly alter the loss rate they suffer. They do not adapt to current conditions,
except during periods of heavy congestion, when an entire window's worth of acks is lost, forcing a
timeout retransmissioh Thus, to compare changes in loss rates betwéeand\5, using the ack
loss rates should eliminate the bias caused by the different window sizes. We discuss more issues
concerning data packet loss versus ack logsliB.2.

Overall, in\7, acks were actually slightly more likely (3.16%) to be lost than data packets
(2.96%), while inN; the ordering is the opposite (4.25% for acks versus 4.75% for data packets).
Restricting the comparison to the sites in common, however, changed the discrepancy between data
packets and acks, with 2.88% for acks versus 2.65% for data packétsamd 5.14% versus 5.28%
for the same\; figures. So, even if we restrict ourselves to the ack loss rates for the common sites,
which should be quite sound to compare, we observe a 78% increase in the loss rate, from 2.88% to
5.14%.

Another interesting loss rate figure is how the rate changes if we condition on observing at
least one loss during the connection. Here we make a tacit assumption that a network path has two
basic states, “quiescent,” during which connections tend to not suffer any loss, and “busy,” during
which they tend to suffer loss. The first corresponds to, overall, light or steady enough load that the
router buffers suffice to avoid packet loss, and the second to sufficient load, overall, to occasionally
overflow the buffers. We would expect to find that “busy” states coincide with the usual peak usage
times of working hours, and quiescent states with off-peak times. We return to this point below, in
the discussion of Figure 15.3 and Figure 15.4.

In V1, 52% of the connections between the common sites did not lose a single ack packet.
However, only 28% of the connections losing at least one ack lost exactly onéVsEthe corre-

!The transmission rate of acks can also adapt to current conditions if the loss conditions along both directions of the
path are correlated, since the rate at which a TCP transmits acks reflects the rate at which it receives data packets. In
§ 15.2 below, however, we find that loss rates in the two directions are nearly uncorrelated.

294

10

06

04

02
\

T T T T
O.5 5.0 50.0 500.0

Connection Duration (sec)

Figure 15.2: Connection durations for sites commosvia(solid) and\> (dotted)

sponding figures are 49% and 20%. We see that part of the change in the Kighek loss rates
stems frongreater loss during busy period¥he proportion of quiescent periods remains virtually
unchanged. Similarly, for the common sites, if we condition on a connection suffering at least one
loss, then the ack loss rate for Afi connection climbs from 2.88% to 5.69%, while faf, the
increase goes from 5.14% to 9.16%. Thus, eveW/jn if the network path was busy (using our
simplistic definition above), loss rates were quite high, and\fethey shot upward to a level that

in general will seriously impede TCP performance.

These increases give us strong evidence that networking conditions in one important re-
spectdegradedduring the course of 1995, similar to our earlier finding that several aspects of In-
ternet routing degraded during 19956.10,§ 8.5). Since bottleneck link rates generaltigreased
during 1995 ¢ 14.7.1), we cannot tell from just the loss rate statistic whether users perceived the
network as delivering better or worse service. A basic measure of perceived level of service is how
long it takes to transfer a given amount of data. However, when comparing such durations we need
to keep in mind that the use of bigger windows\ih gave> connections more opportunity both to
“fill the pipe” and to utilize fast retransmissiof 9.2.7), which gives them performance advantages
that have little to do with how the network service changed. (For the sites in commaA, time
mean number of fast retransmissions was 0.98, whilg5iit climbed to 1.64.)

Still, we find the comparison illuminating. Figure 15.2 shows the distribution of the du-
rations of connections between sites common to Béth(solid line) and\5; (dotted line). For the
sites in common, the median connection duration diminished from 11.8 #éctm10.7 sec inVs,

a rather modest improvement. That single figure does not tell the entire story, though, since we see
from the figure that the distribution of durations did not unilaterally slide a bit to the left. Instead,
N> connections were likely to be 20% shorter than thos#/inf they were shortmeaning that we
condition on the duration being 12 sec; and 50% longer if we condition on the duration being

> 12 sec. It seems likely that the differences are due to a higher prevalence of fast retransmission

295

[Region | #N1 | #N, | N loss rate] A; loss rate] A
Europe 104 | 734 2.8% 2.8%| —03%
North America 641 | 2,405 1.3% 1.6% | +23%
(umont) 75| 562 1.5% 5.8% | +287%
Into Europe 2551 1,243 6.2% 11.7%| +88%
Into North Americal| 320 1,544 3.5% 3.2%| —08%
All regions 1,395 6,488 2.8% 4.6%| +63%

Table XXI: Ack loss rates for different connection geographies

in NV, aiding short transfers, while a higher packet loss rate led to more frequent timeouts for those
connections that failed to open their congestion windows enough to facilitate fast retransrission.

So far, we have treated the Internet as a single aggregated network in our loss analysis.
Geography, however, plays a crucial role in the prevalence of packet loss. To study geographic
effects, we partition the connections between the sites commaA tand A> into four primary
groups: “European,” “North American,” “Into Europe,” and “Into North America.” European con-
nections are those with both a European sender and a European receiver. North American have both
sender and receiver in Canada or the United States (but see below). “Into Europe” are connections
with European dataendersand North American dateeceivers The terminology is backwards
here because what we will assessauakloss rates, and these are generated by the receiver. Hence,
“Into Europe” loss rates reflect those experienced by packet streams traveling from North America
into Europe. Similarly, “Into North America” are connections with North American data senders,
European data receivers, and ack streams traveling from Europe into North America.

This partition does not include connections to or from Australia, because we had only one
Australian site common to botN; and N5, so it would be difficult to gauge the generality of loss
rates involving it. We note, however, that it experienced a rise of more than a factor of two in the
loss rates of ack traveling into and out of Australia, from 3.3%/into 7.8% inN5.

While the above grouping was our original intent, upon examining the data we made one
further distinction. The sole Canadian sitepont, was a major outlier for packet loss ¥, so
large that its presence as one of the 13 North American hosts sufficed to significantly skew the
overall North American findings. (It was not, however, an outlieNin) Since we had no other
Canadian sites in our study, we cannot gauge whether this reflects a problem unigquatoor a
more general problem with Canadian Internet service. Consequently, we reomwedfrom our
notion of “North America” as described above; so, in fact, all of the North American sites discussed
below are in the United States. We also summarize below connections from U.S. sites to or from
umont, to illustrate its atypical loss rates.

Table XXI shows the loss rates of ack packets for the different regions. The second and
third columns give the number @¢f; and N> connections that occurred in the region. There were
6 common European sites and 12 North American sitesyhst. The fourth and fifth columns
give the overall loss rate for the ack packets sent during all of the region's connections, and the final
column indicates the loss rate change betwggmand\>. Clearly:

2Note that, had we not restricted ourselves to the sites common to the two datasets, but instead interpreted Figure 15.1
in this regard, then we would have drawn a considerably different, less sound conclusion.

296

| Region | Vi quies.| A quies. || AV; cond. loss| A, cond. loss| Al
Europe 48% 58% 5.3% 5.9% | +11%
North America 66% 69% 3.6% 4.4% | +21%
(umont) 60% 15% 3.7% 6.8% | +81%
Into Europe 40% 31% 9.8% 16.9% | +73%
Into N.A. 35% 52% 4.9% 6.0% | +22%
All regions 53% 52% 5.6% 8.7% | +54%

Table XXII: Conditional ack loss rates for different connection geographies

e Europe suffered considerably higher packet loss rates than did North America, but the loss
rate appears stable. However, we show below that the European figutgiasedtowards
underestimation

e North American loss rates were fairly low and, while the trend is increasing, it is not doing
So at an ominous rate;

e umont suffered a tremendous increase in packet loss rate, although we lack sufficient data to
tell if this is a general problem for Canadian networks or specific to the University of Montreal
or its local region;

¢ the trans-Atlantic links carrying European traffic to North America had fairly high loss rates,
but the situation is perhaps improving; and

¢ the links carrying North American traffic to Europe were a compounding disaster. We note
that since Europe's rates are significantly lower than those of trans-Atlantic traffic heading
into Europe, it must be the case that most traffic between two European sites stays inside
Europe, rather than transiting through North America, even though we sometimes observed
such routes ir§ 6.9.

Table XXII looks at loss rates for the same regions, but now with conditioning on whether
any acks were lost. The second and third columns give the proportion of quiescent connections,
where “quiescent” is defined as above to mean connections that did not lose any acks. We see
that, except foumont and the trans-Atlantic links going into North America, the proportion of
quiescent connections was fairly stable, suggesting that perhaps changes in loss rate are confined to
already-loaded “busy” periods of heavy load. We investigate this possibility in more detail shortly.

The fourth and fifth columns list the proportion of acks lost, given that at least one ack
was lost, and the final column summarizes the relative change. None of the conditional loss rates
is especially heartening, and the trends @tencreasing. DuringVs, the trans-Atlantic links into
Europe were close to unusable during busy periods, with a loss rate of nearly 17%. This matches
anecdotal reports such as requests the author received to mail hardcopies of papers to European
researchers since they could not viably retrieve them over the network. In summary, we note that,
for every region, loss rates for busy connections increased betWeamd N>.

Within regions, we find considerable site-to-site variation in loss rates, as well as variation
between loss rates for packets inbound to the site and those outliolsi@). We did not, however,

297

003
\

Mean Loss Rate
0.02
|

T T T T T
o 5 10 is 20

Hour (Eastern Standard Time)

Figure 15.3: Hourly variation in ack loss rate for North American connections

find any other outliers as dramatic @sont in A5, so we kept the regions otherwise intact.

The last aggregate loss statistics we look at are variations of loss rate over the course of the
day. We expect to find a diurnal cycle, as numerous studies have noted significant hourly variation
in connection and packet arrival rates ([PF95] and many others). It was this expectation that led us
to postulate that the distinction made above between “busy” and “quiescent” connections is broadly
meaningful.

Figures 15.3 and 15.4 show the hourly loss rates foAtheonnections internal to North
America and Europe, respectively. The North American loss rates, with-thas reflecting the
hour in the Eastern Standard Time zone, clearly follow the oft-observed pattern of activity increasing
over the morning hours and falling off during the late afternoon. [PF95] notes a pickup in evening
FTP traffic, which agrees with the secondary peak. One unusual facet of Figure 15.3 is that it
does not exhibit a noon-time “dip.” However, this is almost certainly due to the North American
traffic spanning three time zones, effectively spreading out lunch-related lulls over several hours.
The apparent discontinuity between the 23rd hour at the right and the midnight hour at the left,
however, is puzzling. We have verified that as one approaches midnight, the rates come closer
together. We do not, though, have an explanation as to why midnight EST would serve as such a
sharp transition point, given that it corresponds to 9PM Pacific Standard Time, when presumably
we still see considerable user activity.

Figure 15.4 differs considerably from Figure 15.3. Heredtkaxis reflects the hour in the
Greenwich Mean Time zone. We observe a morning rise in loss rate, but a considerable noontime
dip lasting several hours, followed by a striking increase in the late afternoon. Again, the evening
hours are elevated compared to the early morning hours, with a sharp transition occurring around
midnight. The late afternoon hours may in part reflect increasing background traffic from North
American sites, too, since late afternoon GMT coincides with noon and early afternoon EST, which
we see in Figure 15.3 is the peak North American period.

Mean Loss Rate
004 006 008 010 012
| | | | |

002

00

T T T T T
o 5 10 is 20

Hour (Greenwich Mean Time)

Figure 15.4: Hourly variation in ack loss rate for European connections

80
\

Number of Successful Measurements
|
|

)|
\

r T T T T 1
o 5 10 is 20 25

Hour (Eastern Standard Time)

Figure 15.5: Successful North American measurements, per hour

298

299

0 N N N
| |

Number of Successful Measurements

10
\

r T T T T 1
o 5 10 is 20 25

Hour (Greenwich Mean Time)

Figure 15.6: Successful European measurements, per hour

We must exercise caution, however, in interpreting Figure 15.4, due to our measurement
bias against very long-lived connections (discussed at the beginning of this section). We can test
for the presence of this bias by examining how many successful measurements we made for each
hour of the day. Because of our Poisson sampling methodofo@y), measuremeiatitemptsvere
uniformly distributed over the course of the day. Figure 15.5 shows a histogram of the number of
successful North American measurements made for each distinct hour of the day. The distribution
appears fairly even, and, indeed, the measurement times pass the powerful AndersonA¥arling
goodness-of-fit test for uniformity [DS86], using 5% significance (and, indeed, for higher signifi-
cance).

Figure 15.6 shows the same histogram for the European measurements. The bias towards
the less busy early morning and late evening hours immediately stands out. The distribution fails
A? at all significance levels, as one might expect. The bias is strongest against the 11AM to 1PM
periods, and eases somewhat in the later afternoon, so the apparent difference between the two
corresponding peaks in Figure 15.4 may be simply due to measurement bias and not reflect a true
underlying difference. However, we can certainly conclude based on Figure 15.6 that our analyses
of European loss rates are in genemtlerestimates

15.2 Data packet loss vs. ack loss

We noted in the previous section that analyzing data packet loss rates can be complicated
because the size of the data packets and the tendency for them to be sent closely together both add to
gueueing load along the network path. We expect that this load in turn leads to a greater likelihood
of the data packets being lost, though, because TCP can unfairly distribute available bandwidth
[FJ92], this is not necessarily the case. We say 5.1 that, inN7, acks were actually slightly
more likely to be lost than data packets, thoughMp, the pattern reverses, which we (at least

300

partially) attribute to the use of bigger windowsAf® (§ 9.3).

In this section we take a closer look at the loss rates of data packets versus those of acks.
We consider any packet carrying one or more bytes of user data as a data packet. We would expect
to observe some differences between different-sized data packets. Unfortunately, it would prove
difficult to explore this effect with our data. Some of the sites in our study always used a maximum
segment size (MSS) of 512 bytes, the common default value, while others used larger sizes whenever
the opportunity to do so arose. But the site-specific nature of the MSS used means that, for each
site, the samples of data packet loss rates generally reflect only a small number of packet sizes,
sometimes only one. Since §l5.1 we showed that ack loss rates exhibit strong regional variation,
we could easily conflate a spurious MSS size effect in data loss rates with a genuine, separate effect
due to the regions.

Thus, we confine ourselves to a simple definition of “data packet” as one carrying any
user data whatsoever. But in addition, we make a key distinction between “loaded” and “unloaded”
data packets. A “loaded” data packet is one that presumably queued at the bottleneck link behind
one of the connection's previous packets, while an unloaded data packet is one that we know did
not haveto queue at the bottleneck behind a predecessor. Here we are abstracting the intricate,
multi-element network path to a presumably equivalent model of a single element that forwards at
the bottleneck rate, and at which all significant queueing occurs.

To tell if a packet is unloaded, we first form an estimate of the bottleneck bandwidth using
the methodology developed in Chapter 14. If the methodology indicates a bottleneck change or the
possible presence of a multi-channel bottleneck, then we refrain from further packet-loss analysis.

If, however, the methodology produces a single bottleneck estimgteas is generally
the case, then the methodology also associates lower and upper boundg Y#idn 14.12):

pp < pB < ph- (15.1)

This equation in turn gives us the maximum amount of time required belbyde packet to transit
across the bottleneck, namely:
7" =b/py sec (15.2)

Let T} be the time at which the sender transmitsdifiedata packet. We then sequentially associate
amaximum load\;” with the packet as follows. The first packet has a load equal to

A =1f, (15.3)
whereb is the size of the packet. Subsequent packets have a load

A=t max (T2 + M) - T7,0] (15.4)
A thus reflects the maximum amount of extra delayithg@acket incurs due to its own transmission
time across the bottleneck link, plus the time required to first transmit any preceding packets across
the bottleneck link, if will arrive at the bottleneck before they completed transmission. The latter
will be the case if

TP <T84+ M, (15.5)

because this condition means that paagkets sent shortly enough after packet 1 that packet
7 — 1 would not yet have cleared the bottleneck link by the time packetived at the bottleneck.

301

10

06

e — Unloaded data pkts
"""" Loaded data pkts
— — Acks

04

02
\

T T T T T
o 10 20 30 40

Per-Connection Packet Loss Rate (26)

Figure 15.7:N; loss rates for data packets and acks

If Egn 15.5 applies to packetthen we will say that packétwas “loaded,” meaning that
it had to wait for pending transmission of earlier packets. Otherwise, we term it “unloaded.”

The development of the maximal loag has natural analogs;” and; for the minimal
and central loads associated with each packet, by ysingr pg (from Eqgn 15.1) in Eqn 15.2 to
compute analogous “self-interference” time constafitandr,.* Similarly, we can define different
flavors of “loaded” and “unloaded” depending on whether we use the maximal, central, or minimal
definitions for);. In this section, we exercise conservatism and only consider a packet as unloaded
for the definition in terms of the maximal'.

Presently, our interest in whether a packet is loaded or unloaded comes just from analyzing
whether the two types have different loss patterns.16.2.6 we look in more detail at the coupling
between\; and the variation in packet transit times.

In both V/; and N>, about 2/3's of the data packets were loaded. We might at first expect
more loaded packets 5, due to its use of bigger windows. Window size, however, determines
whether the bottleneck link might continuousmainloaded. Even for a relatively small window
size, the TCP sender will transmit a number of packets (equal to the window size) over a fairly
short amount of time, and all of these but the first will be loaded. Once the entire window is in
flight, then a lull comes equal to the mismatch between the small window and the bandwidth-delay
product corresponding to the bottleneck rate and the RTT. Then the acks for the window arrive in
short order, and self-clocking leads to another flight of all-but-one loaded packets. Thus, window
size does not have a great deal of impact on the proportion of loaded packets.

Figure 15.7 shows the distributions of loss rates dumigfor unloaded data packets,
loaded data packets, and acks. All three distributions show considerable probability of zéro loss.

3pt is associated with]” because of the inverse relationship given by Egn 15.2; the higher the bottleneck bandwidth,
the lower the time required for a packet to transit across the bottleneck, so the less load associated with the packet.
“Each curve also shows a horizontal shift just above a loss rate of 0%. These reflect the fact that the loss rate is

302

From the figure, we immediately see that loaded packets are much more likely to be dropped than
unloaded packets, as we would expect. In addition, we see that acks are consistently more likely than
unloaded packets to be dropped, but generally less likely to be dropped than loaded packets, except
during times of severe loss, above about 14%, which make up the upper 10% of the distributions.
We interpret the difference between ack and data loss rates as reflecting the fact that, while an ack
stream presents a much lighter load to the network than a data packet stream (particularly a series
of loaded data packets), the ack stream duatsadapt to the current network conditions, while

the data packet stream does. Thus, unloaded data packets gain the twin benefits of traveling at a
time when the connection is not itself significantly contributing to load along the network path,
and also lowering their transmission rate during times of congestion. Loaded data packets stress
the network path, but at least they adapt, and, during periods of heavy congestion, their adaptive
behavior outweighs the advantages of ack streams that otherwise favor acks during periods of lower
congestion.

The equivalent set of distributions fdv; is qualitatively the same, though the distance
between the three distributions is narrower. This likely reflects both the overall lower loss rates in
N1 (§ 15.1) and the use of smaller windows limiting loss rates for loaded packets.

It is interesting to note the extremes that packet loss can readh, tihe largest unloaded
data packet loss rate we observed was about 47%. For loaded packets it climbed to 65%. As we
would expect, these connections suffered egregiously, achieving overall data throughput rates in
the low hundreds of bytes per second due to lengthy, backed-off timeout periods. However, they
did manage to successfully complete their transfers within their alloted ten minutes, a testimony to
TCP's tenacity. For both of these extrem@sacks were lost in the reverse direction! The largest
ack loss rate was even higher, 68%. Starved for confirmation of forward progress, this connection
also managed only a few hundred bytes per second. Ironicailgata packets were lost in the
forward direction!

As indicated by these extreme cases, clearly packet losses on the forward and reverse paths
are sometimes completely independent. Indeed, the coefficient of correlation between combined
(loaded and unloaded) data packet loss rates and ack loss rakésvias about 0.21, with the
correlation for connections within North America falling to 0.13. A, however, the loss rates
become uncorrelated (coefficient 60.02), perhaps due to the greater prevalence of significant
routing asymmetry (Chapter 8).

