agena »>

A Programming Language

Primner and Reference
for Version 0.33.2

by Alexander Walz
June 26, 2010

AGENA Copyright 2006-2010 by Alexander Walz. All rights reserved.
Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

See Appendix B for Licences.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in inifial caps or all caps.

Contact: In case you find bugs, errors in this manual, have proposals, or questions
regarding Agena, please contact the author at; agena.infoat-online. de

The latest release of Agena may be found at htfp://agena.sourceforge.net.

agena >> 3

Credits

Chapter 7: Standard Library documentation
Large portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto lerusalimschy, Luiz Henrique de Figueiredo, Waldemar
Celes. Used by kind permission.

case of statement
The original code was writfen by Andreas Falkenhahn and posted to the Lua
mailing list on 01 Sep 2004. In Agena, the functionality has been extended to
check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on 12 September 2005.

globals base library function
The original Lua and C code for globals has been written by David Manura for
Lua 5.1 in 2008 and published on www.lua.org. Because of crashes with library C
functions passed fo globals, the C source has been patched so that in Agena,
C functions are no longer checked.

mkdir, chdir, and rmdir functions in the os library
These functions are based on code taken from the "lposix.c” file of the POSIX
library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.X.

No automatic auto-conversion of strings to numbers
was inspired by Thomas Reuben's no_auto conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm)

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

4 Contents

Binary and octal numbers ('0b', '00)

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

math.nextafter

uses a modified version of the C function nextafter that has originally been
published by Sun Microsystems with the fdliom IEEE 754 floating-point C library.
The author of the modifications is unknown, but the modified code can be
found at http://www.koders.com (file s nextafter.c). See Appendix B3 for the
licence.

calc.diff
based on Conte and de Boor's “Coefficients of Newton form of polynomial of
degree 3.

calc.fsum
The modified Kahan algorithm used has been developed by Kazufumi Ozawa,
published in his paper "Analysis and Improvement of Kahan's Summation
Algorithm ™,

calc.interp
taken from “Numerical Algorithms with C* by Gisela Engeln-Muliges and Frank
uhlig.

calc.minimum, calc.maximum
use the subroutine calc.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.

Moler, "Computer methods for mathematical computations™, M., Mir, 1980,
page 202 of the Russian edition.

agena >> 5

besselj, bessely
The complex versions of the functions use procedures originally written in
FORTRAN by Shanjie Zhang and Jianming Jin, Computation of Special Functions,
Copyright 1996 by John Wiey & Sons, Inc. Used by Jianming Jin's kind
permission.

Advanced precision algorithm for for/to loops
The method to prevent round-off errors in for/to loops with non-integral step sizes
has been developed by Wiliom Kahan and published in his paper " Further
remarks on reducing fruncation errors™ as of January 1965.

Graphics
The graphical capabilities of Agena in the UNIX and Windows versions have
been made possible through a binding to the g2 graphical library written by
Ljubomir Milanovic and Horst Wagner.

ADS package
The core ANSI C functions to create, insert, delete and close the database have
bbeen written by Dr. F. H. Toor.

MAPM binding

Mike's Arbitrary Precision Math Library has been written by Michael C. Ring. See
Appendix B6 for the licence.

The MAPM Agena binding is an adaption of the Lua binding writften by Luiz
Henrigue de Figueiredo, put fo the public domain.
Year 2038 fix

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwerm/y2038.

6 Contents

arctan, expx2, gamma, Ingamma, calc.dawson, calc.dilog, calc.Ci, calc.Chi,
calc.kEi, calc.fresnelc, calc.fresnels, calc.Psi, calc.Si, calc.Shi, and calc.Ssi
functions
use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.9 as of June, 2000. Copyright by Stephen L. Moshier.
erf, erfc, calc.intde, calc.intdei, calc.intdeo
These functions use procedures originally written in C by Takuya Ooura, Kyoto,

Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.random
The algorithm used to compute random numibers has been written by George
Marsaglia and published on en.wikipedia.org.

io.anykey
The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

xBase file support
The xbase package is a binding fo xBase functions written by Frank Warmerdam

in ANSI C for the Shapelib 1.2.10 library. The Shapelib library has been published
under the MIT licence.

agena >> 7

Table of Contents

1 INTrOAUCHON .. 13
I 2 1) 1 ([P 13
12 FEOTUIES it 13
1.3 Features iN DetQil ...t i 14
T HIS OIY ot e 15
2 Instaling and RUNNINg AQENA, 19
P2 S o 19
2.2 LINUX ot e 19
2. 3 WO S ottt 20
2.4 OS/2Warp 4 and eComMSIAtiON .. i 21
2.8 DS o 23
2.6 Mac OS X 10.5and higher ... 23
2.7 HOIKU o 24
2.8 Agena INHAlSAHON ..o 24
S OV IV W 29
3.1 INPUE CONVENTIONS it 29
3.2 GEetiNG fAMIIAr .o 29
3.3 UsefUl STOtEmMENTS o i 30
3.4 CONAIONS ottt 31
3.0 L0008 ittt 31
3.6 PrOCEAUIES ittt 33
3.7 GO BT S ittt e 33
4 DAt & OPEratiONS ... 37
4.1 Names, Keywords, aNd TOKENS ... vt s 37
(@]] T o 38
4,3 ENUM IO ON ottt 39
A, DI ON i 40
S Y o (5107 = T (=) T 41
A (11118 1 {2 41
4.6, 1T NUMDEIS o 41
4.6.2 AthmetiC OEIatONS o\ttt 43
4.6.3 InCrement aNd DeCremMIEeNt v 45
4.6.4 Mathemdtical CoNStaNTS .ot e 46
4.6.5 Complex MOt o 46
11197 T 47
4.8 BOOIEAN EXIESSIONS ottt ittt ettt ettt e 52
/A o | @] [54
R A 1 (@ Y P 55
4,9, 2 DI ONANES vttt 59
4.9.3 Table, Set and Sequence OPEratOrS ...ttt 60
4.9.4 TADIE FUNCHONS ottt e e 62
4,9.5 TADIE REIEIENCES o\t e 63
6 = £ P 64
4. T] SEBOUENCES ittt ittt ettt 66
4,12 More on the create statement ..o i 70

A T3 P o 71

8 Contents

O @1 T g 1Y/ 0T 73
B OOl . 77
BT CONAIIONS ittt 77
B i StatEmMENt L 77
T I N @ @@] (@] SR 78
5.1.3 CAse StatemMENt .. . 79
L T e T 1T 79
5. 2. 1 WhIlE-LO0 S ittt 79
LTV (o] /4 [0 (0] @ 80
5.2.3 fOr/in LOOPRS OVEI TADIES ...\t 82
5.2.4 fOr/in LOOPS OVEI SEQUENCES . ..o\ vttt ettt et 83
5.2.5 fOr/in LOOPS OVEI SHINGS .ttt 83
5.2.6 fOI/iN LOOIS OVl SIS .\ttt 84
5.2.7 fOr/in LOOPS OVEI PrOCEAUIES\ttt 84
5.2.8 fON/WhIlIE LOOIS ..\ttt 85
5.2.9 LOOPD INteImUD I ON o 85
O PIOGIAMIMING i 89
.1 PrOCEAUIES it 89
6.2 LOCAl VANODIES ..\t Q0
6.3 GlobAl VaNADIES ... Q1
6.4 Changing Parameter VAIUESo 92
6.5 OPtioNAl ATGUMIENTS Lttt 92
6.6 Passing Options in ANy OrAer vt 94
6.7 Type Checking & ErrorHaNAlNG ... Q4
6.8 MURIDIE RETUINS .\ttt e Q7
6.9 Shortcut Procedure Definition ... i e 97
6.10 User-Defined ProCeaUIE TYPES v vt ittt ittt @8
.11 SCOPING RUIES ..\t 98
6. 12 LOOPS IN PrOCEAUIES .\ttt it e 100
.18 POCKOGES ottt 100
6.13. 1 Wrting @ NeW PACKAGE ... oo 100
6.13.2 The WIth FUNCHON .t e 101
6. 14 RemMeEMbEr tAIES ... i 103
6.14.1 Standard Remember TAbIESt 103
6.14.2 Read-Only Remember TabIES ...t e 105
6.14.3 Functions for Remember TabIes 106
6.15 Overloading Operators with Metamethods ..., 107
6.16 Extending buUilf-in FUNCHONSo e 110
6.17 Closures: Procedures that Remember their Statecooo oo 112
O B e O o 113
6.18.1 Reading Text Fileso 113
6.18. 2 WHHNG TeXt FileS ... 113
7Standard LIbranies ..., 117
7.1 BASIC FUNCHIONS ot 117
7.2 Coroutine ManipUIOTON ... e 144
7.3 MOAUIES .. 145
7.4 StiNG MANIPUIGHON .. 146

7.4.1 Kernel Operators and Basic Library Functions ..., 146

agena >> 9

7.4.2The strings LiIorarny ... 148
7 A 3 PO OINS o 156
7.5 TAble ManiDUIOTON v 159
7.5, 1T Kerel OpeIOtOrS ottt ittt s 159
7.5, 2 tADIES LiOrary ot 161
7.6 SET MANiDUIOT ON i 163
7.7 Sequence ManiPUIOTON .. 165
7.8 MathematiCal FUNCHIONS ... vt e 168
7.8, 1 Kerel OO OIS ottt ittt s 168
7.8.2 Base Library FUNCHONS ...t 171
7.8. 3 MO LTy o 176
7.9 Input and Output FACIIITIESo 179
7.10 binio - Binary File PACKAQEo 187
7.11 Operating System FACIlIESo 193
7.12The Debug Liorary ..o 203
703 UTilS - UTIHES o 206
7. 14 stats - STANSTICS Lo 209
7.15 calc - CAICUIUS PACKAQGE ... vt 210
7.16linalg - Linear Algebra POCKAQEo 217
7.17 CloCk - CIOCK PACKAQE ... v 225
7.18 ads - Agena Database System ... 227
7.19 gdi - Graphic Device Interface package ... 236
7.19.1 Opening a File or WINAOW ... it 236
7.19.2 PlOtHNG FUNCHIONS .. oot e 236
7.19.3 COlOUS, P T i 237
7.19.4 Closing A File Or WINAOW .. v 237
7.19.5 Supported FIle TYPDES ...t 237
7.19.6 Plotting Graphs of univariate Functions ... 237
7.19.7 Plotting geometric Objects easilycooiviiiiiiiiiii 238
7.19.8 COlOUIS, PAm 2 i 239
7.19.9 GOl FUNCHONS ittt 239
7.20 mapm - Arbitrary Precision Librany ... 249
7.21 fractals - Library to Create Fractals ... 251
7.21.1 Escape-time Iteration FUNCHONSo 251
7.21.2 Auxiliary Mathematical FUNCHONSo 253
7.21.3 The Drawing Function fractals.draw ... 254
72 A EXOMIES vttt 255
7.22 xbase - Library to Read and Write xBase Files ..., 256
8 C APILFUNCHIONS ... 265
AP ENAIX A 289
F N IO 7= (@ 1 0] 289
A2 MetamMETNOAS ..t 289
A3 SYStEemM VANADIES ... 290
A4 CommaNnd LINE USAQE ... 292
A4 1 UsiNg The -8 OptiON L. . i e 292
Ad.2 Using the internal args TAbIE 292
A4.3 Running a Script and then entering inferactive Mode 293

A4.4 Running Scripts in UNIX and Mac OS X ... 293

10 Contents

A4.5 Command Line SWITCNES i 294
A5 Define your own Printing RUIES fOr TYPES ... vvvv v 294
A6 The Agena Initidlisation File 295
APPRENAIX B o 298
Bl MIT LiCENCE . i i 298
B2 GNU GPL V2 LiCENCE 1\ttt e s 298
B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library 305
B4 GNU Lesser General PUDIIC LICENSE ... i e 305
BS Other Copyright remarks ... 315

B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library) 316

agena >>

Chapter One

Introduction

12

1 Agena

agena >> 13

1 Infroduction

1.1 Abstract

Agena is an easy-to-learn procedural programming language designed to be used
in scientific, educational, linguistic, and many other applications.