Another form of asymmetry is the degree to which loss correlates with the connection's
throughput. We would expect that data packet loss rates correlate more strongly, and negatively, with
throughput, since each loss requires a retransmission that subsequently cuts the sender's transmis-
sion rate, and perhaps entails a lengthy timeout lull. Ack loss, on the other hand, may go unnoticed,
if light, since acks are cumulative, and, if another ack arrives shortly, the connection will not stalll
for any appreciable amount of time.

To fairly gauge the correlation, we need to first account for the different maximum
throughput rates due to the different bottleneck bandwidth rates. We do so by dividing the achieved
throughput over the entire connection (total bytes transferred divided by total duration) by the esti-
mated bottleneck bandwidth. We then compitéhe coefficient of correlation, between tloga-
rithm of the normalized throughput and the loss rates of interest, where the logarithmic transforma-

computed in terms ot packets lost out of a total of, hencel /n is the minimum possible positive loss rate. Since, for
most connections; = 200 packets, we observe a minimum possible loss rate of around 0.5%.

303

00100 01000 1,0000
\ \ \

P(X>=x)

00020
\

00001
\

T T T T T
o 10 20 30 40

Unloaded Data Packet Loss Rate (20)

Figure 15.8: Complementary distribution plot&} unloaded data packet loss rate

tion is to reduce the otherwise dominating effect of throughput outliers.

For N3, we find thatf for the overall data loss rate is quite large, abewt52, with
unloaded loss rates a bit more strongly correlated than loaded loss rates. Presumably this latter
effect is because backed-off timeout retransmissions, which have the greatest deleterious effect on
connection throughput, always generate unloaded data packets, and further back-off occurs when
these packets are then lost. The correspondifay ack loss rates also indicates a fairly strongly
correlation, with a value 0f-0.42. Since these figures are fdf,, this correlation isnot due to
any coupling between the ack loss rate and the data packet loss rate, because the two are generally
uncorrelated, as shown previously. Instead, the correlation is probably due to the coupling between
the ack loss rate and the possibility of losing an entire flight's worth of acks, which then unavoidably
leads to a timeout retransmissidnl’.6).

The significant correlation between ack loss rates and normalized connection throughput
indicates that, when attempting to predict a connection's throughput along a particular forward path,
it pays to have information about conditions along the reverse path, too. For the North American
region (as defined i§ 15.1), the correlations weaken somewhat .40 for data packet loss
rates and-0.25 for acks. Thus, we must recognize that the strength of the correlations varies
considerably.

The distributions in Figure 15.7 have shapes suggestive of exponential distributions, if we
ignore the considerable zero portion of each distribution. Further investigating the distributions, one
striking feature we find is that the non-zero portion of both the unloaded and loaded data packet loss
rates is almost exactly exponential, while that for acks is not nearly so close a match.

Figures 15.8, 15.9, and 15.10 show logarithmically scaled complementary distribution
plots of the unloaded, loaded, and ack loss rates, conditioned on observing at least one loss. A
straight line on such a plot corresponds to an exponential distribution. We have added least-squares
fits to each plot. We see that, for both unloaded and loaded data packets, the loss rate distribution is

304

10000
\

01000
\

=)()
0.0100
|

P>

00010
\

00001
\

T T T T T T T
o 10 20 30 40 50 60

Loaded Data Packet Loss Rate (20)

Figure 15.9: Complementary distribution plot/} loaded data packet loss rate

10000
|

01000
\

=)()
0.0100
|

P>

00010
\

0,001
\

T T T T
o 20 40 60

Ack Loss Rate (20)

Figure 15.10: Complementary distribution plot/g} ack loss rate

305

quite close to exponential, but for acks it deviates considerably more. The effect is widespread: it is
also present fo)V7, and for the North American and European subset§-of

While striking, interpreting the fit to the exponential distribution is difficult. If, for ex-
ample, packet loss occurs independently and with a constant probability, then we would expect the
loss rate to reflect a binomial distribution, but thahat what we observe. (We also know from the
results ing 15.1 that there imot a single Internet packet loss rate, or anything approaching such a
situation.)

It seems likely that the better exponential fit for both loaded and unloaded data loss rates
than ack loss rates holds a clue. The most salient difference between the transmission of data
packets and that of acks is that the rate at which the sender transmits data paelsttto the
current network conditions, and furthermore it addmsed on observing data packet lo§us,
if we passivelymeasurethe loss rate by observing the fate of a connection's TCP data packets,
then we in fact are making measurements using a mechanism whose goal is to lower the value of
what we are measuring (by spacing out the measurements). Consequently, we need to take care
to distinguish between measuring overall Internet packet loss rates, which is best dongousing
adaptivesampling, versus measuring loss raggperiencedy a transport connection's packets—
the two can be quite different.

15.3 Loss bursts

In this section we look at the degree to which packet loss occuparistsof more than
one consecutive loss. Analytic models of network behavior often assume individual packet losses
occur at a fixed rate but independently from other losses, as this assumption aids in keeping the
models tractable. Accordingly, to gauge the strength of these models we need to address the issue
of the soundness of this assumption.

As with loss rates, we expect that the size of loss bursts depends on whether we analyze
losses of loaded data packets, unloaded data packets, or acks. These each correspond to a different
transmission rate, and, furthermore, the first two are generated at a rate dynamically adapted to the
frequency of previously observed packet loss, while acks are not.

The first question we address is the degree to which packet losses are well-modeled as
independent. In [Bo93], Bolot investigated this question by comparing the unconditional loss prob-
ability, which we denote aB* (ulp in Bolot's paper), with the conditional loss probabilifyf; (clp),
wherePf is conditioned on the fact that the previous packet was also lost. He foung;thatP;*
always held, which one would expect, as it would be surprising if loss of the previous packet made
loss of the next packet less likely. He investigated the relationship betit¢and P for different
packet spacings, ranging from 8 msec to 500 msec. He found tR¢tapproaches’* asd in-
creases, indicating that loss correlations are short-lived, and concluded that “losses of probe packets
are essentially random as long as the probe traffic uses less than 10% of the available capacity of the
connection over which the probes are sent.” He also observe@thstabilized at about 10%, quite
a high loss rate, though the path being studied included a heavily loaded trans-Atlantic link, and also
a mid-level network known to have previously experienced 3% loss rates unrelated to congestion.

Table XXl summarizes?* and P for the different types of packets and our two datasets.

Pf conditions on whether the connection's previous packet was lost, even if it is a different type than
its successor (e.g., a loaded packet lost followed by an unloaded). Clearly, for TCP packets (which

306

Type of loss P Py

M| M| M| Ny
Loaded data pkt || 2.8% | 4.5% || 49% | 50%
Unloaded data pkt 3.3% | 5.3% || 20% | 25%
Ack 3.2% | 4.3% || 25% | 31%

Table XXIII: Unconditional and conditional loss rates for different packet types

have a large range of interarrival intervals), we must discard the assumption that loss events are
well-modeled as independent. Even for the low-burden, relatively low-rate ack packets, the loss
probability jumps by a factor of seven if the previous ack was lost. We would expect to find the
disparity strongest for loaded data packets, as these must contend for buffers with the connection's
own previous packets, as well as any additional traffic, and indeed this is the case. We find the
effect least strong for unloaded data packets, which accords with these not having to contend with
the connection's previous packets.

Itis interesting to observe that loaded packets are unconditionally less likely to be lost than
unloaded packets. We suspect this reflects the fact that lengthy periods of heavy loss or outages will
lead to timeout retransmissions, and these are unloaded, so they contribute to the loss probability of
unloaded packets rather than loaded packets.

The relative differences betwedit and P in Table XXIII all exceed those computed by
Bolot by a large factor. His greatest observed ratid’pto P* was about 2.5:1. However, hi3*'s
were all much higher than those in Table XXIII, even o 500 msec, suggesting that the path he
measured differed considerably from a “typical” path in our study.

(We also note that, since TCP packet loss events are not well-modeled as independent,
it behooves us in general to avoid discussing unconditional packet loss in terprsbatbility,
since for networking analysis this stochastic term often carries with it an implicit assumption of
independence among the events. We advocate instead consistent use of the term paeitef loss
since this term downplays the implication of independence.)

Given that packet losses occur in bursts, the next natural question is: how big? To address
this question, we grouped successive packet lossesintmesand computed for each outage the
number of packets lost and the duration of the outage in terms of the difference between the sending
times of the two successfully arriving packets delimiting the outage. (Note that a data packet outage
can encompass both loaded and unloaded packets.)

Figure 15.11 shows the distributions of the outage durations for data packets and acks in
N1 andANs, using a logarithmia:-axis. We see considerable variation for the length of small outage
durations. Our definition of duration as the time between two successfully arriving packets spanning
the outage means the durations are hgtper bounds and hence will be considerably skewed, for
small values, by variations in the inter-packet spacing. The distributions are really only solid for
larger values. Above 200 msec, the distributions agree quite closely, excepfsthidta packet

SHowever, for large estimates the degree of overestimation is limited by the retransmit timer b&ckaff3j, and
hence the estimated duration is off by at most a factor of two. Since we analyze the distributions using logarithmic
axes, this factor at most results in a translation of the distribution's body—it does not appreciably alter the shape of the
log-transformed distribution.

307

10

08

06

04

02

00

10"-6 10™-4 10n-2 10M0 1072

Outage Duration (sec)

Figure 15.11: Distribution of packet loss outage durations

outages are considerably shorter lived, no doubt becaus¥;,ithe connections often had many
more data packets in fligh ©.3), and so had significantly more opportunity to observe short-lived
outages.

Figure 15.12 shows the distributions conditioned on the outage exceeding 200 msec,
which removes the effect of th&, data packets observing more short-lived outages. (Fagis
extends only to 50 sec even though all of the distributions have some larger points. The plotting
truncation lets us focus on the main body of the distribution in more detail than we could if we
included the entire upper tail.) We see that, for outages of this length or longer, all four distributions
agree fairly closely.

Itis clear from Figure 15.11 that outage durations span several orders of magnitude. For
example, 10% of thé\; ack outages were 33 msec or shorter, while another 10% were 3.2 sec or
longer, a factor of a hundred larger. Furthermore, the upper tails of the distributions are consistent
with those of Pareto distributions. Figure 15.13 shows a complementary distribution plot of the
duration of V5 ack outages, for those lasting more than 2 sec (about 16% of all the outages). Both
axes are log-scaled, so a straight line on the plot corresponds to a Pareto distribution. We see the
long outages fit quite well to a Pareto distribution with shape parameter1.06, except for the
extreme upper tail, to which we will return in a moment.

A shape parameter < 2 means that the distribution hasfinite variance indicating
immense variability. Pareto distributions for activity and inactivity periods play key roles in some
models of self-similar traffic [WTSW95, WP97, WPT97]. We do not attempt further analysis here
of the possible role of packet loss outages in contributing to self-similar correlations in aggregate
network traffic, but note that it may prove a fruitful area for further research.

However, itis clear in the plot that the extreme upper tail does not fit the same Pareto distri-
bution. This discrepancy could simply be because the uppermost tail is subject to truncation, due to
the 600-second lifetime to which our connections were limi§e2l §). But the discrepancy could in-

308

10

08
\

04

02

T T T T
0.5 1.0 5.0 50.0

Outage Duration (sec)

Figure 15.12: Distribution of packet loss outage durations exceeding 200 msec

f—
1=
=2 —
=
—i
f—2
=2
— —
—
L=
— e
> p=1
[e —
N o
> I=
(=
=
=
=3 —
o
L=
—
f=—3
=2 —
=
=

T T T T T
5 10 50 100 500

Ack Outage Duration (sec)

Figure 15.13: Log-log complementary distribution plotA\éf ack outage durations

309

stead reflect two different loss mechanisms. We show&d®iB that “temporary outages” observed

by traceroute = measurements appear well-described usixgonentialdistributions, which are

much less volatile than Pareto distributions. That analysis, however, was confined to time scales of
30 sec or longer, and, fdk, (corresponding in time td/), we found a mixture of exponentials,

with the second only fitting to outages exceeding 75 sec in duration. This latter fit corresponds to the
extreme upper tail in Figure 15.13. This in turn leads us to speculate that the distribution of outage
durations might reflect a Pareto distribution for losses due to heavy congestion, and an exponential
distribution for losses due to routing outages. We could test this hypothesis by gathering packet loss
measurements made over longer periods of time, which would eliminate the ambiguities presented
by the 600-second lifetime truncating the upper tail of our measurements.

We might also consider analyzing tinemberof lost packets in an outage, rather than
the duration of the outage. This value, however, is much more subject to fluctuation due to the
particulars of how many packets the TCP had in flight prior to the outage, or how many acks it had
to generate during the outage in response to incoming data packets. We note that the mean number
of packets lost during an outage was around 1.5, slightly lower for acks and higher for data packets.
The loss extremes we observed were 68 consecutive data packets and 40 consecutive acks (most
of which were dups in response to a large number of incoming packets). These extremes are less
interesting than the extreme outage durations, because the former are specific to the structure of the
TCP connections—both occurred due to very large numbers of data packets in flight,

We also note that the patterns of loss bursts we observe might be greatly shaped by use of
“drop-tail” queueing. With the drop-tail policy, a router queues incoming packets until the available
buffer space is exhausted, and then drops any additional arrivals until sufficient space becomes
available again. Routers using drop-tail comprise the vast majority of Internet routers, no doubt
because it is very simple to implement.

Simulations show that drop-tail leads to large bursts of losses when a flight of closely-
spaced packets arrive at a router with no available buffers, and the entire flight is dropped [FJ93].
Related to this problem is a basiafairnessin how packets are dropped: a connection may suffer
a large number of losses becauséifeerent connection is occupying all of the router's buffer. In
response to these problems, [FJ93] developed the “Random Early Drop” (RED) policy, in which
the router drops (or marks) incoming arrivals before all of the buffer has been exhausted. These
drops are made with probabilities reflecting the proportion of the router's resources used by the
connection, so the policy is much more fair than drop-tail. Because §#€&nds outosses over
time, widespread deployment of RED could significantly alter loss patterns and the corresponding
connection dynamics.

A final loss burst pattern we investigated was the presenperafdiclosses: outages oc-
curring a fixed interval apart. Floyd and Jacobson observed periodic losses and described how they
could arise due to global synchronization of the times at which routers exchange updates [FJ94].
They showed how fixed-interval timers such as thirty second update periods act as resonant fre-
guencies, which can synchronize in phase to other events occurring at the same frequency. Periodic
losses are thus possibly symptomatic of widespread synchronization in the network, which can have
debilitating effects on network performance, especially since large loss periods can in turn synchro-
nize all of the TCP senders that suffer a loss during the period.

Unfortunately, our measurements are ill-suited to detecting periodic loss. Rather than
having fixed intervals between our loss “probes” (i.e., the individual packets of a single TCP con-

310

nection), which would then lend themselves nicely to frequency-domain analysis, we have variable
intervals. Furthermore, we used much larger, variable intervals between groups of measurements
(connections), precisely to avoid problems with the measurements synchronizing to any periodici-
ties present in the network. Thus, while we can analyze the timing of all of the lost packets in our
measurements, the measurements themselves are sparse, and also are cluttered with a great deal of
loss that is clearly not periodic.

We attempted to analyze for periodic loss by first identifying a North American subset
of our sites with clocks highly synchronized to each other. We identified the day with the most
connections between those sites and extracted from the traces a dataset giving tiig tfre=sch
packet loss during those connections. We then constructed platsvefsusl; mod p, and varied
1 through the range of,2,...,120 sec. We hoped to find a for which many of thel; mod
i clustered about a particular value. However, no compelling modulus emerged. We repeated
the analysis for data packets sent to Europe, shown in Table XXII as the most loss-prone Internet
path, to test whether perhaps their heavy losses are due in part to a periodic component rather than
congestion. Again, we did not find persuasive evidence of frequent periodic losses.

We conclude that periodic losses do stbnglydominate TCP packet losses. However,
the mismatch between our measurements and those needed to thoroughly examine the question of
periodic losses is great enough that we cannot from our evidence conclude that such losses do not
regularly occur.

15.4 Loss location

We discussed in Chapter 14 how each network path contains one (or more) “bottleneck”
element(s) that limit the maximum rate a connection using the path can achieve. It is natural to
assume that this bottleneck element is also the point of congestion along the path, because it has the
least amount of one of the network's most important resources, namely bandwidth. Consequently,
for a given load in terms of volume of packets to forward along a network path, the bottleneck
elements will be the most stressed of those along the path, since they require the most time to
service the load. With this assumption, we are again (&sl.2) abstracting the intricate, multi-
element network path to a presumably equivalent model of a single element that forwards at the
bottleneck rate, and at which all significant queueing occurs.

One might think that, with only end-to-end measurements, one lacks sufficient informa-
tion to verify whether in fact loss occurs at the bottleneck or at some other element. Sometimes,
however, we can, as illustrated by Figure 15.14 and Figure 15.15. Both sequence plots reflect data
packet arrivals at the receiver, with the packets flowing in steadily at the bottleneck rate. In each
plot, one packet has been lost, and the circle indicates where it would have arrived had it hot been
lost, and had it likewise arrived at the bottleneck rate. In Figure 15.14, its successor arrives in the
position where the lost packet would have otherwise arrived. This indicates its successot did
gueue behind the lost packet, but instead behind the lost packet's predecessor; hence the lost packet
must never have made it across the bottleneck link. In Figure 15.15, however, the successor arrives
in the same position that it would have, had the lost packet safely arrived too. Thus, the successor
did queue behind the lost packet at the bottleneck, and we conclude that the lost packet did indeed
make it across the bottleneck link, only to be dropped later.

In general, we prefer that packets are droppefbrethe bottleneck, so they do not fruit-

311

Sequence #
45000 46000 47000
| | |

44000
\

43000
\

Time

Figure 15.14: Receiver sequence plot showing packet lost at or before bottleneck link

Sequence #
18000 19000
| |

17000
\

16000
\

Time

Figure 15.15: Receiver sequence plot showing packet lost after bottleneck link

312

lessly consume the (usually) scarce bottleneck resource. In this section, we analyze how often this
occurs. We first clarify our terminology. We will refer to a packet lost after it has been successfully
forwarded by the bottleneck element as occurring “after the bottleneck,” while one lost earlier as
occurring “before the bottleneck.” These latter may have been lost because of a full queue just be-
fore the bottleneck element, or may have been lost further upstream. Some network paths may have
multiple bottlenecks, meaning a number of elements with the same limiting rate. Since our analysis
is based on the patterns in Figures 15.14 and 15.15, in the case of multiple bottlenecks we consider
only loss after or before the first of the bottlenecks. Loss prior to subsequent bottlenecks will still
appear at the receiver as in Figure 15.15, since the data packets will have already been spread out
by the first bottleneck.

Our analysis is doomed to be inexact, since effects such as data packet compression
(§ 16.3.2) and spurious extra delay often obscure the patterns so clearly evinced in Figures 15.14
and 15.15. But we still aspire to attempt some sort of meaningful analysis, since the basic question
of position of loss is an intriguing one, with the potential to reshape our abstractions when analyzing
networks.

We proceed as follows. For each lost data packet, we check whether both its predecessor
and successor arrived successfully. If not, then we ignore the packet for our analysis, which removes
from our possible results the effects of loss bursts. Since we know §rdH3 that loss bursts are
not uncommon, the resulting bias means our results will at best be only qualitative. (We attempted to
extend the analysis to include loss bursts, but the ambiguities of whether the next successful packet
had to queue behind onsomeof the packets lost in the burst proved too difficult to remove.)

If both predecessor and successor arrived, then we check whether the lost packet was
sufficiently “loaded” § 15.2) that, upon arriving at the bottleneck, it would find its predecessor
waiting in the queue, not yet having begun its service. If not, then we again ignore the packet for
our analysis. Doing so assures we only analyze lost packets that would nominally have occupied a
full “slot” at the queue, and not a partial slot due to arriving while its predecessor was in the process
of transmission across the bottleneck.

If the lost packet was sufficiently loaded, then we check whether its successor was sent
soon enough after that, had the lost packet queued at the bottleneck, its successor would have arrived
at the bottleneck before the lost packet begarmottleneck transmission, and thus the successor
would have been delayed a full “slot” in the queue, too. If the successor was sent too late, we again
ignore the lost packet for our analysis.