Agena provides fast real and complex arithmetics, graphics, efficient text
processing, flexible data structures, infelligent procedures, package management,
plus various mulfi-user configuration facilities.

Its syntax looks like very simplified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1.

Agena binaries are available for Solaris, Linux, Windows, OS/2 & eComStation, Mac
OS X, Haiku, and DOS.

You may download Agena, itfs sources, and its manual from

http://agena.sourceforge.net

1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C,
Sinclair ZX Spectrum BASIC, and SuperBASIC for Sinclair QL.

The interpreter is based on the original Lua 5.1 sources created by Roberto
lerusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.

Agena supports all of the common functionality found in imperative languages:

e Qassignments,
* |oops,

e conditions,

e procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

* high-speed processing of extended data structures,

» fast string and mathematical operators,

* extended conditionals,

* abridged and extended syntax for loops,

* special variable increment, decrement and deletion statements,
» efficient recursion tfechniques,

e an arbitrary precision mathematical library,

* eaqsy-to-use package handling,

e and much more.

14 1 Agena

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition o these types, it
also supports Cantor sets, sequences, pairs, and complex numibers. With all of
these types, you can build fast applications easily.

1.3 Features in Detail

Agena offers various flow control facilities such as

* f/elif/else conditions,

* case of/else conditions similar to C's switch/case statements,

* s operator to return alternative values,

* numerical for/from/to/by loops with optional start and step values, and
automatic round-off error correction of iteration variables,

e combined for/while loops,

» for/in loops over strings and complex data structures,

* while and do/as loops similar to Modula's while and repeat/until not() iterators,

* a skip statement to prematurely trigger the next iteration of a loop,

* a break statement to prematurely leave a loop,

fast and easy data type validation with the try/else statement and the opftional
double colon facility in parameter lists.

Data types provided are:

rational and complex numibers with extensions such as infinity and undefined,
strings,

booleans such as true, false, and fail,

the null value meaning 'nothing’,

multipurpose tables implemented as associative arrays to hold any kind of data,
taken from Luq,

Cantor sets as collections of unique items,

seguences, i.e. vectors, 1o internally store items in strict sequential order,

pairs to hold two values or pass arguments in any order to procedures,

threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built info the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

* the << (args) -> expression >> syntax to easily define simple functions,

* user-defined types for procedures to allow individual handling (the same feature
is available to the above mentioned tables, sets, sequences, and pairs),

* q facility to return predefined results,

* remember tables for conducting recursion at high speed and at low memory
consumption,

e closures, a features to let functions remember their state, taken from Lua,

agena >> 15

* the nargs system variable which holds the number of arguments actually
passed to a procedure,

e metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Lua.

Some other features are:

* graphical capabilities in the Solaris, Mac, Linux, and Windows editions, provided
by the gdi package,

e an arbitrary precision mathematical library,

* functions to support fast text processing (see in, atendof, replace, lower, and
upper operators, as well as the functions in the strings and utils packages),

* easy configuration of your personal environment via the Agena initialisation file,

* an easy-fo-use package system also providing a means to both load a library
and define short names for all package procedures at a stroke (with function),

* the binio package to easily write and read files in binary mode,

* facility to store any data to a file and read it back later (save and read
functions),

* undergraduate Calculus, Linear Algebra, and Statistics packages,

* enumeration and multiple assignment,

* the external switch to a numeric for loop to pass the last iteration value to its
surrounding block,

* scope confrol via the scope/epocs keywords,

« efficient stack programming faciliies with the insert/into and pop/from
statements,

* bitwise operators,

e xBase file support.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
fransformed to Agena operators 1o speed up execution of programmes and thus
have been removed from the Lua packages. The Lua mathematical and stfring
handling packages have been tuned and extended with new funcftions.

Agena code is not compatible to Lua. lts C API, however, was left almost
unchanged and many new API functions have been added. As such, you can
infegrate any C package you have already written for Lua by just replacing the Lua-
specific header files.

1.4 History

| have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful atftempt made on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in

16 1 Agena

summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the “perfect’
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find
Algol 68-style elements in most cases, but also ABC/SQL-like syntax for basic
operations with structures. The primary reason for this is that sometimes natural
language statements are better to reminisce. | have stopped bothering on this
inconsistency issue.

Agena has been designed on Windows 2000, NT 4.0, Vista, and Windows 7 using
the MiInGW GCC 3.4.6 and 4.4.0 compilers. Further programming has been done
on a Sun Sparc Ultra 5, a Sun Blade 150, and a Sun Blade 1500 running Solaris 10,
and on openSUSE 10.3 to make the interpreter work in UNIX environments. The Mac
Version has been developed on a x86 Mac Mini. A lot of testing has been done on
an Acer Aspire ONE netbook running Linpus Linux/Fedora 8.

agena >>

Chapter Two

Installing & Running Agena

18

2 Installing and Running Agena

agena >> 19

2 Installing and Running Agena

2.1 Solaris

In Solaris, put the gzipped Agena package into any directory. Assuming you want to
install the Sparc version, uncompress the package by entering:

> gzip -d agena-x.y.z-sol10-sparc-local.gz
Then install it with the Solaris package manager:
> pkgadd -d agena-x.y.z-sol10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lusr/agena . The /usr/agenallib directory is called the “main Agena library folder .

Make sure you have the libgcc, ncurses, and readline libraries installed. From the
command line, type agena and press RETURN.

= Terminal

Wwindow Edit Options Help

yoyager: root
> agena

ACENA »> Language Demonstrator

AGENS comes with no warranty, 15 subject to the MIT Ticence, and has mainly
been developed on Lua 5.1 sources.

See http://agena. sourceforge.net for news and updates.

7267620 KBytes of physical R&M free.

¥

Image 1: Startup message in Solaris

The procedure for Solaris for x86 CPUs is the same. In Solaris, the package always
installs as SMCagena.

2.2 Linux
On Debian based distributions, install the deb installer by typing:

> sudo dpkg -i agena-x.y.z-linux-i386.deb
On Red Hat systems, install the rom distribution by typing as rooft:
> rpm -ihv agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/local/bin folder and the rest of all files intfo
lusr/agena . The /usr/agena/lib directory is called the “main Agena library folder .

20 2 Installing and Running Agena

Note that you must have the ncurses and readline libraries installed before.
From the command line, type agena and press RETURN.

The name of the Linux package is agena .

2.3 Windows

Just execute the Windows installer, and choose the components you want 1o instaill.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path fo the main Agena library folder (the
default) or set it later manually in the Windows Control Panel, via the " System ™ icon.

Agena 0.26.2 Language Demonstrator Setup - | Ellﬂ

Choose Components

O g e n G > > Choose which Features of Agena wou want to install,

Check the campanents yau wank ko inskall and uncheck the components wou dan't wank ko
install, Click Mext to continue,

Select the typs of instal; 7
Or, select the optional - [&] Agena Core Files (required) -
u:u:um|:ii:|nent5 wou wish bo Dacurent ation
inskall:
Set Environment Variable AGENAPATH
Append path to Agena binary bo PATH
Deskiop Shaorkcouk
- [plus Packages LI
T —
—Descripkion
Space required: 2,5MB Position your mouse over & component o see jts
description,

rullsaft Install System w2, 45

< Back I Mext = I Cancel

Image 2. Leave the framed settings checked

You may start Agena either via the Explorer menu, or by typing agena in a shell.
% |NT shell - agena] 4

AGENA >»> B.26.2 Language Demonstrator as of August 13, 2069

AGEMA comes with no warranty, iz subject to the MIT licence,. and has mainly
heen developed on Lua 5.1 sources.

Ifee http:~-sagena.sourceforge.net for news and updates.
1'723'876 KBytes of physical RAMH free.

> expl2xPix]):

il

s _ -]

Image 3: Start-up message in Windows

agena >> 21

2.4 OS/2 Warp 4 and eComStation

The WarplIN installer allows you 1o choose a proper directory for the interpreter, and
installs all files into it.

¢ N

warplM Archive Selediions Help

Please select the packages which are to be installed. You may change the
target paths for the packages.

This package will install &gena, a procedura
pragramming language

s i,

4 Back Mext » Cancel

Image 4. Setting up Agena in OS/2 Warp 4

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) or set it later by manually editing config.sys.

Just enter agena in an OS/2 shell to run the interpreter. Agena requires EMX runtime
0.9d fix 4 or higher.

22 2 Installing and Running Agena

Y oo]

warpIlM Archive Help

System Configuration

Please select additional configuration that wWarplM should perform after
installing this archive.

v
¥ Create workplace Shell objects

4 Back Mext » Cancel

Image 5: Leave the settings checked

e poe02a]
AGENA »»> 0.26.2 Language Demonstrator as of August 13, 2009

AGENA comes with no warranty, is subject to the MIT licence, and has mainly
been developed on Lua 5.1 sources.

See http://7agena.sourceforge.net for news and updates.

3'473'5%84 KBuytes of virtual RAM free.

» exp(24Pi*I):
1

>

Image 6: Agena console in OS/2 Warp 4

agena >> 23

2.5 DOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agenazip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable AGENAPATHN the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena , and the
library.agn file is in the lib subfolder, enter the following line into the autoexec.bat
file:

set AGENAPATH=c:/agena/lib

Note the forward slash in the path and the variable name in capital letters.

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

PATH C:\;C:\NWDOS;C:\AGENA\BIN
At least with Novell DOS 7, you must install cwsbpPmI.EXEdelivered with the DJPGG
edition of GCC as a TSR programme before starting Agena. The binary can be
found in the DJGPP distribution.
In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the cwsbPMI.EXEfile is in the c:\tools
folder, add the following line:

loadhigh c:\tools\cwsdpmi.exe -p
Novell DOS's command line history works correctly on the Agena prompt.

2.6 Mac OS X 10.5 and higher

Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

The Agena executable is copied into the /usr/local/bin folder, supporting files into
lusrfagena , and the documentation to /Library/Documentation/Agena . The
lusr/agena/lib directory is called the “main Agena library folder .

Note that you may have 1o install the readline library before.

From the command line, type agena and press RETURN.

24

2 Installing and Running Agena

2.7 Haiku

Put the agena-x.y.z-haiku.zip file into the /boot directory and unpack it.

This installs the executable info the /boot/icommon/bin folder and the rest of all files
iNtO /boot/common/share/agena . The /boot/common/share/agena/lib directory is
called the "“main Agena library folder".

Note that you must have the ncurses and readline libraries installed before.

From the command line, type agena and press RETURN.

2.8 Agena Initialisation

When you start Agena, the following actions are taken:

1.

The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, efc.) are created so that these package procedures
become available to the user.

All global values are copied from the G table to ifs copy _origG, so that the
restart function can restore the original environment if invoked.

The system variables libname and mainlibname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena , building the path accordingly.

The main Agena library folder contains library files with file suffix agn written in the
Agena language, or binary files with the file suffix so or dil originally written in
ANSI C.

In UNIX, Mac OS X, Haiku and Windows, if the path could not be determined as
described before, liboname and mainlibname are by default set to
lusr/agenallib in UNIX and Mac OS X, /boot/common/share/agenal/lib in Haiku,
and %ProgramFiles%\agenallib in Windows, if these directories exist and if the
user has at least read permissions for the respective folder. The liboname variable
is used extensively in the with and readlib functions. If it could not be set, many
functions will not be available.

Searching all paths in liboname from left fo right, Agena tries fo find the standard
Agena library library.agn and if successful, loads and runs it. The library.agn
file includes functions written in the Agena language that complement the C
libraries. If the standard Agena library could not be found, a warning message,
bbut no error, is issued. If there are multiple library.agn files in your path, only the
first one found is inifialised.

agena >> 25

5.

6.

7.

The global Agena inifialisation file - if present - called agena.ini in DOS based
systems and .agenainit in UNIX based systems including Haiku is searched by
traversing all paths in libname from left to right. As with library.agn , this file
contains code wriffen in the Agena language that an administrator may
customise with pre-set variables, auxiliary procedures, etc. that shall always be
available to every Agena user. If the initialisation file does not exist, no error is
issued. If there are multiple Agena initialisation files in your libname path, only
the first one found is processed.

The user's personal Agena inifialisation file called .agenainit on UNIX-based
platforms including Haiku and agena.ini on DOS-based platforms- if present - is
searched in the user's home folder and run. If this initialisation file does not exist,
no eror is issued. After that the Agena session begqins. See Appendix A6 for
further details.

The path tfo the current user's home directory is assigned to the homedir
environment variable.

26

2 Installing and Running Agena

agena >>

27

Chapter Three

Overview

28

3 Overview

agena >> 29

3 Overview

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems, Haiku, or DOS, type agena in a shell to start the interpreter.
On O§/2 and Windows, either click the Agena icon in the programme folder or type
agena in a shell.

3.1 Input Conventions
Any valid Agena code can be enfered at the console with or without a frailing
colon or semicolon:

* |f an expression is finished with a colon, it is evaluated and its value is printed at
the console.

e |f the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may opftionally insert one or more white spaces between operands in your
statements.

3.2 Getting familiar

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> 1+2:
3

If you want to store a value to a variable, type:
>c:=25;

Now the value 25 is stored to the name ¢, and you can refer to this number by the
name c in subbsequent calculations.

Assume that ¢ is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> 1.8*c + 32:

77

There are many functions available in the kermnel and various libraries. To compute
the inverse sine, use the arcsin operator:

> arcsin(1):
1.5707963267949

30 3 Overview

The root function determines the n-th root of a value:

> root(2, 3):
1.2599210498949

Some of the most common functionality has been implemented with operators to
ensure maximum speed. Try one of them. lower converts all letters from upper case
to lower case.

> lower(AGENA"):
agena

One of the types to hold structured values is the fable, which can hold any kind of
data. Assume you would like to store the birthdays of your friends, enter:

> birthdays := ['Neo' ~ '1970/01/01', 'Trinity' ~' 1970/12/247;

Determine Neo's birthday:

> birthdays['Neo':
1970/01/01

You can add new entries into your table.
> birthdays['Morpheus'] := '1952/04/01"

Now print its current content:

> birthdays:
[Morpheus ~ 1952/04/01, Neo ~ 1970/01/01, Trinity ~1970/12/24]

To delete entries, just type:

> birthdays['Morpheus'] := null

> birthdays:
[Neo ~ 1970/01/01,Trinity ~ 1970/12/24]

3.3 Useful Statements

The global variable ans always holds the result of the last statement you completed
with a colon.

> ans:
[Neo ~ 1970/01/01, Trinity ~ 1970/12/24]

The console screen can be cleared in the Solaris, Windows, UNIX, Mac OS X, Haiku,
0§/2, and DOS versions by just entering the keyword cls:

>cls

agena >> 31

The restart statement resets Agena to its inifial state, i.e. clears all variables you
defined in a session.

> restart;

If you prefer another Agena prompt instead of the predefined one, assign:

> PROMPT :='Agena$"
Agena$

You may put this statement into the agena.ini file in the Agena lib or your home
folder, if you do not want to change the prompt manually every time you start
Agena. See Appendix A6 for further detail.

Agena$ restart;

3.4 Conditions

Conditions can be checked with the if statement. The elif and else clauses are
optional. The closing fi is obligatory.

>if 1 < 2then

> print(valid’)

> elif 1 = 2 then

> print(‘invalid’)

> else

> print('invalid, too")
> fi;

valid

The case statement facilitates comparing values and executing corresponding
statements.

> c :='agena’;

> case C
of '‘agena’ then
print('Agena!’)
of 'lua’ then
print(‘Lual!’)
else
print('Another programming language !")
> esac;
Agena!

VVVVYV

\%

3.5 Loops

A for loop iterates over one or more statements. It begins with an initial numeric
value (from clause), and proceeds up to and including a given numeric value (to
clause). The step size can also be given (step clause). The od keyword indicates the
end of the loop body.

32 3 Overview

The fromn and step clauses are optional. If the from clause is omitted, the loop starts
with the initial value 1. If the step clause is omitted, the step size is 1.

The current iteration value is stored to a control variable (i in this example) which
can be used in the loop body.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains frue. The following statfements calculate the largest Fibonacci
numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do

> c:=b;b:=a+b;a:=c
> od;

> C:

987

A variation of while is the do .. as loop which checks a condition af the end of the
iteration. Thus the loop body will always be executed at least once.

>c:=0;

>do

> incc
>as c<10;
>C:

10

All flavours of for loops can be combined with a while condition. As long as the
while condition is satisfied, i.e. is true, the for loop iterates.

> for x to 10 while In(x) <= 1 do
> print(x, In(x))

> od;

10

2 0.69314718055995

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the following loop statements after the skip keyword for the current
iteration.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop. Thus the above loop could also be
written qs:

agena >> 33

> for x to 10 do

> if In(x) > 1 then break fi;
> print(x, In(x))

> od;

10

2 0.69314718055995

3.6 Procedures
Procedures cluster a sequence of statements into abstract units which then can be
repeatedly invoked.

Local variables are accessible 1o its procedure only and can be declared with the
local statement.

The return statement passes the result of a computation.

> fact := proc(n) is

> |ocal result;

> result:=1;

> forifrom 1tondo

> result ;= result * i od;
> return result

> end;

> fact(10):
3628800

A procedure can call itself.

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if, for, insert, etc.

> deg = << (x) ->x * 180/ Pi >>;

To compute the value of the function at 7, just input:

> deg(Pi/4):
45

A function with two arguments:

>sum:=<< (X, y)->X+y>>;

>sum(l, 2):

3.7 Comments
You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

34 3 Overview

> # this is a single-line comment

> a = 1; # a contains a number

A mulfi-line comment, also called the ‘long comment is started with the token
seqguence #/ and ends with the closing /# token sequence’.

> #/ this is a long comment,
> split over two lines /#

Now let us learn more about Agena.

' Multi-ine comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

agena >>

35

Chapter Four

Data & Operations

36

4 Data

agena >> 37

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

Type Description

number any integral or rational numiber, plus undefined and infinity

string any ftext

boolean booleans (e.g. frue, false, and fail)

null a value representing “nothing”

table a multipurpose structure storing numbers, strings, booleans,

tables, and any other data type
procedure a predefined collection of one or more Agena statements

set the classical Cantor set storing numbers, strings, booleans, and all
other data types available

sequence a vector storing numbers, strings, booleans, and all other data
types except null in sequential order

pair a pair of two values of any type

complex a complex number consisting of a real and an imaginary number

userdata part of system memory containing user-defined data; userdata

objects can only be created by modifying the ANSI C sources of
the interpreter

lightuserdata | a value representing a C pointer; available only if you modify the
ANSI C sources of the interpreter

thread a non-preemptive multithread object (a coroutine)

Table 1: Available types

Tables, sets, sequences, and pairs are also called sfructures in this manual.

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called "variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case lefter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

38

4 Data

Valid names

Invalid names

var

lvar

_var

1

varl

_varln

1

ValueOne

valueTwo

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

abs and arccos arcsin arctan as assigned atendof

break by bye case char clear cls copy cos cosh d
else end entier enum esac even exp external fail
finite for from gethigh getlow global if imag in
intersect into is join keys last left In Ingamma
minus nargs not od of or pop proc gsadd real rep
right sadd seq sethigh setlow shift si sign sin

sqrt subset tan tanh then to trim true try type
unique upper while xor xsubset yrt

boolean complex infinity lightuserdata null numb
sequence set string table thread undefined userd

The following symbols denote other tokens:

$orH [\ & & || ~~~ % NS # = <> <= >=
. o

y oooae £

4.2 Assignment

band bnot bor bxor

ec delete dict do elif
false fi filled first

inc insert int

local lower

lace restart return

sinh size skip split
typeof unassigned union

er pair procedure
ata

<>===(){}[]::

Values can be assigned to names in the following fashions:

name = value
name,;, name,, ..., namey .= value,, value,, ..., valuey
name; hame,, ..., name; -> value

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement™, name; is set to value,, name; is assigned
value,, etc. In the third form, called the “short-cut multiple assignment statement”,
a single value is set to each name to the left of the -> operator.

First steps:
>a:=1;
> a.

1

agena >> 39

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value.

>a:=1
1
> a = exp(a):

2.718281828459

Multiple assignments:

>a,b:i=1,2

If the left-hand side contains more names than the number of values on the
right-nand side, then the excess names are set to null.