If the successor was sent sufficiently soon after the lost packet, then we next inspect the
arrival time of the successor. If it is withii25% of the time expected had the lost packet never been
transmitted (no bottleneck “load” incurred), then we consider the lost packet as having been dropped
before the bottleneck. If the successor arrives with3% of the time expected had the lost packet
indeed loaded the bottleneck, then we consider the loss as occurring after the bottleneck. If the
successor's arrival is between these two ranges, then its arrival is “ambiguous,” and if its arrival is
after (or before) both ranges, then its arrival is “inconsistent,” meaning the simple packets-arriving-
at-the-bottleneck-rate scenario we envision is inadequate, probably due to downstream queueing.

In both /7 and A5, about a third of the losses fit the “inconsistent” category, and almost
none were “ambiguous.” Of the remaining two-thirds, we find thag\/in fully 48% of the losses
occurred after the bottleneck. I, the figure falls to 28%. These figures, however, are less than
solid in two important ways. First, if a packet is lost before the bottleneck, but its successor queues

313

behind a packet froranother connectiomt the bottleneck, then we will still obtain the signature of

an after-bottleneck loss. It is difficult to see how to quantify the frequency of this effect given only
end-to-end measurement data. Second, our analysis is somewhat skewed by the presence of sites in
our study with low-speed Internet connections. For connections involving these sites, the bottleneck
will often be immediately at the sender (or before the receiver), so there is little opportunity for loss
before (or after) the bottleneck. If we restrict our analysis to only connections with a bottleneck rate
exceeding 100 Kbyte/sec, theni we find 36% of the losses occur after the bottleneck, and 26%

in NQ.

From this analysis, we conclude that, for isolated packet losses (not bursts), the assump-
tion that loss occurs at or before the bottleneck link is certainly true more often than not. But if loss
position is critical to some analysis, then one must accommodate the possibility of loss occurring
after the bottleneck. We also conclude that perhaps 25% of packet loss occurs regretfully late in
the network path, meaning that an upstream bottleneck link spent its scarce resources carrying a
doomed packet.

15.5 Evolution of packet loss rate

In this section we look at how packet loss rates along an Internet path evolve over time.
Our goal is to determine how fruitful it might be to cache packet loss information for Internet paths
to better estimate the service we might expect from the paths in the future. For each path in our
study, we analyze the evolution of the ack loss rate along the path in several different ways. Clearly,
there will be great variation among some of the paths in how the loss rate evolves over time. But
we presently limit ourselves to investigating overall patterns of loss rate evolution, aggregated over
all of the N, connections. We do not analyze tNg connections because few of thg paths were
measured frequently enough to allow solid analysis.

We first look at how well observing no loss along the path for a 100 Kbyte connection
predicts experiencing no loss along the path for another such connection at some point in the future.
For each zero-loss connectian,we compute the pafAT., I7), whereAT, is the time between
that connection and the next successful connectignye observed along that path; aftlis an
indicator function with a value of 1 if’ also experienced no loss, and 0 if it did.

After constructing these pairs, we sort them &ff, and then compute the probability
P*(AT) that a connection that comes an interddl’ after a zero-loss connection will also be zero-
loss, as follows. Lef7, denote theth indicator, sorted ol\7.. Beginning withﬁoz =1, we run
an exponentially-weighted moving average (EWMA) with= 0.01 through the sorted indicators,
where theith value of the average is computed as

~

PF=(1-a)P? + alfy.
Let P*(AT) then beP? for the value ofi corresponding to the intervalT'.

Usinga = 0.01 means thaﬁ? is dominated by the preceding 100 valued 6f though
earlier values still contribute to the smoothing. Our goal is to turn the indicator values into meaning-
ful probability estimates, while still allowing for effects that are localized to different time intervals.

Figure 15.16 shows hoﬁZ(AT) evolves with time. The:-axis gives the time between
the first zero-loss connection and the subsequent connection, logarithmically scaled, gactighe
gives the smoothed probability that the subsequent connection is also zero-loss.

314

08 09 10
\ \

Probabilty Also Zero-Loss

07

T T T T T
10n2 1073 104 10"5 1076

Interval Between Connections (sec)

Figure 15.16: Evolution of how well observing a zero-loss connection predicts that a future connec-
tion will also be zero-loss

We had very few successive connections in our study separated by less than 60 sec, be-
cause the NPDs reuse TCP connection identifiers (to aid in filtering the traffi¢ Ao2), and most
TCP implementations set a minimum waiting interval on reusing identifiers of 1 minute or’more.

Because of the combination of exponential smoothing and very few closely-spaced suc-
cessive connections, the leftmost portion of the plot exhibits an artifact in terms of a steep dip from
probability 1.0 to probability 0.8. Had we instead used an initial probabilitﬁ’(@f: 0.8, then this
spike would disappear. Putting aside the spike, we see that the probability of again observing a
zero-loss connection stays at about 0.75 for intervals on the order of a few minutes to a few hours.
Above about 6 hours, it approaches what appears to be a “steady state” of 0.70, which continues all
the way out to several weeks. Thus, observing a zero-loss connection remains a good predictor of
observing future zero-loss connections, even for points in time quite far in the future.

Figure 15.17 shows the same evolution except for the predictive power of observing a non-
zero-loss connection rather than a zero-loss connection. The pattern is similar, though the steady
state shows signs of declining on time scales of weeks. The “notch” at about 6 hours (21,600 sec)
is somewhat puzzling, though it is perhaps simply an artifact, as the region surrounding the notch
contains only about 200 points. The notch at four minutes is likewise puzzling: it contains 20% of
all of the points, and hence is clearly not spurious, but it is difficult to see what mechanism would
lead to less correlation between connections 3-5 minutes apart compared to those further apart. (The
comparable notch in Figure 15.16 occurs instead at two minutes, and contains only 3% of the points,
S0 it is perhaps spurious.)

The final aspect of packet loss evolution we look at is how loss rates change over time.
For each connection, we compyiE., \.), whereT, is the time when the connection began and

5The TCP specification sets this time at 4 minutes, though it provides exceptions for which it can be bypassed [Brg9].

315

10

09

Probabilty Also Non-Zero-Loss
08
|

07

T T T T T
10"N2 1073 104 10"5 1076

Interval Between Connections (sec)

Figure 15.17: Evolution of how well observing a non-zero-loss connection predicts that a future
connection will also be non-zero-loss

is the ack loss rate. We then compute for consecutive connecti@rslc, along the same path the
pair (AT 2, Ay 2), where:

ATI,Z - T02 - TCU
A1,2 = |>‘62 - >\Cl|'

Thus,A » gives the magnitude of the difference in loss rates between the two connections.

Figure 15.18 shows how the EWMA of, » evolves asAT; , increases, where the
smoothing is done withx = 0.01 and with an initial value of\; o = 0. We see an almost immedi-
ate jump to a mean difference ©R2% in loss rate, followed by a steady climb up to a difference of
+4% at about 10 hours, followed by a jump to th® — 8% level for larger time intervals, where
the variation for very large time scales (weeks) at the righthand edge of the plot may be spurious,
due to an exceedingly small number of samples.

From Figures 15.16, 15.17, and 15.18, we conclude that observing no loss along a path is
a good predictor that we will continue to not observe loss along the path, even far into the future;
that the same holds almost as strongly for observing loss predicting we will observe future loss; but
that the farther into the future we wish to project, the more difficult it is to accurately assess the
magnitudeof the loss rate based on the magnitude of the currently observed loss rate. These find-
ings support the notion developed earlier in this chapter that network paths have two general states,
a tendency towards loss-free connections (“quiescent”), and a tendency towards lossy connections
(“busy”), and provide evidence that both states are long-lived, on time scales of hours, presumably
because they are functions of whether the path has adequate capacity for the aggregate traffic deliv-
ered to it, and aggregate traffic rates generally change on time scales of hours [PF95]. We also find
that, while we may predict future loss rates fairly accurately for time scales of minutes to hours, as
time scales grow beyond, our predictive power diminishes.

316

Mean Difference In Loss Rate
0.04 0.06 0.08
| | |

002
\

00
\

T T T T T
10n2 1073 104 10"5 1076

Interval Between Connections (sec)

Figure 15.18: Evolution of the mean difference in loss-rate between successive connections along
the same path

15.6 Efficacy of TCP retransmission

The final aspect of packet loss we investigate is how efficiently TCP deals with it. Ideally,
TCP retransmits any lost data until it is successfully received, but never retransmits unnecessarily,
as that would waste network resources. However, the transmitting TCP lacks perfect information,
and consequently will sometimes indeed retransmit unnecessarily. For example, TCP acknowl-
edgements araot transmitted reliably; so, if a flight of data packets all arrive successfully at the
receiver, but all of the corresponding acknowledgements are lost, then the TCP has no choice but to
retransmit when the retransmission timer expires.

We analyzed the efficacy of retransmission by the different TCPs in our study as follows.
For each connection, we examine each retransmitted p&:ketsee if the data contained Ity had
already been successfully séniote that the earlier, successful transmission may not have arrived
yet at the receiver at the time of the retransmission; we consider it successful, however, if an earlier
transmission of the daeverarrives at the receiver.

If P. contained data that had not previously been successfully transmitted to the receiver,
then we termP, “necessary,” otherwise we term it “redundantri both \; and V>, about 40%
of the retransmissions were redundarls an aggregate statistic, this is not a happy number. It
means that two times out of five, the TCP should (1) not have retransmitted, and (2) not have cut
its congestion window, if the retransmission led it to do so. However, we need to investigate the
40% figure better, since there are a number of different reasons why a TCP might send redundant
retransmissions (RRs):

"The exact test is whethail of the data inP, had been successfully sent. This fine point can be important if different
portions of P,'s data were earlier sent in different packets.

317

Sequence #
80?00 90?00

70?00

60?00

Figure 15.19: Receiver sequence plot showing large number of sequence holes

unavoidable We mentioned earlier that, if the network drops all of the acks for a flight of data
packets, then the TCP sender has no choice but to retransmit, since no further feedback will
be forthcoming from the receiver.

pathological The packet was a timeout retransmission, but the interval between the data's earlier
transmission and this packet's was less than the minimum round-trip time ever seen. Hence,
the retransmission timeout used by the TCP was absolutely broken—the receiver did not
even have a chance to acknowledge the data—and, furthermore, a simple test by the TCP to
make sure that at least the minimum RTT had elapsed would have prevented the redundant
retransmission.

coarse feedbackSince TCP acknowledgements simply give the highest data sequence number re-
ceived in-order, when a TCP retransmits with a window larger than one packet (such as during
slow-start after a timeout), it may transmit unnecessary packets because the receiver lacks a
fine enough feedback mechanism to tell it which above-sequence packets have already ar-
rived. Figures 15.19 and 15.20 illustrate the problem. In the first sequence plot (measured
at the data receiver), we see that the sender has a large amount of data in flight, which until
aboutT = 0.47 has steadily streamed in. At that point, however, the packet with sequence
number 59,905 is lost. Many more packets continue streaming in, but they contain numer-
ous holes where some were lost. The new arrivals generate a torrent of duplicate acks in
response. Since, however, the acks only provide coarse feedback to the sender, all the sender
really knows is that sequence 59,905 was lost, and many more packets safely arrived—but it
does not know which.

The sender retransmits the first missing packet via fast retransmissi@rR.7), and this
packet arrives at the receiver just bef@te= 0.6. The receiver duly acknowledges up to the
next hole, and even generates some duplicate acks for new data arriving at sequence 90,625

318

Sequence #
70?00 75?00 8 ? 0 85?00 90900 95900
i

65?00

1.bs 2.6o 2.bs 2.ho 2hs 2.5o 2.bs
Time

Figure 15.20: Redundant retransmissions subsequent to previous figure

and above (sent due to fast recovery). These in turn lead to a fast retransmission for the next
hole, arriving afl” = 0.63. At this point, however, the sender does not see any more incoming
acks allowing it to send more data via fast recovery (and it has halved its congestion window
twice, once per fast retransmission event, so it will take a while for more dup acks to inflate
the window far enough to enable fast recovery). Consequently, self-clocking ceases and the
sender stalls until a retransmission timeout occurs.

Until now, the retransmissions have all been necessary. The retransmissions after the timeout,
however, are a disaster, as shown in Figure 15.20. The first packet retransmitted after the
timeout was also necessary. Unfortunately, the acks generated by it (shown as large squares
in the plot) rapidly open the sender's congestion window due to slow start, and it sends larger
and larger flights of packets. Nearly all of these retransmitted packets are unnecessary—all
that is really needed is to fill the sporadic holes shown in Figure 15.19. Every duplicate ack

in Figure 15.20 corresponds to an unnecessary retransmission, yet because the sender lacks
fine-grain information regarding which above-sequence packets the receiver already has, it
continues retransmitting to fill the known holes (as indicated by the latest ack it has received),
as well as pouring additional, unnecessary packets into the network—23, all told.

The TCP research community has long known about this problem and is in the midst of stan-
dardizing a TCP extension to remedy it. With the extension, a “selective acknowledgement”
(SACK) option, acks can carry additional information concerning above-sequence packets
that have arrived at the receivéy 13.1.3). The sender then uses this information to select
which packets require retransmission.

We consider an RR as reflecting TCP's “coarse feedback” problem if it occaftexdthe
arrival of an ack that itself was sent after the original copy of the data arrived at the receiver.
Presumably, had we used SACK, this ack could have conveyed to the sender that the data had

319

[Type of RR | Vi total | AV total | AV; Solaris | A Solaris | Ny Other | A5 Other |
% all packets 2% 3% 6% 6% 1% 2%
% retransmissiong 43% 38% 66% 59% 26% 28%
Unavoidable 25% 25% 14% 33% 44% 17%
Pathological 2% 7% 3% 11% 0% 2%
Coarse feedback 18% 41% 1% 1% 51% 80%
Bad RTO 55% 28% 81% 55% 4% 1%

Table XXIV: Proportion of redundant retransmissions (RRs) due to different causes

already arrived, and the sender would have avoided the RR.

bad RTO If the RR was prompted by a timeout, and if an acknowledgment for the previously sent
data arrives after the timeout retransmission, then the TCP selected too low a value for its
retransmission timeout (RTO). The RR could have been avoided simply by waiting longer.

Table XXIV summarizes the prevalence of the different types of RR¢imndN>. The
second and third columns give the overall percentage ofAth@nd N>, RRs due to each type.

The fourth and fifth columns give the same figures if we restrict the analysis to just Solaris TCP
senders, since i 11.5.10 we discussed how it is prone to underestimating RTO and consequently
retransmitting too early, so we would expect it to exhibit a higher frequency of “pathological” and
“bad RTO” types of RRs than the other TCPs in our study. The final two columns summarize the
frequency of each type of retransmission for the non-Solaris FCPs.

We see that a fair proportion of the RRs were unavoidable. (Some of these might, however,
have been avoidable had the receiving TCP generated more acks.) We note fatitiich, with
its bigger windows { 9.3), had more opportunity to successfully transmit an ack for part of the
window, only about 1/6 of the RRs for non-Solaris TCPs were unavoidable. Clearly it is worth our
efforts to first eliminate the avoidable 5/6's.

Pathological RRs could be eliminated with a simple test: if the packet being retransmitted
was previously transmitted (or retransmitted) less than one RTT in the past, then simply do not
retransmit it. Aside from Solaris, most pathological RRs occur within retransmission epochs, during
which earlier RRs lead to enough duplicate acks that the TCP resends data it sent shortly before due
to the window advancing. For Solaris, many occurred due to the problems the Solaris TCP timer
has with adapting to the true round-trip time, $f1.5.10 and; 11.5.1.

“Coarse feedback” RRs would presumably all be fixed using SACK. The increase in non-
Solaris coarse feedback RRs/Af is no doubt due to the use of bigger windows\ih, and hence
more opportunity for acks (and, thus, finer feedback) to potentially inform the sending TCP of what

&In § 11.5.8 we identified the Linux 1.0 TCP as suffering from many RRs due to its practice of retransmitting all
the unacknowledged packets rather than just the first. Howevérlih5 we discussed how many of the Linux traces
could not be unambiguously paired in terms of packet departures and arrivals, precisely because of this retransmission
problem. In this section, we confine our retransmission analysis to those traces that we could unambiguously pair, so
we can distinguish between the different types of RRs (in particular, “coarse feedback,” which depends on whether the
original data arrived before a subsequently transmitted and received ack). Consequently, we analyzed very few Linux 1.0
traces and thus their presence does not significantly affect the statistics in Table XXIV.

320

| u
i Y £
% o i X -
I 1 el
_.f ’JI . el
. Pt
g | / ! F
ﬁ .l D.fF'EFID
=] =
= e - ==
& _ i L
=3 Nl Lo
rt 4 -
(=3 f & DDD
2 LA
. =
- s o .:.:-E'EFI
1o 1's 2o 2's

Time

Figure 15.21: Sender sequence plot showing failure of RTO adaption

packets the receiver already has. It is encouraging to see that, aside from Solaris TCPs, deployment
of SACK remedies almost all of the avoidable RRs. It makes almost no difference for Solaris TCP,
since many of its RRs occur before any ack for the previous transmission of data has arrived from
the receiver, due to the Solaris timer adaption problems.

“Bad RTO” RRs indicate that the TCP's computation of the retransmission timeout was
erroneous. These are the bane of Solaris TCP, as noted above. More than half of its RRs were
due to miscalculating the timeout. Fixing the calculation eliminates 4-5&8l @ff the data traffic
generated by the TCP.

The TCP standard requires use of Jacobson's exponentially-weighted moving average
(EWMA) round-trip time (RTT) estimate and associated variance estimate ([Br89, 4.2.2.15] and
[Ja88]), along with Karn's algorithm for eliminating ambiguous RTT estimates [KP87]. If we as-
sume that the non-Solaris TCPs do in fact implement this algorithm, then from Table XXIV we see
that it performs quite well.

Figure 15.21 shows an instance where it failed, or at least where HP/UX 9.05's imple-
mentation of it failed. Here the receiving TCP is offering a very large window, to which the sending
TCP is rapidly opening its congestion window in the face of no packet loss. The bottleneck link,
however, can only support about 7.3 Kbyte/sec, and so the window represents a large mismatch
with the correct window size needed to avoid overloading the bottleneck. Consequently, the RTT
rises rapidly as packets queue behind their predecessors. During the last five round trips, starting at
timeT = 10, the RTT increases by about 1 second during each trip. The RTO estimation algorithm
fails to track this rapid increase, and at tiffie= 23 a retransmission timeout occurs, even though
the corresponding ack is just about to arrive. Subsequent acks for the first transmissions of the data
then rapidly feed the slow-start sequence begun by the timeout retransmission, and the sending TCP

“We note that this problem has already been fixed in Solaris 2.5.1.

321

promptly resends 63 packets, all redundant. However, we found pathological behavior like that
shown in the figure quite rare.

While the standard RTO estimation almost never leads to an unnecessary timeout retrans-
mission, a separate question, unanswered by these statistics, is whether it could be safely modified
to be less conservative. At present the timeout often occurs after much more than an RTT elapses.
A more aggressive RTO algorithm could potentially lead to higher connection throughput, because
timeout lulls would be less costly than they currently are. Yet, if the more aggressive algorithm leads
to excessive retransmission during times of RTT fluctuation, then it could contribute to congestion
collapse, a major disaster.

Answering the question of how the RTO estimation might be reengineered is a complex
problem. The current timer uses coarse-grained (as much as 500 msec granularity) measurements
with some subtle adjustments to compensate for the granularity, as well as timing only one packet
per flight. A revised timer might take advantage of both higher-resolution clocks and the opportunity
to time multiple packets per flight. The first affects the adjustment factors used by the current
algorithm, and the second changes the constant used in the EWMA estimator. Because the issues
are complex, we leave this interesting question for future work.

In summary: assuring standard-conformant RTO calculations and deploying the SACK
option together eliminate virtually all of the avoidable redundant retransmissions. The few remain-
ing RRs are rare enough to not present, overall, any serious performance problems.

The last aspects of TCP retransmission we investigate are the patterns of packet loss dur-
ing fast recovery sequences. The TCP fast recovery mechanism, descrip8dii, works best
when only a single packet out of a flight is lost. When multiple packets in one flight are lost, the
fast recovery mechanism generally will not suffice to retransmit all of the missing packets, and the
TCP transfer will subsequently stall until a retransmission timeout, seriously diminishing through-
put [FF96, H096]. It was this problem that motivated the development of the SACK option, which
allows a TCP to efficiently recover from multiple losses.