>c,d=1

>c:
1

>d:
null

A short-cut multiple assignment statement:

> X, y -> exp(l)r

> X
2.718281828459

>y
2.718281828459

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, nhame, ... |
enum name; [, name,, ...] from value

In the first form, name,;, name,, etc. are enumerated staring with the numeric
value 1.

> enum ONE, TWO;

40 4 Data

> ONE:

> TWO:
2

In the second form, enumeration stars with the numeric value passed right after the
from keyword.
> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

4.4 Deletion

You may delete the contents of one or more variables with one of the following
methods: Either use the clear commmand:

clear name; [, name,, ..., namex]

>a:=1;
> clear a;
> a:

null

which also performs a garbage collection useful if large structures shall be removed
frorn memory, or set the variable to be deleted to null:

>pb:=1;

> b = null:
null

The null value represents the albsence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them.

In all cases - whether using the clear statement or assigning to null - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

agena >> 41

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

or xor

and

<><=>= = ==<>

in subset xsubset union minus intersect atendof
&:

+ - split || ™

* [% \ shift &&

not - (Uunary minus)

N k%

I and all unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (*, **) and pair (:) operators are right
associatfive, e.g. Xy~ z = x™ (y ™ z). All other binary operators are left associative.

> 1+3%4:
13

> (1+3)*4:
16

4.6 Arithmetic

4.6.1 Numbers

In the “real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of it.

1
-20
0
+4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rafional values must always be entered with a minus sign, buf
positive numbers do not need to have a plus sign.

You may optionally include one or more single quotes within a number to group
digits:

42 4 Data

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notation using the e symbol.

> le4.
10000

> -le-4:
-0.0001

If a number ends in the letter K, M, G, or D, then the number is multiplied with 1,024,
1,048,576 (= 1,024%), 1,073,741,824 (= 1,024%, or 12, respectively. If a number
ends in the letter k or m then the number is multiplied with 1,000 or 1,000,000,
respectively.

> 2k:
2000

> 1M:
1048576

> 12D:
144

Besides decimal numbers, Agena supports binary, octal, and hexadecimal
numibers. They are represented by the first two lefters ob or 0B, 0o Or 00, 0x Or 0X,
respectively:

System Syntax Examples

binary Ob<binary number> or 0b10 = decimal 2
0B<binary number>

octal Oo<octal number> or 0b10 = decimal 9

0O<octal number>

hexadecimal | ox<hexadecimal number> or | oxa = decimal 10
0X<hexadecimal number>

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

Beware of round-off errors in calculations involving very small or very large numbers.
These will ultimately produce wrong results because Agena intermnally uses ANSI C
numibers of double or complex double precision. The mapm package can be
used in such situations because it provides arbitrary precision arithmetic. See
Chapter 7.20 for more information.

agena >>

43

4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

Operator | Operation Details / Example
+ Addition 1+2»3
- Subftraction 3-2»1
* Multiplication 2*3»6
/ Division 4/2»2
A Exponentiation with rational power 2"3»8
*x Exponentiation with integer power, fasterthan ™ | 2*3» 8
% Modulus 5%2»1
\ Integer division 5\2%»2

Table 3. Arithmetic operators

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a\ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built info the kermel and also
available in the math, stats, linalg, and calc lioraries. Table 4 shows some of the
mMost common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure. Use the readlib or with? functions to activate the package before using
these functions.

Unary operators® like In, exp, etc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(x) Sine (x in radians) Kemel |sin(0) »0
Ccos(X) Cosine (x in radians) Kemel |cos(0) »1
tan(x) Tangent (x in radians) Kemel |tan(l) » 1.557407..
arcsin(x) Arc sine (x in radians) Kemnel | arcsin(0) »0
arccos(X) Arc cosine (x in radians) Kemel | arccos(0) » 1.570796....
arctan(x) Arc tangent (x in radians) | Kemel | arctan(Pi) » 1.262627..
sinh(x) Hyperbolic sine Kemel |sinh(0) »0
cosh(x) Hyperbolic cosine Kemnel | cosh(0) »1
tfanh(x) Hyperbolic tangent Kernel | tanh(0) » 0
abs(x) Absolute value of x Kemnel |abs(-1) »1
entier(x) Rounds x downwards to Kernel | entier(2.9) » 2

the nearest integer entier(-2.9) » -3
even(x) Checks whether x is even | Kemel | even(2) » true
exp(x) Exponentiation & Kemel | exp(0) »1
Ingamma(x) |InT x Kernel | exp(lngamma(3+1)) » 6

2 Check the with function which also provides an easy way to define short names for package

procedures.

% See Appendix Al for a list of all unary operators.

44 4 Data

Procedure Operation Library | Example and result
int(x) Rounds x to the nearest Kernel | int(2.9) » 2

infeger towards zero int(-2.9) »-2
In(x) Natural logarithm Kermnel |In(l) »0
log(x, b) Logarithm of x to the Base log(8, 2) » 3

base b
roundf(x, d) | Rounds the real value xfo | Base | roundf(

the d-th digit sqrt(2), 2) » 1.41
sign(x) Sign of x Kemel |sign(-1) »-1
sqrt(x) Square root of x Kernel |sart(2) » 1.414213..
sadd([...]) Sum Kemel | sadd([1, 2, 3]) » 6
mean([...]) Arithmetic mean stats stats.mean([1, 2, 3]) » 2
median([...]) | Median stats stats.median(

[1,2,3,4] »25

Table 4. Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

Operator | Operation Details / Example
&& Bitwise “and’ operation 78&8&2»2
| | Bitwise "or’ operation 1]]2»3
~n Bitwise "exclusive-or’ operation 7M2%5
~~ Bitwise complementary operation | ~~7 » -8
shift Bitwise shift If the right-hand side is positive,

the bits are shiffed to the left
(multiplication with 2), else they
are shifted to the right (division
by 2).

Table 5. Bitwise operators

By default, the operators internally calculate with signed integers. You can change
this behaviour to unsigned integers by using the kernel function:

> kernel(signedbits = false);
The default is restored as follows:
> kernel(signedbits = true);

You can query the higher and lower bits of a number with the gethigh and getlow
operators and change them with the sethigh and setlow operators.

> a ;= gethigh(Pi):
1074340347

> b := getlow(Pi):
1413754136

>x:=0;

agena >>

> x := sethigh(x, a):
3.1415920257568

> x := setlow(x, b):
3.1415926535898

> Pi=x:
true

4.6.3 Increment and Decrement

Instead of incrementing or decrementing a value, say

>a:=1;

by entering a statement like

>a=za+1:
2

you can use the inc and dec commands* which are also around 10% faster:

inc name [, value]
dec name [, value]

If value is omitted, name is increased or decreased by 1.

>inc a;

* Finishing an inc or dec statement with a colon instead of a semicolon is refused.

46 4 Data

4.6.4 Mathematical Constants
Agena features the following arithmetic constants:

Constant Meaning
degrees Factor 1/Pi*180 to convert radians to degrees
Eps Equals 1.4901161193847656e-08
EulerGamma | Euler-Mascheroni constant, equals 0.57721566490153286061.
Exp Constant e = exp(1) = 2.71828182845904523536
I Imaginary unit
infinity Infinity
Pi Constant 7 = 3.1415926535897932384¢6
radians Factor Pi/180 to convert degrees to radians
undefined An expression stating that it is undefined, e.g. a singularity
Table 6: Arithmetic constants
4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the ! constructor or the
imaginary unit represented by the capital letter 1. Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain. Complex values are of type complex.

>a:.=11;
> b = 243%;

> a+b:
3+4*|

> a*b:
-1+5%|

The following operators work on rational numbers as well as complex values: +, -, *,
[, ™, *,= <> abs, arccos , arcsin , arctan , cos, cosh, entier , exp, Ingamma, In,
sign, sin , sinh , sqgrt , tan , tanh , And unary minus. With these operators, you can
also mix numbers and complex numbers in expressions. You will find that most
mathematical functions are also applicable 1o complex values.

Note that the | operator has the same precedence as unary operators like -, sin ,
cos, etc. This means that -112 = -1+2* , but also that sin 112 = (sin 1)!12 . It is
advised that you use brackets when applying unary operators on complex values.

By setting the environment variable _EnvPrint.ZeroedCmplxVals to false, Agena
does not print complex values that are close to zero as just 0. Infernally, complex
values are not rounded, however, when setting _EnvPrint.ZeroedCmplxVals to true.

agena >> 47

4.7 Stings

Any text can be represented by including it in single or double quotes:

> 'This is a string":
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str :="l am a string.";
> str:
| am a string.

Strings can be of almost unlimited length. Strings can be concatenated, characters
or seguences of characters can be replaced by other ones, and there are various
other functions to work on strings.

Multiline-strings can e entered by just pressing the RETURN key at the end of each
line:

> str ;= "Two

lines’;

which prints as

> str:
Two
lines

A string may contain no text at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters between them:

>

You may obtain a specific character by passing a dollar sign and its position in
simple brackets right behind the string name. If you use a negative index n, then
the n-th character from the right end of the string is returned.

> str :='l am a string.";

> str$(1);
I

In general, parts of a string consisting of one or more consecutive characters can
be obtained with the §-substring notation.

string$(start [, end])

48 4 Data

You must at least pass the starting position of the sulbbstring. If only start is given then
the single character at position start is returned. If end is given too, then the
substring starting at position start up to and including position end is returned.

> str ;= 'string’

> str$(3):

r

> str$(3, 5):
rn

> str$(3, 3):
r

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str$(3, -1):
ring

> str$(3, -2):
rin

> str$(-3, -2):
ng

> str$(-3):
1

If you want to retfrieve only one single character from a string, you may also use the
faster indexing method:

string[oos]

This returns the character in sfring that is at position pos. If you pass a negative
number for pos, then the |pos|-th character from the right end of the string is
returned.

> str ;= 'string’

> str[2]:
t

> str[-1]:
g
In Agena, a text can include any escape sequences known from ANSI C, e.g.:

* \n :inserts a new line,
e \t :inserts a tabulator
* \b : puts the cursor one position to the left but does not delete any characters.

agena >> 49

> 'l am a string.\nMe too.":
| am a string.
Me too.

> 'These are numbers: 1\t2\t3":
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon
Example with backspaces but without the colon.

If you want to put a single or double quote into a string, put a backslash right in front
of it:

>'A quote: \'":
A quote: '

>"A quote: \"";
A quote: "

Likewise, a backslash is inserted by typing it twice.

Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third str ing":
First string, second string, third string

Instead of putting single or double quotes around a fext, you may also use a back
quote in front of the text, but not at its end. The string then automatically ends with
one of the following tokens®:

<space>",~[1{}();:#'=?2& % $ 8 \! A@<>|\r\n\t

This also allows UNIX-style filenames 1o be entered using this shor-cut method.