A separate fast recovery problem occurs when the retransmitted packet is al$o lost.
When this happens, the TCP will again stall until a retransmission timeout expires. In some circum-
stances, and depending on the algorithm used by a TCP to act upon information it acquires by using
the SACK option, a TCP using SACK can avoid this timeout by determining that the retransmitted
packet was itself lost, and retransmitting it again.

While these problems have been recognized for quite a while, no hard data has been avail-
able in order to gauge the degree to which they actually present difficulties for Internet connections.
We analyzed tha/; and A, measurements to provide such data, as follows. For each packet retrans-
mitted using the fast recovery mechanism, we tallied whether the retransmitted packet was lost or
successfully arrived at the receiver, and also counted the number of outstanding (unacknowledged)
packets at the time of the retransmission that were lost.

In V1, out of 1,178 packets retransmitted using fast recovery, only 3.9% were themselves
lost. InN5, 15,444 packets were retransmitted using fast recovery (a significantly higher proportion
of all of the retransmissions than ik, due to the use of bigger windows ixt,, per§ 9.3). Of
these, only 4.5% were also lost. (These proportions are quite close to the unconditional loss rates
we examined ir§ 15.1, and much lower than the conditional loss rates examing#i5r8, indicating

10This problem also occurs for TCPs that implement “fast retransr§i€.2.7) but not fast recovery. However, for
simplicity, we will only use the term “fast recovery” in our discussion.

322

that congestion often drains on time scales of RTTs.) Thus, we conclude that the second concern
discussed above is, in practice, not an especially serious problem.

However, in both\; and A5, one third of the time more than one packet was lost in the
flight prior to a fast recovery, and about 15% of the time, more than two packets were lost. These
proportions are high enough to give solid support for refining the fast recovery mechanism (such
as by adding SACK, or the modifications discussed by Hoe [H096]) in order to better cope with
multiple packet losses within a single flight.

323

Chapter 16

Packet Delay

The final aspect of Internet packet dynamics we analyze is that of packet delay. Delay
variation is arguably the most complex element of network behavior to analyze—with loss, for
example, the packet either shows up at the receiver or it does not, while with delay there are many
shades of possibility and meaning in the time required for a packet to arrive. Likewise, delay
variation is potentially the richest source of information about the network, as one of the principle
elements contributing to delay is queueing within the network, which is of vital importance in
understanding how network capacities evolve over time.

Any accurate assessment of delay must first deal with the issue of clock accuracy, as all
delay measurement stems from clock measurements. Unless we tightly calibrate the clocks used
for delay measurement, or, equally important, recognize which clocks cannot be well calibrated and
discard the corresponding measurements, we cannot know that the subsequent analysis reflects true
network behavior and not spurious or misleading clock artifacts. It was these considerations that led
us to the lengthy efforts developed in Chapter 12.

We proceed as follows. 1§116.1 we briefly discuss round-trip time (RTT) variation in our
measurements, which plays a central role in transport protocol behavior. From the point of view of
network path analysis, however, a packet's one-way transit time (OTT) is more fundamental, partic-
ularly since RTT measurements conflate delays along the forward and reverse path. Consequently,
we devote the remainder of the chapter to OTT analysis; 16.2, we discuss OTT variation in
large-scale terms. We then §nl6.3 turn to packet timingompression-network events in which
a group of packets arrive at the receiver more closely spaced together than when they were sent.
Compression is a significant event because it introduces potentially misleading discrepancies be-
tween the timing of events at the sender and at the receiver, clouding the ability of one endpoint to
assess conditions perceived at the otheg. 16.4 we then tackle estimation of the amount of queue-
ing packets encounter during their transit. We attempt to determinnbescalesassociated with
queueing, but find wide variation. Finally, §116.5 we look at the relationship between queueing
delays andavailable bandwidth-the transfer rate the network can sustain for a connection, given
the network's current load.

324

16.1 RTT variation

16.1.1 Therole of RTTs

A transport connection's round-trip time (RTT) plays a central role in the connection's
behavior. First, a reliable transport protocol such as TCP needs to decide how long to wait for an
acknowledgement of data it has sent before retransmitting the data. There is a basic tension between
wanting to wait long enough to assure that the protocol does not retransmit unnecessarily, versus
not wanting to wait too long so as to unduly delay the connection when in fact retransmission is
needed. Our analysis of the Solaris 2.3/2.4 TCP14.5.10 highlights how unfortunate it can be to
err on the side of retransmitting too quickly. Network researchers have made considerable efforts in
studying how to set a connection's retransmission timeout (RTO), and early problems with TCP's
RTO computation identified by Zhang [Zh86] have for the most part been rectified by the work of
Karn and Partridge in eliminating ambiguous RTT measurements [KP87], and by that of Jacobson in
introducing exponentially-weighted moving averages to estimate both RTT and its variance [Ja88].

The second way in which a connection's RTT influences the connection's behavior con-
cerns the important notion dfandwidth-delay produgiBDP). A connection's BDP is the product
of p4, the available bandwidth, measured in bytes/sec, witihhe RTT, measured in seconds. The
result is a numbeB = p,4 - 7 of bytes indicating how much data the connection must have in flight
to fully utilize the available bandwidth. A simple way to understand this relationship is to consider
that, to fully utilize the available bandwidth, the connection must sentlytes every second, and
thus it must seng 4 - 7 bytes every round-trip time in order to achieve this goal. A round-trip time,
however, exactly corresponds to one cycle of send-and-receive feedback. This relationship, in turn,
is directly reflected in the connection\dndow (§ 9.2.2)—the current window controls how much
data the connection can have in flight at any given moment, and the window can only change due to
feedback for the currently in-flight packets after one RTT has elapsed, since no feedback can arrive
sooner than that. Thug3 gives the size of the window the connection must use to fully utilize a
bandwidth ofp 4.

We must, however, make a crucial distinction between these two different roles of RTT
in a connection's behavior. For the first role, regulating retransmission, the RTT of interest is how
long it might take for a packet to reach the receiver and the corresponding acknowledgement to
return to the sender—th@aximumRTT. For the second role, the RTT of interest is thimimum
time required for packets to traverse the network path to the receiver and for acks to return. The
larger values possibly observed for tlaetual amount of time required in general reflegieueing
along the network path. It doe®t improve a connection's throughput to use such a larger RTT
when computingB; it instead only adds to queueing along the path. This observation motivated the
development of TCP Vegas [BOP94], in which a significant increase in measured RTT is interpreted
as due to using too large a window and adding to queueing along the path, and thus calling for a
decrease in the window size to diminish the queueing.

16.1.2 RTT measurement considerations

When discussing RTT times, we must bear in mind that larger packets require larger
transmission times, proportional to the bottleneck bandwidth. The effect, naturally, is most apparent
on slow links. Accordingly, we need to make sure we do not confuse RTT variation due to packet

325

size with RTT variation due to queueing.

Another consideration is that, if we measure RTT as simply the difference in time be-
tween when a packet is sent and when a corresponding reply returns, then we will include in the
measurements “response delays” at the recelyv&d (6.4). For many purposes, doing so is appro-
priate, since the roles played by RTT above both concern quantifyinfpéabbackiime scale, and
this includes both the network's delays and those of the receiver. If, however, we wish to discuss
only the network's contribution to the feedback time scale, then we need to deduct the response
delay from the measured RTiEpanaly can do this since it knows how to pair packets with their
responses. However, we argue that the network's contribution to delay is best studied in terms of
one-way transit times (OTT), since doing so allows for the possibility of asymmetries along the two
directions of the network path, which we find §n16.2.3 are in fact common. So, for our RTT
analysis, we do not deduct response delays from the measurements, that we might study the entire
“closed loop.”

Finally, we note that RTT can be measured in two different ways: as the amount of time
elapsed between when a TCP sends a packet and when it receives an acknowledgement in response
to that packet, or as the time between when a TCP sends an acknowledgement and when it receives
the packet liberated by that acknowledgem@rity.3.1). As we might expect, overall we find these
two values to be very close to one another, except for variations due to “response dglHy§'4).

(They also can appear different if the clocks at the sender and receiver run at significantly different
rates, peg 12.7.7.) In the remainder of this section, we confine our analysis to RTTs measured at
the sender.

16.1.3 RTT extremes

Extremes of network behavior are always interesting to consider, since they sometimes
challenge the assumptions made by our mental models of how networks “really” work. For example,
some might find RTTs larger than a few hundred milliseconds exceedingly unlikely—where could
a packet spend all that time?—and thus best treated as pathological events rather than part of the
regime we must accommodate as “normal.” (We saw how dangerous this can be in Figure 11.9.)

Our data is inappropriate for exploring the full range of RTTs one finds in the Internet,
since the set of sites in our study is small, and we would expect RTT extremes to be governed for
the most part by geography. This is especially the case for network paths that include satellite links,
as these can add hundreds of milliseconds due to the propagation delays up to and back down from
the satellite.

However, while geography certainly dominates upper RTT extremes, it is not the only
factor. To our surprise, we found that one site in our stody, experiences extremely high delays
for many of its connections. 50% of its connections had a minimum RTT of over 1 sec.

oce is sited in the Netherlands. One striking connection came frastl in North
America. It never observed an RTT less than 4.4's@clother came fronanij , never experiencing
an RTT below 2.3 sec—yeinij is also in the Netherlands! #aceroute from unij to oce
reveals that the route stays wholly within the Netherlands. Furthermore, it shows that all of the delay
occurs at the hop between NLNet, the Netherlands Internet backbone, amgbthde itself. The

!Alas,wustl is a Solaris 2.4 site. Its RTO timer had great difficulty accommodating the large RTT, per Figure 11.9.
During the first minute of the connection, before the timer finally adapted, it sent 31 new data packets and 51 retransmis-
sions, all but one unnecessary. One packet was retransmitted seven times!

326

cause of this large delay, which we discussefl 12.7.8, remains unexplained, despite investigative
efforts by staff at theoce site. It highlights, however, how commonplace—and often correct—
assumptions concerning network behavior can be violated in unexpected ways.

Even after eliminatingpce, we still find some striking RTT extremes. Connections in-
volving austr2 experienced minimum RTTs as high as 1.85 sec (to a host in Califdrrifaje
removeaustr2 , then, curiously, the next highest extremes involved not international traffic but
connections with both endpoints in the United States. One, fvastl to adv, never saw an RTT
lower than 1.2 sec, even though a connection ten minutes earlier had a minimum of 156 msec, and
one 25 minutes later was back to the typical value of 47 msec. Unfortunately, we do not have a
traceroute measured right at the time of the anomalous connection. Ones fifteen minutes earlier
and 80 minutes later show no anomalies and both report an RTT of about 44 msec.

The most extreme RTT connection M; involved notkorea , for which we might ex-
pect high RTTs (and, indeed, it had plenty), budo andbsdi , in Virginia and Colorado. This
connection had a minimum RTT of 1.4 sec and a median value of 2.1 sec. Whie3we gave
an example of a circuitous route involvirgsdi , traceroute reported its RTT as only about
160 msec, much less than observed by this connection; so, we do not have an explanation for what
took the packets so long.

So far in this section we have focussed on itieimumRTT observed during a connec-
tion, which is important for correctly determining, the bandwidth-delay product. For computing
RTO, the connection's retransmission timeout, we instead are interestedriaxtheunRTT, which
we now look at briefly. (As discussed §nl5.6, we do not undertake a detailed analysis of how we
might modify TCP's RTO algorithms to increase their performance, as this is a complex problem.)

We would expect that RTT maxima can rise very high for connections with slow bottle-
neck links and many available buffers at the bottleneck. In such cases, the sending TCP will not
receive a packet loss signal until it has exhausted the available buffer. For a slow link, a significant
amount of buffer can translate into a huge delay as packets finally wend their way through the queue.

The largest apparent RTT we ever observed was 23.8 sec, for a SYN packet and its accom-
panying SYN-ack. This was not, however, a true RTT: the receiving SunOS 4.1 TCP generating the
SYN-ack was retransmitting it in an attempt to establish the connection, and its timer backed off first
to 6 sec and then to 24 sec. At the same time, the sender, also a SunOS 4.1 TCP, was backing off its
retransmission timer for the original SYN. The two timers were slightly out of phase. Consequently,
just before the sender reached the 24 sec retransmission, a SYN-ack arrived from the receiver, lead-
ing to the huge apparent RTT. We mention this anomaly because some modifications to TCP such
as Hoe's in [H096] suggest using the RTT timing for the SYN packet as a quick estimate of the
path's true RTT. Such schemes must take care not to get fooled by SYN-ack retransmissions. In this
particular case, use of Karn's algorithm would have discarded the RTT measurement as ambiguous
[KP87]. However, had the retransmitted SYN-ack arrived just befordisteetransmission of the
SYN (i.e., just before the 6 sec timer expired), then even Karn's algorithm would have accepted the
measurement, since the algorithm is predicated upon the assumption that acks are not retransmitted.
Finally, we note that Hoe's scheme uses the RTT to estiBatee bandwidth-delay product. Using
a value of 6 sec instead of the correct value of 220 msec would grossly overesBiriataling to
the connection overestimating the window it should use. Hoe's scheme, however, could be easily
modified to use a more robust initial RTT estimate, since it does not make any decisions based on

2austr2 |, alas, is also a Solaris 2.4 site.

327

B until it has received a flight of 3 closely spaced acks. At that point, there should have been ample
opportunity to estimate RTT better.

Putting aside anomalies due to SYN-ack retransmissions, we find that the largest true RTT
in our study was 15.1 sec, for a connection involvowg . We discussed abowge 's peculiarly
large RTTs, and i§ 12.7.8 the puzzling interplay between the transit times of packets and acks in
its connections, so we will not further analyaee -connection RTTs here. If we eliminatee,
then we find the next largest RTT comes from the 12-second packet reordering event discussed in
§ 13.6. Putting aside this pathology, we finally find a “normal” extreme RTT, not due to any unusual
network dynamics, of 7.9 sec (involving a connectionidd , which has a low-speed Internet
link with a lot of buffer space). A few others range above 6 sec, including one from a high-speed
connection betweesintef2 in Norway andaustr in Australia.

16.1.4 RTT variation during a connection

Another way to characterize RTT extremes is in terms of the variation we observe in RTT
over the course of a connection. Our interest lies in whether we can develop a “rule of thumb”
such as “it is rare to observe a maximum RTT more than double the minimum RTT.” This sort
of empirical finding would aid in considering how transport protocols can best adapt to network
conditions.

We first note that connections with slow bottlenecks can often experience great swings in
RTT as their own packets pile up at the queue for the bottlerfgtg.(.3). While such connections
are an important consideration for general-purpose transport protocols, for our purposes we elimi-
nate any connection with an estimaieg less than 100 Kbyte/sec, so that we might focus on RTT
variations not heavily dominated by the connection's own behavior. We also eliminate connections
betweersintefl andsintef2 , as they are sited very close together and thus much more easily
exhibit large relative swings in RTT, even though in absolute terms the swings are quité small.

After these eliminations, in/; we are left with 12,486 connections. Figure 16.1 shows the
distribution of the ratio between their maximum RTT and minimum RTT, log-scaled. We compute
RTTs from the TCP sender's perspective, using the time required to receive an acknowledgement
for a full-sized packet.

The distribution shows great variation, with a median ratio of 2.2:1 (mean of 3:1), but the
upper 5% have ratios of 6.7:1 and higher. The entire upper 50% fits closely to a Pareto distribution
with a = 2.1, shown with a log-log complementary distribution plot in Figure 16.2 (we discussed
these plots ir§ 15.3). A value ofx > 2 means that the ratio has finite variance, and this is probably
due to the fact that the maximum RTT is bounded by the amount of buffer space available along the
network path. However, the great degree of variation means that, without additional information,
we cannot accurately predict the relationship between the minimum and maximum RTTs.

The ratios exhibit one other striking distribution. If we instead consider the ratio of the
MinimumRTT to themaximum then the corresponding distribution is very nearly normal. Fig-
ure 16.3 shows this distribution, with a normal distribution fitted to the mean and variance shown by
a dotted line. Figure 16.4 shows a Q-Q plot of the same fitted normal, with the line corresponding
to slope 1 and offset 0. Clearly, the agreement is quite good except in the tails. Unfortunately, an

3The pairlbl andlbli do not exhibit this problem becaulidi 's low-bandwidth ISDN link leads to fairly large
RTTs between the two sites.

328

10

08
\

06
\

04

02
\

T T T T
i 5 10 50 100

Ratio of Max RTT to Min RTT

Figure 16.1: Distribution of the ratio between a connection's maximum RTT to minimum RTT

=
S
S
t=1
—
[=3
S
S
—
=
= =
m S
N =1]
=< (=1
a”
=1
=
=
b1
=
—
P=]
S
b1
=

T T T T
5 10 50 100

Ratio of Max RTT to Min RTT

Figure 16.2: Log-log complementary distribution plot of max-min RTT ratio

329

10

04

02
\

00
\

T T T T T
o.0 o.2 o.4a 0.6 o.8

Ratio of Min RTT to Max RTT

Figure 16.3: Distribution of inverse ratio (minimum RTT to maximum RTT)

o _|
=
[D
= =
o
b=}
=
=
o = —
= =
=
o~ _|
(=]
=]
T T T T T T 1
-0.2 O.0 0.2 o.4 o.6 o.8 1.0

Quantiles of Fitted Normal

Figure 16.4: Q-Q plot of ratio of minimum RTT to maximum RTg-#éxis) versus fitted normal
distribution :-axis)

330

10

06

04

02
\

T T T T T
O0.0001 0.0010 0.0100 O.1000 1.0000

Interquartile RTT Range (sec)

Figure 16.5: Distribution of RTT interquartile range

interpretation for this fit (or for the corresponding Pareto fit) eludes us. As with the elusive expo-
nential fit to data packet loss ratesl5.2), we mention the fit here in hopes that it might stimulate
further research.

We finish with a look at less extreme RTT variation: the interquartile range (75th per-
centile minus 25th percentile), IQR. This range gives a much more robust statistic in the sense of
being insensitive to extreme values. We are particularly interested in IQR as an aid in estimating the
maximum RTT, as this has immediate applications for computing retransmission timeouts (RTOS).

Figure 16.5 shows the distribution of IQR, and Figure 16.6 shows the distribution if we
normalize to the minimum RTT. Both plots use a logarithmic scale orcthgis. We see a wide
range of variation, with the lower and upper 5% tails of the absolute range spanning 6 msec up to
106 msec, and, with normalization, the same tails range from a factor of 0.046 up to a factor of 1.23.

The interquartile range is in many ways analogous to a robust version of standard devi-
ation [Ri95]. Consequently, we interpret the wide range of variation as supporting the argument
that RTT estimation (for purposes of computing timeouts, for example) must include a notion of
variation in addition to estimating the mean or minimum value. Jacobson's estimator does exactly
this for TCP [Ja88].

In Figure 16.2 we found that maximum RTTs often are much larger than minimum RTTs.
We might wonder, though, whether this discrepancy can be reduced if expressed in terms of RTT
variation. For example, it could be the case that the maximum is generally less thraas IQR
above the minimum. Unfortunately, this does not appear to be the case. Figure 16.7 shows the
distribution of the difference between the maximum and minimum RTT, normalized by dividing by
IQR. Again, thez-axis is scaled logarithmically, indicating a wide range of variation. Furthermore,
normalization has diminished but not eliminated the Pareto distribution for the upper tail. Instead
of occupying a full 50% of the distribution, it now occupies the upper 20%, with 1.84, within
the domain of infinite variance. Finally, these results do not change appreciably if we look at the

331

10

08
\

04

00
\

T T T
o.1 1.0 10.0

Normalized Interquartile RTT Range (sec)

Figure 16.6: Distribution of RTT interquartile range, normalized to minimum RTT

10

08
\

06

04

00
\

T T T T T T
5 10 50 100 500

R

Normalized Difference of Max RTT and Min RTT

Figure 16.7: Distribution of difference between maximum RTT and minimum RTT, normalized by
interquartile range

332

normalized difference between the maximum RTT andntieelianRTT, rather than the minimum
RTT.

From Figure 16.7 it appears that the combination of minimum RTT and interquartile range
is inadequate for estimating maximum RTT. TCP RTO estimation is based on similar information,
i.e., the estimated RTT mean and standard deviation. Yet, we should not conclude from this that
TCP's estimation algorithm cannot work, because the algorithdatesits estimates as the con-
nection progresses, using exponentially-weighted moving averages to incorporate new information.
Consequently, it has opportunities adapt while the preceding analysis $atic Again, as dis-
cussed ir§ 15.6, we do not undertake here a detailed analysis of how well TCP's RTT estimation
algorithm performs, as doing so involves a number of subtle issues.

16.2 OTT variation

For the remainder of this chapter, we focus on one-way transit times (OTTs). Any ac-
curate assessment of delay must first deal with the issue of clock accuracy, from which all delay
measurement stems. This problem is particularly pronounced when measuring OTTs since doing
so involves comparing measurements from two separate clocks. It was primarily to this end that
we undertook the efforts described in Chapter 12 attempting to assure that we can soundly gauge
the trustworthiness of the packet timestamps. The subsequent analysis we discuss was always done
after first using these algorithms to reject or adjust traces with clock errors.

OTT variation was previously analyzed by Claffy and colleagues in a study of four Internet
paths [CPB93a]. They found that mean OTTs are oftetwell approximated by dividing RTTs in
half, and that variations in the paths' OTTs are often asymmetric. From our data we cannot confirm
their first finding, but we discuss the asymmetry finding shortly.

16.2.1 Why we do not analyze OTT extremes

We do not investigate extreme OTT variation, as we did for RTTS 116.1.3, for two
reasons. First, most of the RTT extremes are due to network delays, and, in particular, extreme
OTTs, so the OTT results are very similar to the RTT resul®econd, our absolute OTT values
were derived using the approximation that we could rectify clocks in our study by dividing RTTs in
half (Egn 12.5 in§ 12.5.1). We know from the Claffy et al. study, and from our earlier results on
routing asymmetries;(8), that this approximation is often erroneous, and we noted in the derivation
that consequently we must refrain from analyzing the absolute OTT values themselves.

16.2.2 Range of OTT variation

Our measurements do, however, let us accurately agaéssionsin OTT. In doing so,
we will always distinguish between ack OTTs and data packet OTTs, as we expect the latter to
show significantly more variation due to their queueing load. Figure 16.8 shows the distributions
of IQR and max-min variations in OTTs fgv, data packets and acks. Again, we have limited our

“This would not have been the case if RTT extremes were due to delays by the TCP endpoint, or combined increases
in delay along the two directions of the network path. But neither of these is the dominant effect.

333

10

— Ack IOR

——————— Data IOR

— — Ack Max-Min
.......... Data Max-Min

08
\

06

04

00
\

O0.0001 0.0010 0.0100 O.1000 1.0000

OTT Variation (sec)

Figure 16.8: Distribution of interquartile and max-min OTT variation

analysis to connections with a bottleneck bandwidth exceeding 100 Kbyte/sec, and have removed
those betweenintefl ~ andsintef2

The z-axis reflects logarithmic scaling; so, as with many aspects of RTT variation, we
see a wide range of variation. For example, for data packets the median ratio between the max-min
variation and IQR is 3.5:1, and the upper 5% tail exceeds 13:1. For acks, the numbers are higher,
the median being 5:1 and the upper 5% tail at 29:1. The difference lies in data packets having a
larger IQR to begin with, due to OTT variation caused by the connection's own queueing; for acks,
IQR is fairly tame, so the same absolute OTT extreme will be relatively larger when compared to
the IQR.

As with normalized RTT variation (Figure 16.7), much of the distribution of the ratio
between maximum OTT variation and IQR fits well to a Pareto distribution, for both data packets
and acks. Here, the fit is to the entire upper 50% of the distribution, and'thare well below 2,
reflecting sometimes enormous variation.

16.2.3 Path symmetry of OTT variation

We now turn to the relationship between OTT variation on the forward path and that on
the reverse path. Fa¥s,, we find that the coefficient of correlation, between the max-min OTT
variations of the data packets and the corresponding acks is about 0.1—quite weak, though not
negligible. For IQR, it drops to 0.06, and for the max-min variation divided by IQR, it drops still
further, to 0.02.

However, these statistics do not tell the whole story. As noted above, the forward path is
often perturbed by the queueing load of the connection's data packets. We can instead look at OTT
variation for only unloaded packets (where a packet is considered unloaded if it does not satisfy
Egn 15.5). Such packets dibt queue behind their predecessors, unless cross traffic delayed their

334

Ak OTTIOR
00100 01000 L0000
| | |

00020
\

00001
\

O0.0001 O0.0010 0.0100 0.1000 1.0000

Unloaded Data Packet OTT IOR

Figure 16.9: Scatter plot of interquartile ranges of unloaded data packet OTT variatianss)
versus acksy-axis)

predecessors. If we analyze only unloaded packets on the forward path),libemeen the IQRs of

the forward and reverse variations rises to 0.18, considerably more substafaiahe logarithms

of the IQRs is 0.55, indicating that the order of magnitude of the variation along one path is a
good predictor of the order of magnitude of the variation encountered along the dtlygre 16.9

shows a scatter plot of the forward path IQR variation for unloaded data packets, versus the ack IQR
variation. Note that both axes are log-scaled.

The correlations appear to indicate that delay variations along both directions of an Inter-
net path are indeed coupled, albeit weakly. However, we must investigate a bit further. It could be
the case that onlgomelnternet paths have coupled variations, while most do not. In particular, we
found in§ 15.1 that European sites have higher loss rates than those in the United States, and that the
paths from Europe to the U.S., and, particularly, from the U.S. to Europe, have the highest loss rates.
So it could easily be that traffic between the U.S. and Europe, which traverses in each direction the
highly congested trans-Atlantic links, experiences similar delay variations in both directions; while
other traffic does not.

To test this effect, we repeated the above analysis with only tRes®nnections between
two sites in the U.S. We found that the correlations were only slightly weaker, indicating that the
effect has only a mild influence.

In summary: if we know the OTT variation along one direction of a path, then we can
fairly well predict the order of magnitude of the variation along the other direction. Predicting the
variation to a finer degree is difficult. However, if we are interested not in the intrinsic delays along
the path, but the delays actually experienced by a TCP connection, which include variations induced
by the connection's load (i.e., its packets queueing behind their predecessors), then prediction is very

®If we normalize the IQRs by the round-trip times, the coefficients of correlation do not change much (rising to 0.22
and falling to 0.50, respectively).

335

difficult; the two directions are nearly uncorrelated.

16.2.4 Relationship between loss rate and OTT variation

It is natural to expect that delay variation might be closely correlated with packet loss,
because, whenever packets are delayed in the network, they must be stored somewhere, and that
storage will have a finite capacity. Thus, if delay climbs high enough, loss ensues as buffers become
exhausted. However, this relationship can be obscured if routers have enough buffers to absorb
considerable delay variations. It can also be obscured because delay variation derives &onda the
to-endconcatenation of variations at each hop along a path, while loss is presumed to be governed
by one or perhaps a few overloaded elements along the path. Hence, many elements will contribute
to delay variation but not to loss.

To investigate the relationship between delay variation and loss, we look at how the IQR
of ack OTT variation correlates with the loss rate experienced by the acks. (We confine our analysis
to acks to avoid the complications introduced by higher data packet loss rates due to the load they
present to the forward path, pgd5.2.)

Overall, we findy = 0.22, indicating a definite, but not overly strong, linkage. However,
much of the linkage comes from low OTT variation being coupled with experienointpss a
situation we referred to if 15.1 as “quiescence.” If we confine our analysis to those connections
experiencing at least one loss (“busy”), thedrops to 0.12. Figure 16.10 shows the corresponding
scatter plot. The plot shows some apparent structure: the region corresponding to a very low loss rate
(on they-axis) appears separate from the rest of the plot. However, this difference is a granularity
artifact. The log scale highlights the difference between losing a single ack and losing two ack,
since the latter corresponds to twice the ack loss rate of the former. Setting aside this artifact, we
conclude that there is no strong relationship between OTT variation and loss rate.

If we log-transform both the IQR and the loss rate, therlimbs to 0.35, indicating that
the order of magnitude of the IQR is a fairly good predictor of the order of magnitude of the loss rate,
but nothing finer. These statistics are virtually unchanged if we confine our analysis to connections
between U.S. sites, so the effect is not being skewed by the trans-Atlantic or European sites, which
differ in their loss patternsg(15.1).

Finally, if we normalize the delay variation IQR by the connection's round-trip time, then
correlationdecreasesand, for “busy” connections, the two become uncorrelated, ywith—0.02.

We conclude that the linkage between delay variation and loss is weak, though not negli-
gible. Unfortunately, from our data it is difficult to discern which of the two effects mentioned at the
beginning of this section weakens the linkage: routers having large amounts of buffer space, or the
end-to-end chain accruing a number of small variations into a single, considerably larger variation.

16.2.5 Evolution of OTT variation

We now look briefly at how OTT variation evolves with time. To do so, we follow the
methodology used if115.5 to assess how loss rates evolve with time. For each connetisiween
the same source and destination, we compute the Adir, |Ao.|), whereAT, is the time between
that connection and the next successful connectigrwe observed along that path; ajfo,| is
the absolute value of the difference between the IQRs of the ack OTT variationarfde’, where
each IQR is normalized by the connection's round-trip time.

336

o
o
3 -
o
o
S,

q_) H

EO

4

7))

2 3

a9

xO

(&)

<
o
—
g -
o
Ko}
o
S 4
o

\ \ \ \
0.001 0.010 0.100 1.000

Interquartile OTT Variation (sec)

Figure 16.10: Scatter plot of ack loss rate versus interquartile ack OTT variatiokf; fmwnnections
that lost at least one ack

337

o
— o
= —_ o
= =3 — H
= =] =
= -
< S S e
E -\"h-‘ S
o "-'
= N
= ;
g 8 7
[3=]
= Y
=2 N
= w W
D
D
g ﬁ!l
D
[==] Lo
a [==3 —
8 L) ‘
<
o lﬂl \
=
[a=Y %
k=1 B
[<B)
=1
=2 A
|
= L)
T T T T T
10"2 10"3 104 1075 1076

Interval Between Connections (sec)

Figure 16.11: Evolution of how the interguartile range of normalized ack OTT variation differs with
time

After constructing these pairs, we sort them A, and then use an exponentially-
weighted moving average (EWMA) withk = 0.01 to smooth howAo,| evolves as a function
of AT.. We first computed the EWMA with an initial value of 0, but inspecting the resulting plot
indicated that, even for very smalT7,'s, |Ao.| was around 0.04, so we used 0.04 for the initial
value in our final computation.

Figure 16.11 shows how the smoothéxb,| evolves with time. The horizontal line cor-
responds to the median normalized ack OTT interquartile range for a single connection: a bit over
5% of the RTT. Note that thg-axis ranges from only 0.04 to 0.07. Thus, the change in normalized
variation slowly ranges from a bit below the median variation to a bit above, across a wide range of
time scales. Figure 16.12 shows the same plot except for “raw” ack OTT variations, that is, the IQR
of the variations without normalizing by dividing by the connection's round-trip time. Again, we
see a rapid rise followed by a slowly-increasing regime between 6-9 msec (keep in mind that this
plot is heavily averaged; some paths have IQR variations far higher than 10 msec). The horizontal
line corresponds to the median IQR variation for a single connection—just under 6 msec—which is
quickly exceeded.

Since even the minimurmAo,| is not a great deal below the median normalized OTT
variation, and the raw IQR differences rapidly exceed the median raw OTT variation, we conclude
that a connection's ack OTT variatiomista very good predictor of future variation. This compares
with Figure 15.18, which shows that a connection's loss rate is not a very good predictor of its
future loss rate, either. Both figures argue that caching detailed network path information will prove
beneficial only in the near-term, meaning on the order of a few minutes into the future.

338

e
~
= e
= AI"/
= < 7 il
kS R
—
5 W
— M
=2 o -
)
S
P ’
8 !
D
= 1
= -
==]
a
s
2
o
D
=2
(o)
s o~ 7
[<5)
= P
% Id
g /
=1 — .-
T T T T T
102 103 10na 1075 1076

Interval Between Connections (sec)

Figure 16.12: Evolution of how the interquartile range of raw ack OTT variation differs with time

16.2.6 Removing load from OTTs

In § 15.2 we developed the notion of “loaded” data packets, namely those which would
have to queue behind their predecessors at the bottleneck due to the spacing between the time of
their transmission and that of their predecessors. In this section we look at the subtle problem of
removing the packet's load, as given by Egns 15.3 and 15.4. The main problem we face in doing so
is that the estimated bottleneck bandwidth given by Eqn 14.12 in Chapteinkkét In particular,
our methodology produces an errangeassociated with the estimate.

Depending on which value within this range we use, Eqns 15.3 and 15.4 (or, more ac-
curately, their counterparts for the particular estimate we use) can in some circumstances produce
considerably different values for a packet's load. Thus, if we subtract that load from the packet's
OTT we can easily under- or over-estimate the packet's “true” OTT, meaning its OTT if it did not
have to queue behind its predecessors at the bottleneck.

We can partially address this uncertainty using a self-consistency check for the estimated
bottleneck bandwidth. In particular, we can test the soundness of the central estimate of the bottle-
neck bandwidthp g, as follows. We first compute for each connectitdty, the difference between
the minimum and maximum OTTs for the connection's loaded data packets. (The difference is
presumably due to queueing, hence the notafigh) We then subtract out each packet's load (as
given by Eqns 15.3 and 15.4 when using rather tharp, per Eqn 14.12), and computeQ), the
residual difference between the minimum and maximum OT@.is thus the counterpart thQ
for the loaded packet OTTs, after adjusting for the connection's own contribution to the delays. We
would expect to find

AQ < AQ,

since a connection's extra, self-induced delay should only increase the OTT extremes it experienced.

339

om

50

40

kil
\

10

g = -~

= : g
- - -
: - _-E
- S e i o= = -
= R R ER e E =l

[E=)
=] =] %%\:
—_
a.

P
0
N
N
N

o.2 o.4 0.6 o.8

Time (sec)

Figure 16.13: OTT plot revealing “broken” bottleneck estimate: one that is too low. Solid squares
mark unadjusted OTTs, hollow squares mark OTTs adjusted to remove load based on bottleneck

estimate.

If, however, we find that _
AQ > 1.1-AQ, (16.1)

and if the difference between the two is also larger than twice the joint clock resoliio(t 12.3)

(to assure that it is not just due to measurement noise), then we consider the bandwidth ggtimate
asbroken likely wrong, since using it to subtract out queueing effects actually increases the range
of OTTs we observe.

This check is not foolproof. It can generate both false positives and false negatives. For
example, it may be that the packet with the greatest OTT had little load to subtract out, while that
with the least OTT happened to have more load, leading to an erroneous determinatjon ithat
broken. Using a factor of 1.1 in Egn 16.1 helps avoid the possibility of these sorts of false positives,
by only flagging aoi estimate as broken if using it leads to a significant increase in adjusted delay.

The check might also fail, generating a false negativesifis indeed quite inaccurate,
but subtracting out inaccurate loads from the OTTs still happens to reduce their range. We find that
these false negatives are much more likely to occugifs too high, since an overestimate leads to
relatively little (but still some) load being subtractedp}f is an underestimate, then excessive load
is removed, which tends to lead to some packets having grossly under-adjusted OTTs, widening

AQ.

The test is worth making because it detects two situations of interest. First, as noted
above, ifpp is too low, then the calculated packet loads will be too high, and subtracting them out
will often expand the range. Figure 16.13 shows an instance of this occurring. The solid squares
show the OTTs of the connection's data packets, and the hollow squares correspond to the OTTs
adjusted for the (erroneously too small) bottleneck bandwidth. The trend towards progressively
lower adjusted OTTs indicates that the low estimate leads to removing more and more spurious load

340

-
-
- -
[
B " a=, "F
L1 - = -
=== o - —
- - ot - T,
I =i = I i e
= — wmroore B5o e = __h
mem]
—_— :I:I
=
8 [=
= 2 7
= =
IS o
)
S
— -
=1 =
)
=
P m
2 -
~ (mzm]
=
=
)
T T T T
o 5 10 15

Time (sec)

Figure 16.14: Another OTT plot revealing a “broken” bottleneck estimate: one that failed to detect
a change in the bottleneck rate. Solid squares mark unadjusted OTTs, hollow squares mark OTTs
adjusted to remove load based on bottleneck estimate.

as the connection transmits more packets that are erroneously judged to queue behind one another.

We particularly want to detect the caseogf too low, because later in this chapter we will
use load computations as a basis for determining the degree of available bandwidth in the network
(§ 16.5), and we want these computations based on solid estimates of packet loads. The other case
that the test can detect is the presence of an undiagnosed bottleneck changeorfesponds to
the slower of the two bottleneck rates, thepanaly will compute excessive loads for the packets
transmitted during the era of the faster bottleneck rate. Figure 16.14 illustrates this happening. The
estimated g is fairly accurate for most of the trace (a bit too high, as indicated by the slowly rising
adjusted OTTs—not enough load is being removed). Howevét,-atl2 sec, when the bottleneck
rate doubles, the estimate becomes much too low, and leads to removing too muth load.

Table XVIIl in § 14.7 summarizes how often this check detected a broken bottleneck rate
estimate inV; andAs. It was not very often, which contributes to our faith in the PBM algorithm
for detecting bottleneck rate§ (4.6), but it did detect some problems, indicating it is worth the
effort to perform the test.

As the lefthand portion of Figure 16.14 indicates, a slight mismatchgircan lead to
definite, spurious trends in the adjusted OTTs. Such trends are apparent even when the estimated
pp IS quite good. Figure 16.15 shows an OTT plot in which the bottleneck estimate is clearly
guite good, as it accounts for virtually all of the variation in the OTTs (the adjusted times, shown
with hollow squares, are nearly constant). Yet, if we zoom in on just the adjusted OTTs, shown
in Figure 16.16, we see a clear downward trend in the adjusted OTTs. The trend corresponds to
500 usec over about 300 msec, or about 1 part in 600. Consequently, we see that, even though our

SPBM does not detect this bottleneck change because it comes so close to the end of the trace.

341

[
2
=
-
F
[
= —
S
=
D
3
=
=
=
o
-
=2 —
o
-;'
-
- -
> | m ===£5 O
T T
0.2 o.4 0.6

Time (sec)

Figure 16.15: OTT plot showing virtually all OTT variation due to connection's own queueing load

25

20

OTT (mse)
10

05

00

05

0.2 o.4 0.6

Time (sec)

Figure 16.16: Enlargement of adjusted OTTs from previous figure

342

2000
\

pooo0o

1500

OTT (msec)
1000
0oo
0o
pooo0o00
T wmen

500
\
popooo
0

0mo

Time (sec)

Figure 16.17: Ack OTT plot showing 10-sec periodicities

estimatedp is quite good, it is not sufficiently exact to avoid introducing an artificial trend in the
adjusted OTTs.

Because of this problem, we abandoned our original goal of trying to treat loaded packets
the same as unloaded packets by adjusting their OTTs, as doing so requires extremely precise es-

timation of p. If the estimate is off, we introduce systematic errors that could easily be confused
with genuine network effects.

16.2.7 Periodicity in OTTs

In § 15.3 we discussed our efforts at testing whether packet loss patterns exhibit period-
icity. We might expect them to do so due to synchronization effects known to sometimes plague
Internet routers, resulting in periodic packet forwarding outages. These lead to lengthy delays and
perhaps loss, if buffers become exhausted during the outage [FJ94]. In this section we briefly discuss
evidence in our data for periodic variations in packet delays.

In attempting to assess delay periodicities, we run into the same problems as when assess-
ing loss periodicities: our data unfortunately are not suited for a proper investigation of the question.

§ 15.3 outlines the reasons for this and we will not repeat them here. We did, however, attempt the
same analysis as {n15.3: we selected connections between the North American sites exhibiting the
highest degree of clock synchronization, singled out the busiest day among them, and analyzed their
connections to determine the time at which the connection’'s largest delay occurred. We then studied
plots of the peak delay time versus the same time modulo different possible periodicity intervals.
This effort did not find any conclusive evidence of global periodicities.