> “text:
text

> */proglang/agena/lib/library.agn:
/proglang/agena/lib llibrary.agn

Agena has basic operators useful for text processing:

Operator Return Function

sint number or null | Checks whether a substring s is included in
sting 1. If true, the position of the first
occurrence of s in t is returned; otherwise null
is returned.

s atendof t number or null | Checks whether a string t ends in a substring s.
If true, the position of the position of s in 1 is
returned; otherwise null is returned.

® For the current settings of your Agena version see the bottom of the agnconth file in the src
directory of the distribution.

50

4 Data

Operator Return Function

replace(s, p, 1) | string Replaces all patterns p in string s with substring
r. If pis notin s, then s is retfurned unchanged.
p might also be the position (O positive
intfeger) of the character to be replaced.

s split d sequence of Splits a string into its words with d as the

strings delimiting character(s). The items are returned

as a seguence of strings.

size(s) number Returns the length of string s. If s is the empty
string, O is returned.

abs(s) number Retumns the numeric ASCII code of character
S.

char(n) string Retuns the character corresponding to the
given numeric ASCIl code n.

lower(s) string Converts a sting to lowercase. Westermn
European diacritics are recognised.

upper(s) string Converts a string to uppercase. Westermn
European diacritics are recognised.

frim(s) string Deletes leading and trailing spaces as well as
excess embedded spaces.

Some examples:

> str ;= 'a string’;

Table 7: String operators

The character s is at the third position:

>'s'in str:
3

Let us split a string into its components that are separated by white spaces:

> strosplit' "
seq(a, string)

str is eight characters long:

> size(str):
8

The ASCII code of the first character in str , a, is:

> abs(str[1]):
97

franslated back to

> char(ans):
a

Put all characters in str 10 uppercase:

agena >>

51

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

Especially, the following functions can be used to find characters in a string:

Function Functionality Example

in Returns the first position of a substring (left | 'trin 'string’ » 2
operand) in a string (right operand); if the
substring cannot be found, in returns null.
The operator is more than twice as fast as
strings.seek.

instr Looks for the first match of a pattemn i”?;r(ena,
(second argument) in a sting (first -[a%]g-,'
argument). If it finds a match, then instr| 1)»1
returns its position; otherwise, it returns null.
A third, optional numerical argument
specifies where to start the search. The
function supports pattern matching,
almost similar to regular expressions. The
operator is more than twice as fast as
strings. find.

atendof Checks whether a sting (second ')i)”59' in ‘raining’
argument] ends in a substring (first
argument). If frue, the position of the
position is returned; otherwise null is
returned.

stings.find | Retums the fist match of a substing St,r"gg_s-f,i”fg(,
(second argument) in a sting (first |, ;ir;'gng’ ")
argument) and returns the positions where |
the pattem starts and ends. An optional St.”sr:rgirf'f.'”.?ﬁ
third argument specifies the position | 3) 9.t
where to start the search. If it does not find | » null

a pattern, the function returns null.

The function supports paftern matching
facilities described in Chapter 7.4.3.

strings.find(
'string’, 't.")
»2,3

52 4 Data

Function Functionality Example
stings.seek | Retuns the first match of a substring Stfisrt‘grf-s:e}t?'f(
second argument) in a sting (first| 580
argument) and returns the position where _
the paftem starfs. An optional third St,”srt‘grf-%e%'f(
argument specifies the position where to | 3 g.
start the search. If it does not find a | »null

pattemn, the function returns null.

Conftrary to strings.find, the function does
not support pattern matching and also
does not return the ending position. The
function is 30 % faster than strings.find.
stings.rseek | Starting from the right end and always | Strings.rseek(
running fo its left beginning, the function | 'Lftfing', ing’)
looks for the first matfch of a substring

(second argument) in a sfing (first | sgrings.rseek(
argument). The function retums the | gying, 'ong)
position where the patten starts with | » null
respect to its left beginning. If it does not
find a pattemn, the function returns null.

The function does not support pattern
matching and also does not retun the
ending position.

Table 8: Search functions and operators

For more information on these functions, check Chapter 7.4.1 and Chapter 7.4.2.
See also the descriptions of strings.match and strings.gmatch.

The replace operator can be used to find and replace characters in a string. See
Table 9.

A string always is of type string.

> type(str):
string

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "booleans . Any
condition, e.g. a < b, results to one of these logical values. They are often used to
tell a programme which statements o execute and thus which statements not fo
execute.

agena >> 53

Name Functionality Example
replace | In a sting (first argument) replaces all reglt?icnz('St'{éxt‘)
occurrences of a substring (second |, text
argument) with another one (third
argument] and refumns a new stfring.

Paftern matching facilites are not

supported.
A sequence of replacement pairs can | replace(string’,
e passed to the operator, too. ZeT?i(;]sé:'S', ')

You can also put a new string iNto A | strings.put('string’,

sting if you pass the position of the | g,TriTn)

character to be replaced. g

strings.put('string’,
2,TT)

» sTTring

strings.put('string’,

» sring

Table 9: The replace operator

Boolean expressions always result to the boolean values true or false. Boolean
expressions are created by:

* relational operators (>, <, =, ==, <=, >=, <>),
* logical operators (and, or, xor, not),

* logical names: true, false, fail, and null,

* in, subset, xsubset, and various functions.

Agena supports the following relational operators:

Operator | Description Example
< less than 1<2
> greater than 2>1
<= less than or equals 1<=2
>= greater than or equals 2>=1
= equals 1=1

: 1==11
== strict equals for structures® [1]:: 1[|
<> not equals 1<>2

Table 10: Relational operators

% See Chapter 4.9.3.

54 4 Data

Logical operators are:

Operator | Description Examples
and Both operands must evaluate to true so | frue and true » true
, false and false » false
that the boolean expression results fo true and false » false
frue. Otherwise the result is false. false and true » false
or At least one of the operands must true or true » true
true or false » true
evaluate to true so that the boolean false or true » true

expression results to true. If neither of the | false or false » false
operands is tfrue, the expression is false.
XOr Refurns frue if exactly one of the | truexorfalse» true
true xor true » false
operands evaluates to frue, and the | ta1se xor true » true
ofher one evaluates to false, fail, or null. | 1 xor null » true
It also returns frue if exactly one of its
operands evaluates to null and the other
one is non-null.

not Tums a true expression fo false and vice | nottrue » false
versa not false » true

Table 11: Logical operators

As expected, you can assign boolean expressions to names

>cond =1<2:
true

>cond:=1<2o0orl1l>2and1=1:
true

or use them in if statements, described in Chapter 5.

In many situations, the null value can be used synonymously for false.

The Boolean constant fail can be used to denote an error. With boolean operators
(and, or, not), fail behaves like the false constant, but remember that fail is always
unlike false, i.e. the expression fail = false results to false.

frue, false, and fail are of type boolean. null, however, has its own type null.

4.9 Tables

Tables are used 1o represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.
Here is a first example: Suppose you want to create a table with the following

meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

agena >> 55

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 | 7.70 -81.10
1.10 | 7.70 -82.96

>VLL:=[

> 1.02~[7.71, -78.28],
> 1.06 ~[7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 (the Martion day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed af the console in two ways: If the setting
kernel(longtable) is frue (e.g. by entering the statement kernel(longtable =true) ,
then each key~value pair is printed at a separate line. If the seffing
kernel(longtable’) is set to false, all key~value pairs wil be printed in one
consecutive line, as in the example above. Also, you can define your own printing
function that tells the interpreter how to print a table (or other structures). See
Appendix AS for further information on how to do this and other settings.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
seguences.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value, [, value,, ...]1]

>A:=[4,5, 6]
[4, 5, 6]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table A, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with 1 and count upwards sequentially. The
keys are always integral, so A in this example is an array whereas table vL1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

56 4 Data

fablenamelkey]

> A[1]:
4

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are identical:

tablenamelkey llkey:][...]
tablenamelkeys, keys, ...]

>A:=[3, 4]
[[3. 4]

The following call refers o the complete inner table which is af index 1 of the outer
table:

> A1]:
[3, 4]

The next call returns the second element of the inner table.

> AlL][2], ALL, 2]:
4 4

Tables may be nested:

>A:=[4, [5, [6]]]:
[4, [5, [6]1]

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A2, 2, 1]
6

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][0]:
Error in stdin, at line 1:
attempt to index field *?" (a number value)

Here A[1] returns the number 4, so the subsequent indexing attempt with 4[0] is an
invalid expression. You may use the getentry function to avoid error messages:

> getentry(A, 1, 0):
null

agena >> 57

Tables can contain no values at all. In this case they are called empty fables with
values to be inserted later in a session. There are two forms 1o create empty tables.

create table name; [, table name,, ...]

name; :=[]

> create table B;

creates the empty table B,
>B:=];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] :="'a’;

> B:
[a]

Alternatively, the insert statement always appends values to the end of a table:

insert value, [, value,, ...] infto name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign null o the indexed table name:

> B[1] := null;
>B:
[2 ~ b]

The delete statement works a little bit differently and removes all occurrences of a
value from a table.

delete value; [, value,, ...] from name

> insert 'b' into B;
> delete 'b' from B;

> B:
1

58 4 Data

In both cases, deletion of values leaves holes™ in a table, which are null values
between other non-null values:

>B:=[1,2,2,3]
> delete 2 from B

> B:
[1~1,4~3]

There exists a special sizing option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of sulbbsequent table inserions, since
with each insertion, Agena checks whether the maximum number of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size will be exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create table name;(size,) [, table names(size,), ...]

When assigning entries to the table, you will save at least 1/3 of computation time if
you know the size of the table in advance and initialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

agena >> 59

4.9.2 Dictionaries
Another form of a table is the dicfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[keys ~ value, [, key, ~ value,, ...]]]

>A:=[1~4,
[L~4,2~5,

~5,3~6]
...6]

> B :=[abs('p") ~ 'th]:
[231 ~ th]

Here is another example with strings as keys:
> dic ;= ['donald’ ~ 'duck’, 'mickey' ~ 'mouse';

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
fo dictionaries.

> dic['donald:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can bbe added with assignments such as:
> dic['minney'] := 'mouse’;

which is the equivalent 1o

> dic.minney := 'mouse’;

Dictionaries with an initial number of entries are declared like this:

create dict name(size,) [, dict name;(size,), ...]

60 4 Data

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name[(size4)] [, {table | dict} name,|(size,)]. ...]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A “structure in this context is a table, set, or sequence.

Name Return Function

cinA Boolean | Checks whether the structure A contfains the given
value c.

filled A Boolean | Determines whether a structure contains at least one
value. If so, it returns true, else false.

A=B Boolean | Checks whether two tables A, B, or two sets A, B, or two

sequences A, B contfain the same values regardless of
the number of their occurrence; if B is a reference to
A, then the result is also frue.

A<>8B Boolean | Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
their occurrence; if B is a reference to A, then the result
is false.