However, phenomenological inspection of other traces shows that delay periodicities def-
initely do occur. Figure 16.17 shows a plot of ack OTT times for a connection mmix to
ucl . The distance between the first OTT peak at about 1000 msec and the second such peak (we

343

are ignoring the striking, 2000 msec peak) is 10.07 sec, while that between the second peak and the
third such peak (at about 1200 msec) is 19.92 sec. Furthermore, twevacksent about 10 sec
after the second peak, but both were lost (hence, they do not appear on the plot). Thus, this trace
exhibits strong evidence of a 10-second periodicity. We find a number of other traces wath
the same spacing between delay peaks, suggesting that this is an ongoing phenomenon.

We observed other traces with apparent 5-second and 30-second periodicities in delay
spikes, involving different hosts, indicating that the phenomenon is not confined ta@nlyOn
the other hand, we did not find strong evidence above of global periodic delay variation among the
highly-synchronized North American sites. Thus, we conclude that the phenomenon is definitely
present, but, if widespread, at least not globally synchronized.

16.3 Timing compression

Packet timingcompressioroccurs when a flight of packets are sent over an inteiVa)
but arrive at the receiver over an intervsll’., with AT, < AT;. To first order, compression should
not occur, since the main mechanism at work in the network for altering the spacing between packets
is queueing, which in generaxpandsflights of packets, as later ones have to wait behind the
transmission of earlier one§ 4.2). However, compression can occur if a flight of packets is at
some pointheld upby the network, such that transmission of the first packet stalls and the later
packets have time to catch up.

Zhang et al. predicted from theory and simulation that acks could be compressed (“ack
compression”) if a flight arrived at a busy router (one with a significant queue), and if no intervening
packets arrived between the different acks [ZSC91]. As the acks queue behind one another, the
potentially large spacing between them due to self-clockin®.Z2.5) and ack-every-other policies
(§ 11.6) would then be lost when the acks were later transmitted back-to-back upon reaching the
front of the queue.

This situation corresponds taodaaining queue: a router that was busy when the first ack
arrived (and hence could not service it before the others arrived), and yet new arrivals from other
traffic sources are sporadic. If instead new arrivals were steady, then they would occupy slots in the
gqueue between the acks in the flight, and their spacing would be (roughly) preserved, rather than
compressed.

Mogul subsequently analyzed a trace of Internet traffic and confirmed (among other phe-
nomena) the presence of ack compression [M092]. His definition of ack compression is somewhat
complex, involving significant deviations from the median inter-ack spacing, since he had to in-
fer endpoint behavior from an observation point inside the network (a vantage point problem, per
§ 10.4). But he clearly detected the presence of ack compression. He found that compression was
correlated with packet loss but considerably more rare. His study was limited, however, to a single
5-hour traffic trace.

Since we can readily compute from our data bath; and AT for any flight of packets,
we can use a simpler definition of compression than employed by Mogul. In this section we char-
acterize three different types of compression: ack compresgih6.8.1), data packet compression
(§ 16.3.2), and receiver compressignl@.3.3). We show that all three types of compression occur
within the Internet, though each is limited in its effects.

344

46000
\

44000
\

42000
\

Sequence #

40000
\

38000
\

36000
\

Figure 16.18: Paired sequence plot showing ack compression

16.3.1 Ack compression

If ack compression is frequent, it presents two problems. First, as acks arrive they advance
TCP's sliding window and “clock out” new data packets at the rate reflected by their a§9val%).
For compressed acks, this means that the data packets dastertthan previously, which can
result in network stress. Second, sender-based measurement technigues such §s18BIPPan
misinterpret compressed acks as reflecting greater bandwidth than truly available. On the other
hand, some researchers argue that occasional ack compression is beneficial since it provides an
opportunity for self-clocking to discover newly-available bandwidth.

To detect ack compression, for each group of at least 3 acks we compute:

AT, + C,
&= AT, C.’ (16.2)
whereC, andC are the receiver and sender's clock resolutions. Using Eqn 16.2 resfibeing
a conservative estimate, since by addifgn the numerator but subtractirdg, in the denominator,
we tend to inflate.

We consider a group of acks compressed4f 0.75. We term such a group@mpression

event In A7, 50% of the connections experienced at least one compression event,/dpd60%
did. In both, the mean number of events per connection was around 2, and 1% of the connections
experienced 15 or more. Almost all compression events are small, however, with only 5% spanning
more than five acks. Figure 16.18 shows a paired sequence plot of one of the larger events, in
which eleven acks were compressed. The solid squares indicate when the data packets were sent,
and the arrows stemming from them point to their arrival times at the receiver. The corresponding
acks (offset downward a bit, for legibility) are shown with hollow squares. The arrows from these

squares all stop at virtually the same point in tifie= 1.51, indicating that, even though the acks

345

were sent over an interval of 77 msec, they arrived all together, aboytségOapart—compressed
by a factor of 100.

We also note that a significant minority (10—-25%) of the compression events occurred
for dup acks. These are sent with less spacing between them than regular acks sent by ack-every-
other policies, so it takes less timing perturbation to compress them. Compressed dup acks are only
slightly more likely to occur in a large burst than compressed regular acksy,loverall 5.1% of
the compression events consisted of six or more acks: 4.8% of the regular-ack compression events,
and 6.0

Finally, we classify compression events as “major” if the compression results in the acks
arriving at the data sender with a spacing less than that corresponding to the bottleneck bandwidth;
otherwise, we term the event “minor.” Major events are significant because they reflect a breakdown
in self-clocking—namely, the sender will transmit in response to them at a rate exceeding the bot-
tleneck bandwidth—and they also make sender-based bottleneck estimation difficult, since, unless
detected, they will lead to overestimates.

Let pg be the upper bound on the estimated bottleneck bandwidth, per Eqn 14.12. If a
flight of & packets arrives during an intenAlT;., and they together acknowledge a totabdiytes,
then we consider the flight to reflect a major compression event if;

b
AT,

> pg.

We apply this test to each ack compression event detectéchlyaly , except we omit the final

ack of the event. The reason for this omission is thganaly finds compression events by con-
structing groups of acks for which< 0.75, and sometimes the final ack of the group is relatively
uncompressed compared to the others (i.e., it rafsédm a small value to a value ne@r75).
Consequently, we omit this final ack to avoid skewing the assessment of “major” events by our
methodology for grouping acks into events.

We find that in both\; and N>, about 75% of the compression events are major. This
figure only slightly diminishes if we confine our analysis to compressed “regular” acks, eliminating
compressed dup acks.

Of the major compression events, 80% reflect acks arriving at a rate corresponding to more
than twicepg. Thus, when compression occurs, it is usually large enough to result in a significant
overestimate of the bottleneck bandwidth.

From these findings, we conclude that ack compression definitely occurs in the Internet,
but rarely enough as to not pose a significant problem by corrupting self-clocking or causing ex-
cessive burstiness. That it occurs for more than half the connections, however, and that most of
these are “major,” indicates that a sender-based measurement schestesnploy filtering to re-
move extreme values from its bottleneck estimates, as otherwise it is very likely to overestimate the
bottleneck bandwidth, with perhaps disastrous consequences.

16.3.2 Data packet timing compression

For data packet timing compression, our concerns are different. Sometimes a flight of data
packets is sent at a high rate due to a sudden advance in the receiver's offered window. Normally
these flights are spread out by the bottleneck and arrive at the receiver with a digtabetveen
each packet§(14.2). If after the bottleneck their timing is compressed, then use of Egn 16.2awill

346

55900

50900

Sequence #
45?00

40900

35900

Figure 16.19: Data packet timing compression

detect this fact unless they are compressed to a greater degree than their sending rate. Figure 16.19
illustrates this concern: the flights of data packets arrived at the receiver at 170 Kbyte/sec (T1 rate),
except for the central flight, which arrived at Ethernet speed. However, it was also sent at Ethernet
speed, so, forit ~ 1.

Consequently, we consider a group of data packets as “compressed” if they arrive at
greater than twice the upper bound on the estimated bottleneck bandwjdthye only consider
groups of at least four data packets, as these, coupled with ack-every-other policies, have the poten-
tial to then elicit a pair of acks reflecting the compressed timing, leading to bogus self-clocking.

These compression events are more rare than ack compression, occurring in only 3% of
the \V; traces and 7% of those iN. We were interested in whether some paths might be plagued
by repeated compression events due to either peculiar router architectures or network dynamics.
Only 25-30% of the traces with an event had more than one, and 3% had more than five, suggesting
that such phenomena are rare. But those connections with multiple events are dominated by a few
host pairs, indicating that some paths are indeed prone to timing compression. Figure 16.20 shows
an example. Here, the bottleneck rate is T1, which corresponds closely with the flatter slopes in the
plot.

Thus, it appears that data packet timing compression is rare enough not to present a sig-
nificant problem. That it does occur, though, again highlights the necessity for outlier-filtering when
conducting timing measuremerits.

347

[:
=3 -
o — -
2 -
[- -
=2 -
o -
Lo
B -
f=—3 _'-
> S =
8 = =
8 :
2 -
o -
5 =
N oS
=3
o
= -
o - -
[:
=2 -
o — -
= -
S -
P= -
=2
o -
Lo -
o -
2.15 2.‘20 2.‘25 2.50 2.‘35 2.‘4»0
Time
Figure 16.20: Rampant data packet timing compression
=
F 2
= FE
S CRls
£ S
-
5 =
[—2 F] =
p=3 = =
= - =1
= _-'- E
b= =
s S = =
v =2 = =]
o E
- o
i E
F 5
= s s
[-
S — -
= F
F i
s
F 3
g "k
ST | B
o
T T T T T T
0.70 o.72 o.74 0.76 0.78 0.80 0.82
Time

Figure 16.21: Receiver sequence plot showing major receiver compression

348

16.3.3 Receiver compression

A third type of timing compression occurs when the receiver delays in generating acks
in response to incoming data packets, and then generates a whole series of acks at one time. The
timing of these acks appears compressed to the sender, thotigin reasons of network dynamics,
but instead due to Iulls at its remote peer. Figure 16.21 shows the most striking example in our
traces, in which thébl receiver compressed 25 of its acks, sending them over a 2 msec interval
instead of over the 83 msec interval corresponding to the data packets they acknowledged. (Slightly
earlier, the receiver also compressed 6 other acks, as seen in the figure.)

Since receiver compression is an endpoint effect, its presence tells us nothing about the dy-
namics of the connection's Internet path. However, receiver compression remains quite interesting
because it is an additional noise element that any sender-only measurement scheme must contend
with. It also leads to the same consequences as true ack compression, namely a break-down of a
connection's self-clocking.

To assess receiver compression, we compute:

¢ = AT, + C,
ATy — C,’

whereAT, is the spacing between the generated adkg; is the spacing between the arriving data

packets (the ones that led to the acks), @pdgain is the receiver's clock resolution. Asin Eqn 16.2,

the addition ofC;. in the numerator and subtraction in the denominator mgkesnservative. We

consideré’ < 0.75 as indicating a receiver compression event. Note that our earlier analysis of

ack compression useAT, as the original spacing of a flight of acks, and then checks whether

that was compressed while the packets were in flight. Consequently, that analysi®tiomsfuse

ack compression with receiver compression: the earlier ack compression analysis only evaluates

compression due to network behavior.

We include delayed acks in our analysis, as these affect self-clocking. Sender-based mea-
surement techniques can generally detect delayed®atksboth N; and N>, we find that about
10% of the connections included a receiver compression event of at least three acks. Of these, about
three-quarters experienced only one receiver compression event, Ahdiane experienced more
than four, though, inVs, the upper limit was 15. Almost all events were only 3 acks in size (95%
in Nl, 80% inNg).

While these statistics indicate that receiver compression is fairly rare, and even less often
significant, we must note that, because receiver compressionesdpointeffect, these statistics
arenot necessarily representative of its frequency in the Internet as a whole. In particular, we find
that just a few sites cause the majority of the receiver compression events in our study, so we have
no way of telling whether other sites would tend overall towards more receiver compression or less.

Given this caveat, we note that we find receiver compression, like other forms of timing
compression, to be fairly rare. In particular, in our datasets it appears more rare than ack com-
pression, so, if this is a representative finding, then sender-based assessment of ack compression
caused by network dynamics will not be terribly skewed by the presence of receiver compression.

"It also has a measurement benefit: from the arrival rate of the compressed packets, we can estimate the downstream
bottleneck rate.

8Using the rule that an ack for less than two full segments was presumably delayed. This heuristic could fail in the
future, if TCPs begin to ack every packet, which they might do to accelerate the slow-start process.

349

If the sender-based measurement employs filtering to remove outliers, as it needs to do anyway to
deal with ack compression, then receiver compression does not make the measurement significantly
harder.

16.4 Queueing analysis

In this section we develop a rough estimate of the time scales over which queueing occurs.
If we take care to eliminate suspect clocks (Chapter 12), reordered pagKi2sl], compressed
packets § 16.3), and traces exhibiting TTL shifts (which indicate routing changes; fgef), then
we argue that the remaining measured OTT variation is mostly due to queueing. Hence, we can
estimate queueing time scales by analyzing time scales of OTT variations.

For a given time scale;, we compute the queueing variation on that time scale as follows.
First, we partition the packets sent by a TCP into intervals of leng#or each interval, let; and
n, be the number of successfully-arriving packets in the left and right halves of the interval. If either
is zero, or ifn; < inr, or vice versa, then we reject the interval as containing too few measurements
or too much imbalance between the halves.

Otherwise, letm; andm, be the median OTTs of the two halves. We then define the
interval's queueing variation &s;; — m,|. Thus, we quantify the variation as how much the OTTs
changed over a time scale of but, by computing the change only as the difference between two
intervals of Iength§7, we include in the variationnly changes that occurred on the time scale.of
Changes that occurred on smaller time scales will in general all occur within either the left or right
half, and themedianof the half will not reflect the smaller-time-scale change. Changes occurring
on larger time scales will not in general result in variation between the two halves, and so likewise
will not enter into the computation.

By using medians, we attempt to reduce the effects of occasionally very large OTTs. We
found that means and standard deviations can often be unduly skewed by a small set of large OTTs.

The question remains how to summarize the interval changes. We investigate two different
summaries. In the first, we defin®(@), as the median ofn; — m,| over all such intervals. Thus,

AQ), reflects the “average” variation we observe in packet delays over a time scal@gfusing
medians, this estimate again is robust in the presence of noise due to non-queueing effects, or
transient queueing spikes. In addition, we comppfe™, the maximum observed difference across

any two halves of an interval of length AQ, thus summarizesustainedvariation on the time
scaler, while Q" summarizesurstsof variation on the time scale.

We now analyzeAQ, and Q#* for different values ofr, confining ourselves to vari-
ations in ack OTTs, as these are not clouded by self-interference and adaptive transmission rate
effects § 15.2). The question we wish to address is: are there partictdasn which most queue-
ing variation occurs? This question is particularly interesting because of its potential implications
for engineering transport protocols. For example, if the dominaist less than a connection's
RTT, then it is pointless for the connection to try to adapt to queueing fluctuations, since it can-
not acquire feedback quickly enough to do so. Or if, for example, the domin&nbn the order
of 1 sec, then that constant helps us determine the related constants—sucla'asfthdEWMA
estimators—governing how a transport connection should update its RTT estimate in order to com-
pute its retransmission timeout.

For each connection, we range throfh2®, ..., 2'% msec to find7, the value ofr for

= -

8
f=—3
@D = —
= ~—
—
 —
o
f=3 —
o
f=—=3 —)
pr=3
T T T T

Time (sec)

Figure 16.22: Ack OTT plot for a connection with= 4 sec forAQ,

)
=
=
Lo —
o~
=
[
= —
()
=
D
521
= =
Lo —
= =
o]
[}
f—
S - =]
Dg E% = =
= =5 Oo
= o =& = 5 - 5 o
f==2 — [
Lo 05 [= & [m] @D] i
E“ =] % [m] 5 =i =
T T T T
o 10 20 30

Time (sec)

Figure 16.23: Ack OTT plot for a connection with= 1 sec forQ™2*

350

351

which AQ; or Q™ is greatest7 reflects the time scale for which the connection experienced the
greatest OTT variation, where the variatiorsisstainedf computed forA(@).-, andmomentarif
computed foilQ™?*. Figure 16.22 shows a plot of the ack OTTs for a connection with4 sec for

AQ);, indicating maximum sustained variation occurs on 4-second time scales. Figure 16.23 shows
a connection witlr = 1 sec forQ"**, which emphasizes the large increase in deldy at 20 sec.

For the first connection, the maxim@™** occurs forr = 64 msec, corresponding to the sharp
spike just afterI" = 1 sec. For the second, the maxima{), occurs forr = 4 sec, due to the
sustained variation on 4-second time scales (for this connection, other time scales haXe)arge

too, but the largest is for = 4 sec). Clearly, the time scales of maximsmstainedburstiness
versus those of maximupeakburstiness can differ considerably.

Before looking at the range ifi's for our measurements, a natural calibration question is
what sort ofr's we find for synthetic variations. We investigated this question by simulating 10,000
independent and identically distributed (i.i.d.) OTT variations. Each variation was simulated as a
random variable drawn from an exponential distribution wite= 1,° corresponding to an OTT
variation computed for one unit of time (the equivalen2éfmsec for the preceding discussion).

For 100 simulation rung; was always< 2 units of time forAQ,, and< 4 units of time forQ™*.

Thus, we see that correctly indicates that the variation is confined to small time scales. If we
simulate i.i.d. Pareto variations with = 1.01 (so, infinite variance and, just barely, finite mean),

we still find 7 confined to small time scales, never exceeding 4 units of time. Again, this is what we
would expect, because the fundamental time scale of change is one time unit, since the variations
are independent.

Figure 16.24 shows the normalized proportion of the connectioné, iand N> exhibit-
ing different values of* for AQ,. Normalization is done by dividing the number of connections
that exhibitedr by the number that had durations at least as long,a® that the prevalence of
short connections does not skew the distribution. For both datasets, time scales of 128-2048 msec
primarily dominate. This range, though, spans more than an order of magnitude, and also exceeds
typical RTT values. Furthermore, while less prevaléntalues all the way up to 65 sec remain
common, with\; having a strong peak at 65 sEC.

Consequently, the figure indicates teastained Internet delay variations occur primarily
on time scales of 0.1-2 sec, but extend out quite frequently to much larger time scales.

Figure 16.25 shows the same figure but 8F**. Here we see that basically the same
time scales dominate variation peaks, ranging from 128 to 1024 msec. Smaller time scales clearly
contribute, however, and so do larger time scales up to about 4 secMyitxhibiting a trend
towards still larger time scales, whilg; does not. We interpret the figure as indicating theak
Internet delay variations also occur primarily on time scales of 0.1-1 sec, but they too extend to
larger time scales, and quite often to smaller time scal@snsequently, it appears clear that there
is no single time scale of “burstiness,” which accords with the recent “self-similar” models of net-
work traffic [LTWW94], though, as a rule of thumb, most variation occurs on time scales of a
guarter-second to a half-second, a bit above usual connection round-trip times. Thus, it appears that
transport connectionsan feasibly adapt to queueing changes, but to do so they must act quickly,
within a few RTTSs, or else it will often be too late.

9The results are independentXfhowever, since only determines the size of the identically-distributed variations,
but not the time scales of the variations among them.
YManual inspection of traces with = 65 sec indicates that they do indeed exhibit their maximum variation on that
time scale, addressing the concern that perhaps the peaks were due to some other effect, and hence spurious.

352

N1
N2

N

M.

Nl

DN

N

N

N
N
N

M.

NN
NN

oTo

,
G0°0

, , , ,
00 S0°0 oTo ST'0

uoiodold pazijewloN

® ©
© ™
~ oo
NETY)
m ©
n

¥8E9T
618
960V
8¥0°¢
¥co'T
¢1S0
9620
8¢T°0
7900
¢e00
9100

)

c

Time Scale of Maximum Sustained Variation (se

Figure 16.24: Proportion (normalized) of connections with given timescale of maximum sustained

delay variation t)

353

uoniodoid pazijewlioN

9€6'99

o
©
™~
o
™

tion

¥8E'9T .
2618
9607
802
¥20°T
2150
952°0
821°0
¥90°0
2€0°0
9700

1a

Time Scale of Maximum Peak Var

Figure 16.25: Proportion (normalized) of connections with given timescale of maximum peak delay

variation)

354

16.5 Available bandwidth

The last aspect of delay variation we look at is an interpretation of how it reflects the
available bandwidth In a packet-switched network, available bandwidth is a somewhat elusive
notion. The amount of bandwidth a connection might fruitfully use varies with time, as other cross-
traffic connections come and go. Frdjmnl6.4 we know that significant OTT fluctuations often
occur on time scales of 100-1000 msec, and for the upper end of this range (which actually extends
appreciably to much larger time scales), no doubt most of the fluctuations are due to connections
beginning or ending, rather than flights of packets within single connections beginning or ending.

Two existing approaches for estimating available bandwidthcprebe [CC96b] and
Treno [MM96]. cprobe works in conjunction withbprobe [CC96a], which we discussed in
§ 14.2. To estimate available bandwidth along a network matiobe first usesprobe to estimate
the bottleneck bandwidth along the patprobe then transmits four groups of probes, each probe
consisting of 10 ICMP echo packets (as wifltobe). The echo packets are sent at a rate exceeding
that of the estimated bottleneck bandwidth, to make sure they attempt to fully utilize the bottleneck.
cprobe then computes from the timing of the ICMP echo replies the achieved throughput, and
considers the ratio between this and the bottleneck bandwidth to heiliration (similar to the
value which we define in Eqn 16.4 below), which indicates how much of the bottleneck bandwidth
was actually available.

cprobe has three limitations that we attempt to address. The first is that it requires
sending a fairly large flight of packets at a rate known to exceed what the network path can support,
socprobe can be viewed as fairlgtressfulto a network path. The second is that, because its
probes use ICMP echo packets, which elicit same-sized replies, the achieved throughput the probes
achieve will reflect theminimumof the available bandwidth along the forward and reverse paths.
As we have seen that many path properties are asymmetric, it would not be surprising to find that
available bandwidth is, too, and thus, for a unidirectional connectipropbe might produce too
pessimistic an estimate. The third limitation is that the pattern in which the probe packets are sent
differs from that in which a TCP sender will transmit its data packets. We have se&eh512
that, because TCP adapts its transmission rate to the presence of packet loss along the forward path,
network conditions observed by TCP data packets can differ significantly from those observed by
TCP ack packets. Thus, we suspect that available bandwidth estimates prodapesbby might
not closely reflect the throughput that a TCP would actually achieve.

This second point is addressed by the developers ofitéeo utility [MM96]. Treno
also uses ICMP echo packets to probe network paths, but it sends them using an algorithm equivalent
to that used by TCP congestion contrl(2). In addition,Treno can probe hop-by-hop available
bandwidth by using increasing TTL (time-to-live) values in the IP headers of the echo packets it
sends, just as doesaceroute (§ 4.2.1). When doing so, it receives in response from each hop
(except the last) not a full-sized echo reply, but a short ICMP Time Exceeded message. Thus, even
if the available bandwidth along the return path is less than that along the forward g, will
still primarily observe the forward-path available bandwidth, just as would a TCP connection that
receives only data-less acks in response to its data packets.

The main drawback dfreno is that it is astressfutechnique. It estimates how fasta TCP
could transfer data over a given network path by seeing how fast it itself can transfer data over the
path, using a standard-conformant, but well-tuned, implementation of the TCP congestion control
algorithm.

355

Ideally, we would like to estimate available TCP bandwidtithout fully stressing the
network path to do so. We do not achieve this goal in our present work. Instead, in this section
we analyze our TCP transfer data both to characterize available bandwidths in the Internet, and to
explore how we might perhaps in the future develop a non-stressful available-bandwidth estimation
technique, based on fine-scale analysis of TCP packet timings. For this technique, the hope is that
by carefully scrutinizing the delays of individual TCP packets, we might form a good estimate of
the bandwidth available along the path they were sent, without requiring that we send the packets at
a rate that saturates the path for any lengthy period of time.

We proceed as follows. First, we need to define what we mean by available bandwidth.
We might argue that, if we know that a connection is competing Wwitther connections, then its
fair share of the network resourceg;’t%. In particular, the connection's fair share of the bottleneck
bandwidth,pp, is ,f—ﬂ. These simple notions, however, quickly run into difficulties. First, during a
connection's lifetime, competing connections come and go, so there is no single value to assign to
k. Second, the competing connectionsmibin general compete along the entire end-to-end path,
but only for a portion of it, so there may in fact be a great number of competing connections, but
each competing for different resources. Finally, “fairness” itself is an elusive notion: it might well
be the case that, for policy reasons (such as who is paying for what), or due to different traffic types,
the simple each-gets-an-equal-share division of the resources is deemed inappropriate. (See [FI91]
for further discussion of the difficulty of defining a single notion of fairness.)

With these considerations in mind, we now strive to develop a notion of “equivalent com-
peting connections,” in order to talk in general terms about available resources. To do so, we attempt
to characterize the network resources available to a connection as a fraction of the total resources
in use. The term we will use to capture this notion is “available bandwidth.” Here we presume
that connections push on the network to extract as much resource from it as they can—TCP's slow
start does exactly this. Therefore, if a connection pushes on the network and we observe that it
consumedn units of resources, and we can determine that other connections consuméd of
the same resources, then we will consider the available bandwidiff-asor, equivalently, that,
over its lifetime, the connection competed with the equivalerf afther connections like itself.

We will use as our unit of resource the amounts of buffer space and transmission time
the connection consumed at the bottleneck link.§ Ib5.2 we developed a notion of data packet
i's “load,” A;, meaning how much delay it incurs due to queueing at the bottleneck behind its
predecessors, plus its own bottleneck transmission tifnewhich is directly determined by the
packet's size and the bottleneck bandwidth. Let

i = Xi — di, (16.3)

namely, just the amount of a packet's delay that is due to queueing behind its predecessors.
Let~y; denote the difference between packstimeasured OTT and the minimum observed

OTT (for full-sized packets). If the network path is completely unloaded except for the connection's

load itself (no competing traffic), then we should haye= ~;, i.e., all ofi's delay variation is due

to queueing behind its predecessors. More generally, define

_ > (i + ¢i)
Zj ('Yj + ¢])

we do not, however, presume that theasurement technigiier estimating how much bandwidth is available must
also do so.

B (16.4)

356

0 then reflects the proportion of the packet's delay due to the connection's own loading of the
network. If 8 = 1, then all of the delay variation is due to the connection's own queueing load on
the network, while, ifg ~ 0, then the connection's loadiissignificantcompared to that of other
traffic in the network.

More generallyy_; (1; + ¢;) reflects the resources consumed by the connection, while

Z(’Yj—i_@bj)_z ¢z+¢z Z'yj Zd’z
i i 3
reflects the resources consumed by the competing connections.

Note that including the); terms in Eqn 16.4 is important: they reflect the basic bottle-
neck transmission cost. Without them, a connection that does not load the bottleneck link (perhaps
because its transmission perfectly matches the bottleneck rate) will exhibit

> ap =0.
In this case, any slight variation in its OTTs, i.e.,

Z’}/j:6>0,
J

will result in 5 = 0. But in this limiting case we want our evaluation to indicate that almost all the
resource was available (as indicatedXy~; being small), and this is exactly the limiting behavior
of Eqn 16.4.

Thus, 3 captures the proportion of the total resources that were consumed by the connec-
tion itself, and we interpret as reflecting thevailable bandwidth Values ofg close to 1 mean
that the entire bottleneck bandwidth was available, and values close to 0 mean that almost none of
it was actually available.

Note that we can havé ~ 1 even if the connection does not consume all of the network
path's capacity. All that is required is that, to the degree that the connection did attempt to consume
network resources, they were readily available. This observation provides the basis for hoping that
we might be able to usé to estimate available bandwidth without fully stressing the network path.

We can gauge how weft truly reflects available bandwidth by computing the coefficient
of correlation betwee and the connection's overall throughput (normalized by dividing by the
bottleneck bandwidth). Fok/7, this is 0.44, while, for\s, it rises to 0.55. We conjecture that the
difference is due to the use of bigger windows\i (§ 9.3), which lead to more opportunities for
fast retransmission. Any time a connection times out, its overall throughput becomes greatly diluted
by the lengthy timeout lull.

Thus, the correlations, particularly faf,, indicate tha{3 is indeed a solid predictor of a
connection's likely overall performance. It is not a perfect predictor, however, nor would we expect
it to be: a TCP connection's overall throughput is affected by the number of retransmissions it
incurs, whether any of these are timeout retransmissions, the receiver's offered window, the sender's
internal window § 11.3.2), how the TCP manages the congestion window, and the acking policy
used by its remote peer, which determines how fast the slow-start sequence increases the window
(§11.6.1).

Figure 16.26 and Figure 16.27 show the density3dbr N, andN,. Values less than
zero and greater than one, which can result from erroneous estimates bave been adjusted

357

W
| |
|

100
\

0 0
|

r T T T T 1
Oo.0o o.2 o.4 O.6 o.8 1.0

N1 Inferred Available Bandwidth

Figure 16.26: Distribution afV; inferred available bandwidth}

r T T T T 1
Oo.0o o.2 o.4 O.6 o.8 1.0

N2 Inferred Available Bandwidth

Figure 16.27: Distribution ol inferred available bandwidth3}

358

to zero and one, respectively. Clearly, Internet connections encounter a broad range of available
bandwidths, ranging from very little to almost al/;'s main mode lies at 0.30-0.35, corresponding

to about two equivalent competing connections, whileXgrthis shifts considerably downward, to
about 0.10-0.15, or eight equivalent competing connections. The overall decrg¢hsetimeen\/;

and; is clear, though theV; density diminishes less quickly than that/df, indicating that for

it, especially, the range of available bandwidth was indeed very broad. Unfortunately, it is difficult
from these statistics to make a definitive statement about how available bandwidth changed over
the course of 1995, because the use of bigger windéw&3) in A, means that the notion of
“equivalent connection” is different between the two datasets. It is not clear how we could adjust
for this difference in order to directly compare the two.

Both densities exhibit two “edge” effects: a greatly diminished density at 0.0-0.05, and a
second mode at 0.95-1.0. The first most likely reflects the measurérasntur experiment suffers
from due to the limited lifetimes of each connectidr9(3): those connections for which very little
bandwidth was available often did not finish within the allotted ten minutes, and thus do not figure
into the measured distribution Gf

The second mode at 0.95-1.0 at first appears to indicate that sometimes a network path
is completely quiescent, and packets sail along it without any cross traffic perturbing them. This,
however, turns out to only sometimes be the case. Closer inspection of those connections with
0 = 1 reveals that many are connections with low bottleneck bandwidths. These connections very
often are able to completely fill the bottleneck link, because, even if the network can provide only a
few non-bottleneck resources to the connection, these still suffice to drive the bottleneck at capacity.
That s, the connection requires only modest resources available elsewhere to saturate the bottleneck
link and achieve the maximum possible end-to-end performance. We summarize this eftéct as:
you only want to go slowly, the network often can provide enough resources for doing so.

Figure 16.28 and Figure 16.29 show the same densities if we restrict the analysis to con-
nections withpg > 100 Kbyte/sec. We see that, fav;, doing so completely eliminates the sec-
ondary “all bandwidth available” peak, though, o, it only slightly diminishes it. The difference
again appears due to the use of bigger window#/in Figure 16.30 shows th&/, densities if
we restrict ourselves tpg > 250 Kbyte/sec. Doing so eliminates the T1- and E1-limited con-
nections, which with the bigger windows thé, connections could often fill to capacity, much as
the /7 connection could for the slower bottleneck links. Now, the second peak has disappeared,
indicating that, at these speeds, the connections could no longer often utilize the entire bottleneck
bandwidth!® We see that, overalhs path bandwidths increase, proportionally less bandwidth is
available to connections using the paffhis observation is not too surprising: higher bandwidths
naturally attract higher traffic loads.

Our observations so far have been based on the lgadnd the bottleneck transmission
time, ¢;, per Egn 16.3. Both are computed using teatral bottleneck bandwidth estimateg.

The PBM algorithm, however, produces upper and lolb@rndson the estimate, too, denoted by
p and py (Eqn 14.12). We can accordingly defing (¢;) and A" (¢;"), based on the upper

2\We do not discard these connections because sometimes only a slight esgomiill lead to an “out of range”

estimate for3, if the connection occurred at a time during which very little or almost all of the bandwidth was available.
This point will be developed in more depth shortly.

13The depression at 0.0-0.05 has grown, too, a change likely due to the fact that, for high-bandwidth paths, a TCP
connection can transfer 100 Kbyte in 10 minutes even in the face of many competing connections, so the measurement
bias discussed earlier does not apply to such a large degree.

359

4

)|
\

(

r T T T T 1
Oo.0o o.2 o.4 O.6 o.8 1.0

N1 Inferred Available Bandwidth, 100KB/S or Faster

Figure 16.28: Distribution ofV; inferred available bandwidth3j for connections with bottleneck
rates exceeding 100 Kbyte/sec

400
\

200
|

L

r T T T T 1
[oNe} 0.2 o.4 0.6 o.8 1.0

N2 Inferred Available Bandwidth, 100KB/S or Faster

Figure 16.29: Distribution o5 inferred available bandwidth3j for connections with bottleneck
rates exceeding 100 Kbyte/sec

360

140
|

|
\

r T T T T 1
Oo.0o o.2 o.4 O.6 o.8 1.0

N2 Inferred Available Bandwidth, 250KB/S or Faster

Figure 16.30: Distribution o5 inferred available bandwidth3j for connections with bottleneck
rates exceeding 250 Kbyte/sec

100
|
|

80
\

60
\

40

]
\

r T T T T 1
[eNe) 0.2 o.4 0.6 0.8 1.0

N1 Inferred Minimum Available Bandwidth

Figure 16.31: Distribution of\'; minimum inferred available bandwidtit) for connections with
bottleneck rates exceeding 100 Kbyte/sec

361

140

120
\

100
\

60
\

40

r T T T T 1
O.0 0.2 o.4 0.6 o.8 1.0

N1 Inferred Maximum Available Bandwidth

Figure 16.32: Distribution ofV; maximum inferred available bandwidt¥)(for connections with
bottleneck rates exceeding 100 Kbyte/sec

and lower bounds, respectively, and from them comgtiteand 5, lower and upper bounds of
the available bandwidth. Figure 16.31 and Figure 16.32 show the densiti&s afid 3 for the
connections in theV; dataset withpg > 100 Kbyte/sec.

The density of3~ fairly closely matches that gf given in Figure 16.28, but shifted
about 0.05 to the left, except for the upper regime, which is shifted by about 0.15 to the left. The
density of 3", however, shows roughly the same shape shifted about 0.1 to the right, except for a
striking spike a3 ~ 1. This spike is telling: three-quarters of it is f8 > 1, which is an unphys-
ical situation, namely, that the connection's load on the path exceeds the total variation observed
on the path. Thus, the spike indicates thgt from which 3" is derived, iserroneously too low
Because it is too low, the corresponding loakl$, are too high. Furthermore, the loads can rapidly
becomemuchtoo high, due to self-clocking: if the connection is indeed transmitting at exactly the
bottleneck rate, which self-clocking will promote in the absence of significant cross-traffic, then
each packet's load will be zero, or perhaps will correspond to one additional packet at the bottle-
neck link if the receiver uses ack-every-other (so the window advances by two packets at a time). In
this case, a slightly low estimate pf; will result in a determination that the load continually builds
up, since the bad estimate will imply that packets are being sent at a rate exceeding the bottleneck’'s
capacity, and hence the queue at the bottleneck grows and grows (per Figure 16.13).

Consequently, we should not trust the variation betwgemd 3T as reflecting the true
error-bar range if's density; but that betweghand3— does not suffer from this problem. Based
on the latter, then, we conclude that the error in our estimatgsi®fabout+0.1, with somewhat
lower errors for small values ¢@f, and somewhat higher errors for larger values. This level of error
is not large enough to alter any of the conclusions drawn above.

As we might expect, we find th#t is inversely correlated with data packet loss rate. For
both /7 and A5, for connections withpg > 100 Kbyte/sec, the coefficient of correlation between

362

150
|

100
\

5
\

r T T T T 1
O.0 0.2 o.4 0.6 o.8 1.0

Inferred Available Bandwidth

Figure 16.33: Distribution alV; inferred available bandwidthsj for U.S. connections

0 and the loss rate is0.36. This provides us with a solid connection between delay variation and
packet loss, which agrees with the widely held assumption that most packet loss in the Internet is
due to congestion (which will first lead to delay variations as queues build up). The connection is
not overwhelmingly strong, however, which we would also expect, because delay variation need not
lead to packet loss if the congested element contains sufficient buffer space to absorb the variation.

That and loss rate are negatively correlated suggests that we might find significant re-
gional variation ing, much as we did for loss rates §nl5.1. Indeed, we do. Figure 16.33 shows
0 for connections wittpp > 100 Kbyte/sec and with both sender and receiver sited in the United
States. Figure 16.34 shows the same for sender and receiver both sited in Europe. Clearly, European
sites suffer from much lowe#'s than their U.S. counterparts, with the mean (and median) European
0 at 40%, while for the U.S. connections, it is just under 60%.

The last aspect of available bandwidth we investigate is how it evolves over time. To do
S0, we group connections with the same source and destination hosts together, after eliminating any
with pp < 100 Kbyte/sec. For successive connectierendc’ in each group, we compute the pair
(AT,,|AB:|), whereAT, is the time betweenandc’, and|A 3, | is the magnitude of the difference
between the compute@d s for each connection.

After constructing these pairs, we sort themAf, and then computéA .| smoothed
using an exponentially-weighted moving average with= 0.01 and an initial value of 0. Fig-
ure 16.35 shows the resulting smoothed evolution forthedataset. (TheV; dataset exhibits a
similar evolution.) We see that\5.| almost immediately rises to about 0.12, which is somewhat
higher than the error range we estimated foabove, but not greatly highét. This level is sus-

4The exponential smoothing, along with starting the averaging with an value of 0, limits how rapidly the plot can
reach this level. This is what creates the plotting artifact of what appears to be a rapid climb, falsely suggesting that
|AB.| is significantly smaller for very low inter-connection times. A more sound interpretation is that even for very low
inter-connection times, we will usually firjd\ 3. | already quite close to 0.12.

40

0
\

363

T T T T 1
o.2 o.4 Oo.6 o.8 1.0

Inferred Available Bandwidth

Figure 16.34: Distribution alV; inferred available bandwidths] for European connections

010 015 020
\ \ \

|Delta Beta|

005
\

00

Figure 16.35: Evolution
connections

T T T T T
1072 1073 104 10"5 1076

Time Between Connections (sec)

of difference between inferred available bandwiegtHof successive

364

tained for a number of hours, after which it increases markedly, by about 50%. The transition no
doubt coincides with the diurnal cycle we notedih5.1: the network is much more congested dur-

ing working hours than during off hours. Since the predictive power is, qualitatively, fairly good for
time scales of several hours, we conclude that transport connections can fruitfully cache information
regarding a path's available bandwidth for use in subsequent connections.

365

Chapter 17

Summary

We endeavored in this work to characterize a number of aspects of end-to-end Internet
dynamics in general, meaningful ways. The Internet's great diversity makes this undertaking im-
mensely challenging.

At the heart of our study lies the NPD measurement framework, in which a number of
sites around the Internet run a specialized daemon that provides measurement services to authen-
ticated users. The key scaling property of this framework is thatMqrarticipating sites, it can
probeO(N?) Internet paths. This scaling enabled us to probe over 1,000 Internet paths, due to the
participation of 37 sites. Consequently, the data for our analysis is more than an order of magnitude
richer than that available for previous end-to-end studies, and a serious argument can be made that
we can indeed extrapolate our findings to conclusions about Internet paths in general.

17.1 The routing study

In Part I, we used the NPD framework to study the dynamics of end-to-end routing in the
Internet, using two experimental runs, one at the end of 1994 and one at the end of 1995. The results
were discussed in Chapter 2; here, we briefly summarize them.

We began by characterizing routing pathologies, as we must first identify anomalies be-
fore proceeding to analysis of more typical behavior, lest they skew our results. We cataloged
a number of pathologies, including loops, outages, and flutter. Furthermore, the prevalence of
pathologies significantly increased between the 1994 dataset and the 1995 dataset, indicating that
routing degraded over the course of 1995.