A== Boolean | Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference 1o A, then the result is also frue.

not(A == B) Boolean | The negation of A == B.

A subset B Boolean | Checks whether the values in structure A are also
values in B regardless of the number of their
occurrence. The operator also returns true if A = B.

A xsubset B Boolean | Checks whether the values in structure A are also
values in B. Contrary to subset, the operator returns
false if A = B.

A union B table, Concatenates two tables, or two sets, or two
set, seq | sequences A, B simply by copying all its elements -
even if they occur multiple times - to a new structure.
With sefts, all items in the resulting set will be unique, i.e.
they will not appear multiple times.

Aintersect B | table, Retuns all values in two tables, two sets, or two
set, seq | sequences A, B that are included both in A and in B as
a new structure.

A minus B table, Returns all the values in A that are not in B as a new
set, seq | structure.

agena >> 61

Name Return Function

copy A table, Creates a deep copy of the structure A, ie. if A
set, seq | includes other tables, sets, or sequences, copies of
these structures are built, too.

join A string Concatenates all strings in the table or sequence A.
size A number | Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sefs and sequences, the
numiber of items is returned.

sort(A) table, This function sorfs fable or sequence A in ascending
seq order. It directly operates on A, so it is destructive. With
tables, the function has no effect on values that have
non-integer keys. Note that sort is not an operator, so
you must put the argument in brackets.

unique A table, Removes multiple occurrences of the same value and
seq retfurns the result in a new structure. With tables, also
removes all holes (‘missing keys') by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.

sadd A number | Sums up all numeric table or sequence values. If the
tfable or sequence is empty or contains N0 numMeric
values, null is returned. Setfs are not supported.

gsadd A number | Raises each value in a table or sequence to the
power of 2 and sums up these powers. If the table or
sequence is empty or contains Nno numeric values, null
is returned. Sets are not supported.

Table 12: Table, set, and sequence operators
Here are some examples - try them with sets and sequences as well;

The union operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

[a, b, c, a,d]

intersect returns all values that are part of both tables as a new table.

[a]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times o the resulfing table.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

[b, c]

62 4 Data

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

The unique operator

« removes all holes (" missing keys ') in a table,
e removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

>unique[l~'a,3~'a,4~"'b:
[b, a]

You can search a table for a specific value with the in operator. It retuns true if the
value has been found, or false, if the element is not part of the table. Examples:

>'a'in[a,'b,'c:

retuns true.

>1in[a,'b,'c:

retuns false. Rememlber that in only checks the values of a table, not its keys.

4.9.4 Table Functions

Agena has a number of functions that work on tables (and sequences), e.g.:

Function Description Further detail
put(o, key, value) Inserts a key ~ value pair | It shifts up the original
info structure o. element at position key
and all other elements.
purge(o, key) Removes index key and All elements fo the right
its corresponding value are shiffed down, so that
from o. no holes are created.

Table 13: Basic table procedures
Suppose we want to add a new entry 10 at position 3 of table C:

>C:=[1,2 3, 4]
> put(C, 3, 10)

> C:
[1, 2,10, 3, 4]

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

agena >> 63

> C:
[1, 2,3, 4]

For other functions, have a look into Chapter 7 of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

>A=11,2];
assigning
>B = A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1,2] ; hence:

> insert 3 into A;

> A:

[1,2,3]

also yields:

> B:
[1, 2, 3]

Use copy to create a true copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called "deep copies'). Thus copy returns a new table without any reference to
the original one.

> B := copy(A);
> insert 4 into A;

> B:
[1, 2, 3]

With structures such as tables, sets, pairs, or sequences, all names to the left of an
-> operator will point to the very same structure tfo ifs right. This behaviour may be
changed in a future version of Agena.

>A,B->[|
>A1]:=1
> B:

[1]

64 4 Data

4,10 Sefts

Sets are collections of unique items: numbers, strings, and any other data except
null. Their syntax is:

{ Litem; [, itermy, .11}

Thus, they are equivalent to Cantor sets: An item is stored only once.

>A:={1,1,2 2
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green’, 'blue'};

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelelement]

If an element is stored o a set, Agena returns true:

> colours['redT:
true

If an item is not in the given set, the retumn is false. Nofe that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

If you want to add or delete items to or from a set, use the insert and delete
statements. The standard assignment statement setnamelkey] := value is not
supported with sets.

insert item, [, item,, ...] into name

delete ifem; [, itemy, ...] fromm name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, too.

agena >> 65

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name; [(sizes) 1[, set name, [(sizes)], ...]

When assigning items later, you will save at least 90 % of computation fime if you
know the size of the set in advance and initialise it with the maximum numiber of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the numibber of occurrences of a specific item or
its position do not concern. Compared 1o tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Nofte that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A :={}; B := A , A and B point to the same set.
Use the copy operator if you want to create "independent” sets.

The following operators work on sets:

Name Retun Function

cinA Boolean | Checks whether the set A contains the given value c.

filled A Boolean | Determines whether a set contains at least one value.
If s, it returns true, else false.

A=B Boolean | Checks whether two setfs A, B contain the same values

regardless of the number of their occurrence; if B is a
reference 1o A, then the result is also frue.

A<>B Boolean | Checks whether two sets A, B do not contain the same
values regardless of the number of their occurrence; if
B is a reference to A, then the result is false.

A== Boolean | Same as =,

A subset B Boolean | Checks whether the values in set A are also values in B.
The operator also retumns frue if A = B.

66 4 Data

Name Return Function

A xsubset B Boolean | Checks whether the values in set A are also values in B.
Contrary to subset, the operator returns false if A = B.

A union B set Concatenates two sets A, B simply by copying all its
elements o a new set. All items in the resulting set will
be unique, i.e. they will not appear multiple fimes.

Aintersect B | set Returns all values in two sets A, B that are included
both in A and in B as a new set.

A minus B set Returns all the values in A that are not in B as a new
set.

copy A set Creates a deep copy of the set A, i.e. if A includes

other tables, setfs, or sequences, copies of these
structures are built, t100.

size A number | Returns the size of a set A, i.e. the actual number of
elements in A.

Table 14: Set operators

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any numiber of items except null. You may sequentially add
items and delete items from it’. Compared fo tables, inserfion and deletion are
twice as fast with sequences.

Seqguences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are indexed only with positive integers in the same
fashion as table arrays are, staring at index 1. Other types of indexes are not
allowed.

Suppose we want to define a sequence of two values. You may create it using the
seq operator.

seq([itemy [, itemy, ...] 1)
> a:=seq(0, 1);
> a:
seq(0, 1)

You can access the items the usual way:

segnamelnumeric_key]

" The structure was originally introduced to efficiently support objects like complex numbers or
numeric ranges including a flexible way to pretty print them at the console.

agena >> 67

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned®,

> a[3]:
Error, line 1: index out of range

The way Agena outputs sequences can be changed by using the settype function.
In general, the settype function allows you to set a user-defined subtype for a
seguence, set, table, or pair.

> settype(a, 'duo’);

> a.
duo(0, 1)

The gettype function retumns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof operator also retumns this
user-defined sequence type and will not return 'sequence’

> typeof(a), gettype(a):
duo duo

This allows you to program special operations only applicable to certain types of
sequences.

A user-defined type can be deleted by passing null as a second argument to

seftype.

> settype(a, null);

> typeof(a):
sequence

The create seq statement creates an empty sequence and optionally allows to
allocate enough memory in advance to hold a given number of elements (which
can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded.

create seq name; [, seq hamey, ...]
create seq name;(size) [, seq name;(sizez), ...

¢ The error message can be avoided by defining an appropriate metamethod.

68 4 Data

ltems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> create seq a(4);
> insert 1 into a;
> a[2] :=2;

> a:
seq(l, 2)

Nofe that if the index is larger than the number of items stored to it plus 1, Agena
returns an error in assignment statements, since "holes” in a sequence are not
adllowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

>a[4] =4
Error, line 1: index out of range

>a[3]:=3

ltems can be deleted by sefting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted fo the left, thus their indices will change.

> a[1] := null

> a:
seq(2, 3)

> delete 2, 3 from a

>a:
seq()

Thus concerning the insert and delete statements, we have the following familiar
syntax:

insert itemy [, item,, ...] into name

delete ifem; [, itemy, ...] fromm name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A = seq(); B := A , A and B point to the same seqguence in
memory. Use the copy operator if you want to create "independent’ sequences.

> A :=seq()

>B:=A

> A[1] := 10

agena >>

> B:
seq(10)

Sequences can be used to implement stacks, and besides insert, two efficient
statements are available 1o remove an item from the bottom of the stack or from

the top of the stack:

The bottom and top operators return the element at the bottom of the stack and

pop bottom from name

pop top from name

the top of the stack, respectively. They both do not change the stack / sequence.

> stack := seq();

> insert 10, 11, 12 into stack;

> bottom(stack):

> top(stack):
12

> pop bottom from stack;

> pop top from stack;

> stack:
seq(11)

The following operators, functions, and statements work on sequences:

Name Description Example

= Equality check the Cantor way a=b

== strict equality check a==

<> Inequality check the Cantfor way a<>b

insert Inserts one or more elements. insert 1 into a

delete Deletes one or more elements. def'r%tri g’ 1

bottom Returns the item with key 1 bottom a

top Returns the item with the largest key top a

copy Creates an exact copy of a sequence; deep | P = copy a
copying is supported so that sequences inside
sequences are properly treated.

filed Checks whether a sequence has at least one | filled a
item.

getentry returns entries without issuing an error if a given | 9etentry@a, 1, 3)
index does not exist

in Checks whether an element is stored in the | 0in seq(d, 0)

sequence, retumns frue or false.

70

4 Data

Name Description Example
join Concatenates all stings in a sequence in | o)
sequential order. -
i op left from a
pop Eggje:g first or the last element from a BOB fight from a
size Retumns the current number of items. size a
sort Sorts a sequence in place. sort(a)
type Returns the general type of a sequence, i.e. | YPea
seguence.
typeof Retums the user-defined type of a sequence, | typeof a
or the basic type if no special type has been
defined.
unique Reduces mulfiple occurrences of an item in a | unique a
sequence to just one.
unpack Unpacks a sequence. See unpack in Chapter | Unpack(a)
7.1,
map Maps a function on all elements of a|Map(s< X -> x"2
sequence. >>, seq(L, 2, 3);
zZip Zios together either two sequences by Zif(+<< ey
applying a function to each of its respective Seq{l, 2),
elements. seq(3, 4))
intersect Searches all values in one sequence that are fnlniggegt)
also values in another sequence and refums | geq(2, 3)
them in a new sequence
minus Searches all values in one sequence that are | sed(l, 2)
not values in another sequence and returns minus seq(2, 3)
them as a new seguence.
subset Checks whether all values in a sequence are | sed(1)
included in another sequence. subset seq(1. 2)
union Concatenates two sequences simply by | sed(l, 2)
copying all its elements. union seq(2. 3)
settype Sets a user-defined type for a sequence. settype(a, ‘duo’)
gettype Returns a user-defined type for a sequence. gettype(a)
setmeta- | Assigns a metatable to a sequence. setmeta tabl e
table (a, mtbl)
getmeta- | Returns the metatable stored to a sequence. | 9etmeta tabl e(a)
table

Table 15: Basic sequence procedures

For more functions, consult the Agena Quick reference Excel sheet.