We next analyzed routing stability, first developing a distinction between two orthogonal
types of stability, routing “prevalence” and routing “persistence.” We found that most Internet paths
are heavily dominated by a single dominant route, but that the length of time over which routes
persist varies greatly, from seconds to many days.

We finished our look at routing with an assessment of routing symmetry. While asymme-
tries have little direct impact on end-to-end performance, they introduce significant measurement
problems, because they cloud the accuracy of the easiest form of measurement, “sender-only” mea-
surement, in which no receiver cooperation is required. We found that about half of all Internet
routes exhibited a major asymmetry, in which at least one city differed between the route from
Ato B versus that fronB to A.

366

17.2 The packet dynamics study

The goal of Part Il of our study was to use the NPD framework to measure end-to-end
Internet packet dynamics. We recorded over 20,000 TCP transfers at both sender and receiver,
again in two experimental runs. Faced with such a large volume of data, we adopted the strat-
egy of developing an analysis toatpanaly , for automating the “micro-analysis” of individual
connections.

Our goal was to develop meaningful characterizations of end-to-end packet delays. To do
so required a great deal of preparatory work, to assure that the analysis rested upon sound measure-
ments.

17.2.1 Measurement calibration and TCP behavior

We first needed to devise techniques for calibrating the measurement data, to assure that
we did not misinterpret measurement artifactsifona fidenetworking effects. The measurement
process could fail in two basic ways: by misrecording which packets traversed the network, and
by misrecording the times at which they appeared. We found that packet filters can: fail to record
packets; record packets more than once; truncate the beginning or end of trace files; and rearrange
the sequencing of packets. Accordingly, we developed tests sacfizmialy can detect these
events. We further developed the important notion of a packet filter's “vantage point,” meaning
where in the network path it observed the traffic. A filter's vantage point can introduce ambiguities
in the apparent chain of cause-and-effect, which can only be removed with considerable care.

Hand-in-hand with calibrating the integrity of the traffic traces comes the problem of
identifying the exact behavior of the TCP implementations used by the sending and receiving hosts.
Often, the only way to accurately gauge the integrity of a traffic trace is by knowing in intimate
detail how the TCPs participating in the connection behave and respond. Apparent deviations from
this behavior then indicate a likely lack of integrity in the traffic trace, if the behavior has indeed
been correctly characterized.

tcpanaly holds promise as a valuable tool for analyzing TCP behavior, useful both in
its own right for diagnosing performance and congestion problems, and also as a way to account
for the separate effects on a connection's dynamics of the behavior of the TCP endpoints versus
that of the connection's Internet path. In the course of its development, we found a wide range
of TCP behaviors, some of which have major, negative performance and stability implications for
the associated TCPs. The most serious problems include excessive retransmissions and failures
to correctly diminish the transmission rate during periods of congestion. Indeed, if some of these
TCPs were ubiquitous in the Internet, the network would quite simply cease to function, due to
“congestion collapse.”

In the process of this analysis, we observed that the TCPs with the most serious problems
were the only two in our study written independently from the “BSD-derived” implementations that
directly benefited from much of the fundamental TCP research. To investigate this observation, we
analyzed three additional implementations, finding a mid-level performance problem in one, a major
performance problem in another (but one possibly due to use of a specific network interface card),
and severe performance and stability problems in the third. Thus, our findings strongly argue that
implementing TCP correctly is exceptionally difficult. Given that Internet stahiéties on TCP
correctness, it therefore behooves the Internet community to take energetic steps towards providing

367

analysis tools and reference implementations to aid the efforts of implementors.

17.2.2 Timing calibration

Armed with the ability to detect inaccurate packet traces and to distinguish between TCP-
induced effects and networking effects, we next turned to the difficult problem of calibrating the
packet timings. The effort continued to be driven by the ultimate goal of analyzing end-to-end
packet delays. To do so requires comparing pairs of unsynchronized clocks, namely those used by
the tracing programs at the sender and receiver. We developed algorithms for (1) estimating clock
resolution, (2) synchronizing clocksost factg (3) detecting clock adjustments, and (4) detecting
and removing relative clock skew. This last is particularly important because, if undetected, relative
clock skew leads to variations in apparent packet delays quite similar to those of genuine networking
effects. We found that it is fairly common for a pair of clocks to exhibit discernible relative skew.
We also found that the fact that two clocks agree quite closely doediminate the possibility that
the clocks suffer from problems such as adjustments and relative skew.

17.2.3 Network pathologies

With our measurements fully calibrated, we could then turn to analyzing packet dynamics.
We began by characterizing packet-forwarding pathologies: out-of-order delivery, packet replica-
tion, and packet corruption. We found that the frequency with which packets arrive in a different
order than sent varies enormously among Internet paths. While reordering often occurs in conjunc-
tion with the route “flutter” pathology, we also observed numerous instances in which it occurred
in the absence of flutter, and some instances in which massive reordering events occurred due to
“pauses” in router forwarding. Finally, the possibility of reordering limits how quickly a TCP
sender can infer a packet loss using the “fast retransmission” mechanism. We investigated whether,
based on our data, this mechanism could be altered to retransmit more efficiently. We found that
we could only do so if we required changes at both the TCP sender and receiver. Consequently, we
might as well instead change the sender and receiver to use the more sophisticated TCP “selective
acknowledgement” extension, now being standardized [MMFR96].

We found that the curious phenomenon of packet replication—the network delivering a
single packet more than once—does indeed occur, but it is exceptionally rare. On the other hand,
our analysis of packet corruption suggests that, overall, about 1 Internet data packet in 5,000 arrives
with data different than what was originally sent. This rate is high enough that, given TCP's 16-bit
checksum, about one packet in 300,000,000 will be accepted with undetected errors. The Internet
carries many more packets than this each day.

17.2.4 Estimating bottleneck bandwidth

We next turned to the problem of identifying a network pathotleneck bandwidthwe
needed to do so before analyzing packet loss and delay because the bottleneck bandwidth deter-
mines what we call the “self-interference time consta},” Two data packets of sizesent less
than an intervaf), apart must necessarily queue at the bottleneck element of the network path. Thus,
knowledge of(), enables us to determine which of our measurement probes were perforce corre-
lated. It further plays a major role in assessing packet loss, because we want to distinguish between

368

the loss of data packets that we know had to queue behind their predecessors (“self-interference”),
versus those lost even though they did not have to queue on account of the connection's own loading
of the network path.

We discussed how the main existing technique for estimating bottleneck bandwidth,
“packet pair,” could produce incorrect estimates. These can occur in the presence of. excessive
noise; packet reordering; changes in the bottleneck bandwidth; or network paths in which the bot-
tleneck is comprised of multiple, separate channels or links. This last case is particularly interesting,
because it leads to erroneously large bottleneck estimates even if the network is completely quies-
cent. The problem lies in the fundamental assumption made by packet pair that packets must queue
behind one another at the bottleneck and be served by it one at a time. For a multi-channel or multi-
link bottleneck, however, this assumption does not in fact apply, and a pair of packets can traverse
the bottleneck without it altering the spacing between them.

These observations motivated us to devise a robust algorithm for estimating bottleneck
bandwidth, based on “packet bunch modes” (PBM). By focussing on identifying multiple modes in
the distribution of the estimated bottleneck bandwidth, PBM can accommodate errors introduced
by noise, as well as detecting changes in bottleneck bandwidth and the presence of multi-channel
links. By using receiver-based measurement, it also can cope with packet reordering, and with the
possibility of asymmetries in the bottleneck bandwidths along the two directions of a network path.

We calibrated PBM by testing whether we could associate known, common link speeds
with its estimates. We found that we could almost always do so. Once we had faith in PBM's
accuracy, we could then test other estimation methods against PBM to see how well they perform.
We found that receiver-based packet pair performs almost as well, if we can tolerate failing to detect
shifts in bottleneck bandwidth or multi-channel links, both of which prove rare. Sender-based packet
pair, however, does not perform nearly as well, due to the additional noise incurred by measuring
timings that reflect the traversal of packets in both of a path's directions. Finally, we find that about
20% of the time, a path's two directions hasgymmetricottleneck bandwidths, but that, along a
single direction, the bottleneck generally remains constant over lengthy periods of time.

One drawback with PBM is that it is ad hoc to an unsatisfying degree. It uses a consid-
erable number of heuristics that can only be defended on the basis that they appear to work well
in practice. We found this acceptable (if regrettable), because for our study bottleneck bandwidth
estimation was fundamentally only a stepping stone to the later analysis, and not an end in itself.
We hope, however, that the basic ideas underlying PBM—searching for multiple modes and inter-
preting the ways they overlap in terms of bottleneck changes and multi-channel paths—might be
revisited in the future, in an attempt to develop them in a more systematic fashion.

17.2.5 Packetloss

We now could turn to analyzing patterns of packet loss in the Internet. We found that over
the course of 1995, packet loss ratesarly doubled indicating a marked degradation in service.
However, these rates required further inspection to understand their implications. We first developed
the notion of the network having two general states, “quiescent,” corresponding to periods of no loss,
and “busy,” corresponding to periods in which connections observe at least one loss. The proportion
of quiescent connections did not change appreciably during 1995; instead, the loss rate increases
were due to higher levels of loss during busy periods.

We also distinguished between three different types of lost packets: “loaded” data packets,

369

meaning those that necessarily had to wait at the bottleneck behind one or more of their predeces-
sors; “unloaded” data packets, meaning those that did not have to queue behind predecessors, unless
cross traffic arrived and delayed their predecessors; and acknowledgements.

We found that loaded packets are much more likely to suffer high loss rates than unloaded
packets, which is not surprising, since they encounter not only the ambient network load but that of
their predecessors; and that acks are more likely to be lost than unloaded packets (or even loaded
packets, for high loss rates). We interpret these findings as reflecting the fundamental difference
between data packets being sent at a rateatiaptsin an effort to diminish packet loss, and acks
being sent at a rate that dosst adapt to the rate at which acks are lost. This finding highlights how
the loss rates observed by a TCP connection's data patiKetsfrom the unconditional loss rates
along the path they traverse.

The last comparison between data packet and ack loss rates we made was to determine
the degree of correlation between the two rates for a single connection. We found that the two are
nearly uncorrelated, indicating that this fundamental property of a network paglynsmetric

We next found that different major regions of the Internet—the United States, Europe,
and connections from one to the other—experienced very different loss rates. Then, after showing
that loss rates follow the well-known diurnal cycle reflecting working hours and off-work hours,
we analyzed variations in the time of day during which our measurement apparatus succeeded in
executing a measurement. For North American sites, these successes were uniformly spread over the
24 hours of each day. For European sites, though, the frequency of successes dipped to low points
in patterns that closely matched the loss-rate cycle, indicating that our European measurements
suffered from a discernibleiastowards underestimating loss rates.

Another question we investigated was whether packet loss events are well-modeled as
independent, since this assumption is sometimes made when theorizing about network behavior. We
found that loss events are instead strongly correlated. Furthermore, the duration of loss “outages”
exhibits infinite variance, which accords with a recent model of how individual connection behavior
can give rise to “self-similar” aggregate traffic behavior [WTSW95].

We then looked at the questionwherepackets are lost along an Internet path. In partic-
ular, whether they are lost before or after the bottleneck element. From careful analysis of timing
information we can sometimes distinguish between these two. We found that, while most losses
occur at or before the bottleneck, a significant minority (roughly 25%) occur after.

We next evaluated how packet loss rates evolve over time, with an eye towards gauging
the efficacy of caching packet loss statistics associated with a path in order to predict future path
performance. We found that a path's state, in terms of “quiescent” or “busy,” is a good predictor of
its future state for many hours, but a path's observed loss ratg &good predictor of its future
loss rate.

We then investigated how efficiently TCP implementations retransmit. We found that, for
some implementations, the large majority of their retransmissions are unnecessary. Fixing these
implementations and deploying the SACK extension would eliminate nearly all of the unnecessary
retransmissions.

17.2.6 Packet delay

We finished our study with an analysis of end-to-end packet transit delays. We found
that both round-trip times (RTTs) and one-way transit times (OTTs) exhibit great “peak-to-peak”

370

variation. OTT variations for the most part are asymmetric. The only clear correlation occurs
between the order-of-magnitude (logarithm) variation in the two directions. On the other hand,
OTT variation is clearly correlated with packet loss rates, as we would expect. We further found
that OTT variation is not a good predictor of future OTT variation, in accord with the finding that
packet loss rates are not good predictors of future loss rates.

We then turned to an assessment of patik@hg compressionn which a group of pack-
ets arrives at their receiver more closely spaced than when they were sent. We identify three types of
compression: ack compression, data packet compression, and receiver compression. Each requires
somewhat different assessment considerations. Overall, none of the three types occur frequently
enough to pose a significant problem in terms of network performance and stability. Their pres-
ence does, however, complicate path measurement efforts, which must use judicious filtering to
avoid mistaking compression events for different network effects, such as a temporary increase in
bottleneck bandwidth.

We next investigated théme scalesover which queueing occurs, by determining on
which time scales we observed the maximum sustained and peak OTT variations. We found that
both occur most frequently on time scales of about 100-1000 msec, though, as with many Inter-
net phenomena, we also found a wide range of behavior beyond this region. (In particular, we
sometimes found maximal queueing occurring on much longer time scales.)

The last aspect of packet delay we analyzed was the degree to which it reflaitéble
bandwidth We did this by studying the ratio between the delay a packet incurred due to its connec-
tion's own loading of the network path, versus the total delay it incurred. This ratio correlates well
with the overall throughput achieved by a connection. However, we also showed that the accuracy
of the ratio is diminished by the presence of errors in estimating the bottleneck bandwidth.

We observed a distinct decrease in available bandwidth over the course of 1995, though
we also observed significant regional variation, with U.S. sites enjoying considerably more available
bandwidth than European sites. Finally, we investigated how available bandwidth evolves over
time. We found that a connection's available bandwidth is a fairly good predictor of future available
bandwidth out to time scales of hours.

17.3 Future research

There are three general areas of future work suggested by our research. First, our original
goal when proposing the research was to use end-to-end measurements to drive the development of
new algorithms for how transport protocols can adapt to changing network conditions. We had to
abandon this goal once the scope of analyzing the measurements themselves became apparent, but
clearly an important potential benefit of end-to-end characterization such as we have undertaken is
to better optimize how connections use the network.

Closely related to developing such new algorithms is the questidasbéstimation of
Internet path behavior. The algorithms we developed for calibrating network clocks (Chapter 12),
estimating bottleneck bandwidth (Chapter 14), and assessing queueing time scales and available
bandwidth (Chapter 16) all in their present form analyze entire connection traces. Yet, transport
connections clearly need to make decisions based on path properties quickly, and cannot afford the
luxury of analyzing the fate of several hundred packets. Our work, though, can play a key role in
developing fast estimation techniques, because the algorithms we developed can then be used to

371

calibrate the faster algorithms.

Finally, the NPD framework serves well to address the issue of capturing reasonably rep-
resentative samples of a cross-section of Internet path behavior. Another important form of Internet
heterogeneity, however, is how Internet traffic changék time Only longitudinal studies can
address such “temporal” heterogeneity. We have attempted to touch on this issue by capturing two
datasets spaced a year apart. Clearly, though, we need longer-term studies to develop solid conclu-
sions about traffic trends. We believe this goal can be met in conjunction with the development of
an Internet “measurement infrastructure,” that is, large-scale deployment of NPD-like measurement
platforms. We do not claim that the NPD framework can simply be scaled up to serve as this infras-
tructure; indeed, the problem of an infrastructure taatscale to the full Internet is the key research
problem for the infrastructure. But, if accomplished, such an infrastructure could serve, through the
accumulated archives of its measurements, as the basis for longitudinal studies; and, even more
significantly, as a mechanism for assessing and improving the overall health of the network.

17.4 Themes of the work

Several themes emerge from our study:

e The N? scaling property of our measurement framework serves to measure a sufficiently di-
verse set of Internet paths that we might plausibly interpret the resulting analysis as accurately
reflecting general Internet behavior.

e To cope with such large-scaled measurements requires attention to calibration using self-
consistency checks; robust statistics to avoid skewing by outliers; and automated “micro-
analysis,” such as that performed fapanaly , that we might see the forest as well as the
trees.

¢ With due diligence to remove packet filter errors and TCP effects, TCP-based measurement
provides a viable means for assessing end-to-end packet dynamics.

¢ We find wide ranges of behavior, so we must exercise great caution in regarding any aspect
of packet dynamics as “typical.”

e Some common assumptions such as in-order packet delivery, FIFO bottleneck queueing, in-
dependent loss events, single congestion time scales, and path symmetries are all violated,
sometimes frequently.

e The combination of path asymmetries and reverse-path noise renders sender-only measure-
ment techniques markedly inferior to those that include receiver cooperation.

This last point argues that, when the measurement of interest concerns a unidirec-
tional path—be it for measurement-based adaptive transport techniques such as TCP Vegas
[BOP94], or general Internet performance metrics such as those in development by the IPPM effort
[A+96, Pa96a]—the extra complications incurred by coordinating the sender and receiver are worth
the effort.

Finally, we believe an important aspect of this work is how it might contribute towards
developing a “measurement infrastructure” for the Internet: one that proves ubiquitous, informative,
and sound.

372

Bibliography

[A+96]

[AW96]

[AW90]

[Bags]

[Ba94]

G. Almes et al., “Framework for IP Provider Metrics,” Internet drdfp://ftp.isi.edu/
internet-drafts/draft-ietf-bomwg-ippm-framework-00, iXbv. 1996.

M. Arlitt and C. Williamson, “Web Server Workload Characterization: The Search for
Invariants,”Proceedings of SIGMETRICS '9Bhiladelphia, May 23-26, 1996.

B. Awerbuch, “Shortest Paths and Loop-Free Routing in dynamic networks (Extended
Abstract),”Proceedings of SIGCOMM '9@p. 177-187, September 1990.

F. Baker, Ed., “Requirements for IP Version 4 Routers,” RFC 1812, DDN Network Infor-
mation Center, June 1995.

A. BanerjeaFault Management for Realtime Networleh.D. thesis, University of Cali-
fornia, Berkeley, 1994.

[BDG95] C. Baransel, W. Dobosiewicz, and P. Gburzynski, “Routing in Multihop Packet Switching

Networks: Gb/s ChallengelEEE Network 9(3), pp. 38-61, May/June 1995.

[BCW88] R. Becker, J. Chambers, and A. Wilk§he New S LanguageWadsworth &

[Be9s]

Brooks/Cole, 1988.

S. Bellovin, “Using the Domain Name System for System Break-Pimteedings of the
5th USENIX UNIX Security Symposiu8alt Lake City, June 1995.

[BCLF+] T. Berners-Lee et al., “The World-Wide WebCommunications of the ACM37(8),

[Bes2]

[BM92]

[Bi95]
[Bo93]

pp. 76-82, August 1994.

D. Bertsekas, “Dynamic Behavior of Shortest Path Routing Algorithms for Communica-
tion Networks,”|[EEE Transactions on Automatic ContrdhC-27, pp. 60-74, February
1982.

I. Bilinskis and A. Mikelsons,Randomized Signal ProcessjnBrentice Hall Interna-
tional, 1992.

P.G. Bilse, private communication, October 16, 1995.

J-C. Bolot, “End-to-End Packet Delay and Loss Behavior in the InterRet¢eedings of
SIGCOMM '93 pp. 289-298, September 1993.

373

[BCG95] J-C. Bolot, H. Cepin, and A.V. Garcia, “Analysis of Audio Packet Loss in the Internet,”
Proceedings of the 5th International Workshop on Network and Operating System Support
for Digital Audio and VidepDurham, New Hampshire, April 1995.

[BBJ92] D. Borman, R. Braden and V. Jacobson, “TCP Extensions for High Performance,”
RFC 1323, Network Information Center, SRI International, Menlo Park, CA, May 1992.

[BJ88] R. Braden and V. Jacobson, “TCP extensions for long-delay paths,” RFC 1072, Network
Information Center, SRI International, Menlo Park, CA, October 1988.

[Br89] R. Braden, Ed., “Requirements for Internet Hosts—Communication Layers,” RFC 1122,
Network Information Center, SRI International, Menlo Park, CA, October 1989.

[Bro4] R. Braden, “T/TCP — TCP Exten