4.12 More on the crea te statement

You cannot only initialise any number of tables with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid;

agena >> 71

> create table a, dict b(10), set ¢, seq d(100), ta ble e(10);

>a,b,c,d,e:

0 0 { seal [

4.13 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally 1o allow passing options in a more flexible way to
functions, it is defined with the colon operator:

itemy : item;

The left and right operators provide read access 1o its left and right operands; the
standard indexing method using indexed names is supported, as well:

left [(] pair [)]
right [(] pair)]

> left(p), p[1]:
1 1

> right p, p[2]:
2 2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

>p[1] :=2;

> p[2] :=3;

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof(p):
pair
> settype(p, 'duo’);

> p:
duo(2, 3)

> typeof(p):
duo

72 4 Data

> gettype(p):
duo

The only other operators besides left and right that work on pairs are equality (= and
==), inequality (<>), fype, typeof, and in.

>p=32
false

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

>2in 0:10:
true

>'s"in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A ,Aand B
point o the same pair. Use the copy operator if you want to create "independent
pAirs.

Summary:
Name Description Example
=, == Equality checks (same functionality) a=b
<> Inequality check a<>b
in If the left operand x is a number and if the left | 1-2in 1:2
and right hand side of the pair a:b are numlbers,
then the operator checks whether x lies in the
closed interval [a, b] and returns true or false. If af
least one value x, a, b is not a number, the
operator returns fail.
left Returns the left operand of a pair. left(a)
right Retums the right operand of a pair. right(a)
type With pairs, always returns ‘pair’ . type(a)
typeof Returns either the user-defined type of the pair, or | t yPeof(a)
the basic type (pair) if no special type was
defined for the pair.
settype Sets a user-defined type for a pair. %GJEY)PG(&
gettype Returns the user-defined type of a pair. gettype(a)
setmetatable | Sets a metatable to a pair. ?;“pnfé?) table
getmetatable | Retums the metatable stored to a pair. ?pe)tmetatab'e

Table 16. Operators and functions applicable to pairs

agena >> 73

4,14 Other types
For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation.

74

4 Data

agena >>

75

Chapter Five

Control

76

5 Control

agena >> 77

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement frorn many listed. Its
syntax is as follows:

if condition, then
statements;,

[elif condition, then
statements;]

[else
statements;]

fi

The condition may always evaluate to one of the Boolean values true, false, or fail,
or to any other value .

The elif and else clauses are optional. While more than one elif clause can be
given, only one else clause is accepted. An if statfement may include one or more
elif clauses and no else clause.

If an if or elif condition results to tfrue or any other value except false, fail, or null, its
corresponding then-clause is executed. If any condition results to false, fail, or null,
the else clause is executed if present, otherwise Agena proceeds with the next
statement following the if statement.

Examples:

The condition frue is always frue, so the string 'yes' is printed.

> if true then
> print('yes")
> fi;

yes

In the following statement, the condition evaluates to false, so nothing is prinfed:

>if 1 <> 1then
> print(‘this will never be printed")
> fi;

An if statement with an else clause:

78

5 Control

> if false then

> print(‘this will never be printed")
> else

> print('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> fi;

this will always be printed

An if sfatement with elif and else clauses:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> else

> print('neither will this be printed")
> fi;

this will always be printed

5.1.2 is Operator

The is operator checks a condition and returns the respective expression.

else

S|

is condition then
expression,

expression;

This means that the result is expression, it condition is frue or any other value except

false, fail, or null; and expression., otherwise.

Example:

> x :=is 1=1 then true else false si:
true

which is the same as:

> if 1=1 then
> X :=true
> else

> x:=false
> fi;

agena >> 79

The is operator only evaluates the expression that it will retun. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest is operators.

5.1.3 case Statement

The case statement facilitates comparing values and executing corresponding
statements.

case name
of value, [, values,] then statements,
[of value, [, value,,] then stafements,]

[of ...]
[else statementsy]
esac

>a:='k}
> case a
> of'a’,'e', "', '0, 'u, 'y then result := ‘vowel'
> else result := 'consonant’
> esac;
> result:
consonant

You can add as many if .. then statements as you like. Fall through is not supported.
This means that if one then clause is executed, Agena will not evaluate the
following of clauses and will proceed with the statement right after the closing esac
keyword.

5.2 Loops

Agena has two basic forms of control-flow statements that perform looping: while
and for, each with different variations.

5.2.1 while-Loops

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains frue. If the condition is false, fail or null, no further iteration is done
and control returns to the statement following right after the loop body.

If the condition is false, fail, or null from the start, the loop is not executed at all.

while condition do
statements
od

80 5 Control

The following statements calculate the largest Filbonacci numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do
> c:=b;

> b:=a+b;

> a:=c

> od;

>C:

987

The following loop will never be executed since the condition is false:

> while false do
> print(‘this will never be printed")
> od;

A variation of while is the do .. as loop which checks a condition at the end of the
iteration and thus will always e executed at least once.

do
statements
as condition

>c:=0;
>do

> incc
>as c<10;
>C:

10

for loops are used if the number of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for fable and string iterations.

5.2.2 for/to loops

Let us first consider numeric for/to loops which use numeric values for control:

for [external] name [from sfarf] to sfop [by step] do
statements
od

name, start, stop, and sfep are all numeric values or must evaluate to numeric
values.

agena >> 81

The statement at first sets the variable name to the numeric value of starf. name is
called the confrol or loop variable. If start is not given, the start value is +1.

It then checks whether sfart <= stop. If sO, it executes statements and returns to the
top of the loop, increments name by sfep and then checks whether the new value
is less or equal stop. If so, statfements are executed again. If sfep is not given, the
control variable is always incremented by +1.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

> forito 3 do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

The loop control variable is local to the loop body, so it cannot be used after
looping completed. However, if you put the external keyword in front of the control
variable, you will have access to the control variable after looping completed and
may use its value in subsequent statements. This rule qpplies only 1o
for/from/to-loops with or without a while extension. Note that if you use the external
option within procedures, you usually want 1o declare the loop control variable as
local, otherwise it will be freated as a global variable.

> for external i to 1e300 while fact(i) < 1k do od

>
7

When using the external switch the following rules apply to the value of the control
variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement?® within the loop, or
if a for/while loop is terminated because the while condition evaluated to false,
then the control variable is set to the loop's last iteration value before quitting the
loop. There will be no increment with the loop's step size.

? See chapter 5.2.8 for more information in the break statement.

82 5 Control

Loops can also count backwards if the step size is negative:

> forifrom2to1by-1do
> print(i)

> od

2

1

A special form is the to .. do loop which does not feature a control variable and
iterates exactly n times.

>to 2 do

> print(iterating')
>od

iterating

iterating

Agena automatically uses an advanced precision algorithm based on Kahan
summation if the step size is non-infegral, e.g. 0.1, -0.01. This prevents round-off
errors and thus avoids that the loop stops before the last iteration value (the limit)
has been reached and that iteration values with round-off errors are returned.

If the step size is an integer, e.g. 1000, -1., then Agena does not use advanced
precision to ensure maximum speed.

5.2.3 for/in Loops over Tables
are used to traverse tables, strings, sets, and sequences, and also iterate functions.

If null is passed after the in keyword, then Agena does not execute the loop and
continues with the statement following it.

Let us first concentrate on table iteration.

for key, value in bl do
statrements
od

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

>a:=[4,5, 6]

> fori, jinado
> print(i,)

> od

1 4

2 5

3 6

agena >> 83

There are two variations: When putting the keyword keys in front of the control
variable, the loop iterates only on the keys of a table:

for keys key in tbl do
statements
od

Example:

> for keysiin ado
> print(i)

> od

1

2

3

The other variation iterates on the values of a table only:

for value in tbl do
statements
od

> foriin ado
> print(i)

> od

4

5

6

The control variables in for/in loops are always local to the body of the loop, the
external switch is not supported. You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy operator to safely traverse any
structure if you want to change, add, or delete its entries.

5.2.4 for/in Loops over Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

5.2.5 forfin Loops over Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations except the external option
mentioned in the previous subchapter are supported.

84 5 Control

for key, value in string do sfatements od

for value in sfring do sfatements od

for keys value in sfring do sfatements od

The following code converts a word to a sequence of abstract vowel, ligafure, and
consonant place holders and also counts their respective occurrence:

> str ;= 'sefter’;
>result :=";
>c,v,|->0;

> foriin str do

> casei

> of 'a', 'e', 'i', '0', 'u' then

> result := result & 'V*;

> inc v

> of '&", ‘&', '@, '0' then

> result ;= result & 'L";

> inc |

> else

> result := result & 'C'

> inc c

> esac

> od;

> print(result, v & ' vowels', | & ' ligatures', ¢ &' consonants’);
LCCcvC 1 vowels 1 ligatures 3 consonan ts

5.2.6 for/in Loops over Sets

All for loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister ;= {'swistar', 'sweastor’, 'svasar’, 'sist er'}

> for i in sister do print(i) od;
svasar

swistar

sweastor

sister

You may try the other loop alternatives to see what happens.

5.2.7 for/in Loops over Procedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If n >= 0 then the procedure returns null which quits the for/in iteration. See
Chapter 6 which describes procedures in detail.

agena >> 85

> double := proc(state, n)
> if n < state then
> inc n;

> return n, 2*n
> else

> return null

> i

> end;

> for i, j in double, 5, 0 do print(i, j) od

ORrWNPE
PO0OODMN

5.2.8 for/while Loop s

All flavours of for loops can be combined with a while condition. As long as the
while condition is safisfied, the for loop iterates. To be more precise, before Agena
starts the first iteration of a loop or continues with the next iteration, it checks the
while condition 1o be true or any other value except false, fail, or null.

for [external] i [from @] to b [by step] while condition do statements od
for [key,] value in sfruct while condifion do statements od
for keys key in sfruct while condition do statements od
for [key,] value in sfring while condition do statements od
for keys key in sfring while condition do statements od

An example:

> for x to 10 while In(x) <=1 do print(x, In(x)) o d
1 0
2 0.69314718055995

Regardless of the value of the while condition, the loop control variables are always
initiated with the start values: with for/to loops, @ is assigned to i (or 1 if the from
clause is not given); key and/or value are assigned with the first ifem in the table,
set, or sequence sfruct or the first character in string string.

5.2.9 Loop Interruption
Agena features two statements to manipulate loop execution. Both are applicable
to all loop types.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

86 5 Control

> forito5do

> if i = 3 then skip fi;
> print(i)

> ifi =4 then break fi;
> od;

1

2

4

This is equivalent to the following statement:

> forito 5 while i <5 do
> if i = 3 then skip fi;

> print(i)

> od;

1

>a:=0;

> while true do

> inca

> jfa> 5 then break fi
> if a < 3then skip fi
> print(a)

> od

3

4

5

agena >>

87

Chapter Six

Programming

88

6 Programming

agena >> 89

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programmes are usuadlly represented as procedures. The words
‘procedure” and “function™ are used synonymously in this text.

6.1 Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

procname = proc([par, [::typeq] [, par:[::fypes], ...] 1) [is]
[local name;, [, name,, ...]];
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.7). The is keyword is optional.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
inferactive level are global, and you can also creafe global variables within @
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is retfumned using the return keyword which may be put
anywhere in the procedure body.

retun value [, value?2, ...]

As you can see, you may not only return a single result, but also multiple ones.

Also, a procedure might not necessarily return anything - in this case do noft use the
return statement at all. If no return statement is given, the procedure does not even
retun the null value.

90 6 Programming

The following procedure computes the factorial of an integer'®:

> restart;

> fact := proc(n) is
> # computes the factorial of an integer n
> if n <0 then return fall

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

It is called using the synfax:

funcname([args [, argz, ...]1)

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately lead to stack overflows. So we should use an iterative
algorithm fo compute the factorial and store infermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable and assign values later
fo this variable, then it is global. Note that control variables in for loops are always
implicitly declared local if the external switch is not used, so we do not need to
explicitly declare them.

Local declarations come in different flavours:

local name; [, names, ...]
local name, [, name,, ...] := value, [, value,, ...]
local name; [, name, ...] -> value
local enum name; [, name,, ...] [from value]

In the first form, name,, etc. are declared local.

'°The library function fact is much faster,

agena >> 91

In the second and third form, name,, etc. are declared local followed by initial
assignments of values to these names.

In the last form, name,, etc. are declared local with a sulbbsequent enumeration of
those names.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then break fi
od;
return result
end;

VVVVVYVVYV

> fact(10):
3628800

result has been declared local so it has no value at the interactive level.

> result:
null

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable _EnvMorelnfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the global keyword. This is optiondl,
however, and only serves documentary purposes.

> fact := proc(n) is

> global _EnvMorelnfo;

> if n <0 then return fail fi;
> |ocal result ;= 1;

> forifrom 1tondo

> result ;= result * i

> if result = infinity then
> if _EnvMorelnfo then print('Overflow !') fi;
> break

> fi
> od;
> return result
> end;

92 6 Programming

We must assign _EnvMorelnfo @ value in order to get a waring message af
runtime.

> EnvMorelnfo ;= true;

> fact(10000):

Overflow !

infinity

6.4 Changing Parameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alfernative to the abs operator might be:

> myAbs := proc(x) is
> ifx<0then

> X 1= -X
> fi;
> return X
> end;

> myAbs(-1):
1

6.5 Optional Arguments

A function does not have 1o be called with exactly the number of parameters given
at procedure definition. You may optionally pass less or more values. If no value is
passed for a parameter, then it is automatically set 1o null at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warning message by
passing an optional argument instead.

> fact := proc(n, warning) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then
if warning then print(‘Overflow !) fi;
break
fi
od;
return result
end;

VVVVVVVVVVYV

> fact(10000):
infinity

The option should be any value other than null, false, or fail to get the effect.
> fact(10000, true):

Overflow !
infinity

agena >> 93

A variable numiber of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body.

> varadd := proc(?) is
> local result := 0;

> forito size varargs do
> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):

15

You may determine the number of arguments actually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;

> forito nargs do

> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):
15

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode ='domain":"real’ then
> return sqrt(x)

> elif mode = 'domain".'complex’ then
> return sqrt(x + 0*l)
> else

> return fail

> fi

> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain’:'real’):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string'".

it you need to conduct a Boolean equality operation (= operator) in a function call, such like
fla=b) , use the isEqual function, like f(isEqual(a, b))

94 6 Programming

> xsqrt(-2, domain = 'complex’):
1.4142135623731%

6.6 Passing Options in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

f:=proc(?) is
local bailout, iterations := 2, 128; # default values
for i to nargs do
case left(varargsli])
of 'bailout' then
bailout := right(varargs]i]);
of 'iterations' then
iterations := right(varargsli]);
else
print ‘'unknown option’
esac
od;
print(‘bailout = ' & bailout, 'iterations =" & iterations)
end;

> f();

bailout=2 iterations = 128

VVVVVVVVVVYVYVYVYV

> f('bailout:10);

bailout =10 iterations = 128
> f('iterations':32, 'bailout':10);
bailout =10 iterations = 32

Again, the single quotes around the name of the option (left-hnand side of the pair)
can be spared by using the = token which converts the given name to a string.

> f(bailout = 10, iterations = 32);
bailout =10 iterations = 32

6.7 Type Checking & Error Handling

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

1. The type operator determines the basic type of its argument.

2. The typeof operator checks for a basic and user-defined type.

3. A basic or user-defined type can be optionally specified in the parameter list of
a procedure by means of the preceding :: token so that it will be checked at
procedure invocation.

4. The try statfement checks whether one or more values are of a basic type.

The language also provides the error handling function that interrupts the execution
of a procedure and prints an error message if given.

agena >> 95

The following types are available in Agena:

boolean, complex, lightuserdata, null, number, p air, procedure,
sequence, set, string, table, thread, userdata.

These names are reserved keywords, but evaluate to strings so that they can be
compared with the result of the type operator that returns the type of a value as a
string.

> type(1):
number

> fact := proc(n) is
> if type(n) <> number then
> error('number expected’)
> i

> if n <0 then return null

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

> fact('10":

Error: number expected

Stack traceback:
stdin, at line 3, at line 1

You may also optionally specify types in the parameter list of a procedure by using
double colons:

> fact ;= proc(n::number) is
> if n <0 then return null
> elifn=0thenreturn 1
> else return fact(n-1)*n
> fi

> end;

> fact('10":
Error in stdin:
invalid type for argument #1: expected number, g ot string.

This form of type checking is more than twice as fast as the if/type/error
combination. If the argument is of the corect type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
Error in stdin:
missing argument #1 (type number expected).

Another efficient way of type checking is provided by the try statement.

96 6 Programming

ty name, [, name,, ...] i: typename,, [names [, name., ...] i fypenamey, ...]

tfry name; [, name,, ...] :: typename; else errorstring,
[, names [, namey, ...] :: fypename; else errorstringo, ...]

In the first form, a standard error message is displayed and further computation
stops. In the second form, a user defined error text is printed and execution of the
function is interrupted.

> fact := proc(n) is
try n :: number;
if n <0 then return null
elif n = 0 then return 1
else return fact(n-1)*n
fi

end;

VVVYVYVYV

> fact('10":
Error in stdin, at line 2:
expected number, got string for local 'n°

> fact := proc(n) is
try n :: number else 'bad value for argument’;
if n < 0 then return null
elif n = 0 then return 1
else return fact(n-1)*n
fi
end;

VVVYVYVYV

> fact('10":
Error in stdin, at line 2:
for local 'n": bad value for argument

Note that the type operator and the try statement only check for basic types. If you
want 1o check user-defined types for procedures, tables, sequences, sets, and
pairs, you should use the double colon notation or the typeof operator.

You can specify a user-defined type in the parameter list. Suppose you have
defined a type called triple

>t:=][1, 2, 3]

> settype(t, 'triple")

> sum := proc(x::triple) is
> return sadd(x)

> end

> sum(t):

agena >> 97

6.8 Multiple Returns

As stated before, a procedure can return no, one, or more values. There are two
ways to use these multiple returns in subsequent statements.

Consider the strings.find library function. It searches for a paftern in a sting and
retuns the first and the final position of the pattern as two numbers.

> strings.find('Wulfila', 'ila’):
5 7

If you assign the return to only one variable, e.qg.

> m := strings.find('Wulfila', 'ila’):
5

the second return is lost, so enter:

>m, n := strings.find('Wulfila', 'ila");

A function may also return a variable number of values. To store any of these returns
for later access, just put the returns in a sequence or table:

> seq(strings.find('Wulfila', 'ila")):
seq(5, 7)

6.9 Shortcut Procedure D efinition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if .. then, for, inser,
etc.

<< [(] [oar, [:: type4] [, par; [:: type2], ...]])] -> expr >>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact ;= << (x::number) -> exp(Ingamma(x+1)) >>

> fact(4):
24

98 6 Programming

Brackets around the parameters are optional, even if you specify types.

> isInteger = << x -> int(x) = x >>

> isInteger(1):
true

> isinteger(1.5):

false

Passing optional arguments using the ? notation is supported. In this case, use the
varargs table as described above.

6.10 User-Defined Procedure Types

The settype function allows to group procedures proc,, proc.,, ..., by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pairs.

settype(proc, [, proc,, ...}, 'your proctype')

The typeof operator returns the user-defined type of an object as a string. If no
special type has been defined, it returns its basic type. The latter also applies to
data types where settype cannot set user-defined types.

typeof(proc)

The type operator does not return the user-defined type even if it is seft, it will always
return the basic type of an object.

>fi=<<x->1>>
> settype(f, ‘constant’)

> typeof(f):
constant

> type(f):
procedure

6.11 Scoping Rules

In Agena, variables live in blocks or “scopes’. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, if- and case-statements, while-, do- and for-loops create blocks.

agena >> 99

Variables declared local within procedures are only visible in these procedures.

Variables declared local in the then clauses of an if-statement live only in the
respective then part. The same applies to variables declared local in else clauses.

> f:=proc(x) is

> ifx>0then

> local i := 1; print('inner, i)
> else

> local i := 0; print('inner, i)
> Ai;

> print(outer’, i) #iis not visible
> end;

> f(1);

inner 1

outer null

Variables declared local in for- or while-loops are only accessible in the bodies of
these loops. The loop control variables of for/to- and for/in-loops are implicitly
declared local to the respective loop bodies, with the exception of the external
facility of for/to loops which is described in the next subchapter.

f:=proc(x) is
while x <2 do
local i :=x
inc x
print(inner’, i)
od;
print('outer', i) #iis not visible
end;

VVVVVYVVYV

> f(1);
inner 1
outer null

A special scope can be declared with the scope and epocs statements:

scope
declarations & statements
epocs

The next example demonstrates how it works:

> f:=proc() is

> locala:=1;

> scope

> local a :=2;

> writeline('inner a: ', a);
> epocs;

> writeline('outer a: ', a);
> end;

>1()

inner a: 2

outer a: 1

100 6 Programming

6.12 Loops in Procedures

As already noted, the control variable of a for/to loop is only local to the loop itself -
but if you use the external keyword in the loop declaration, you will have access 1o
it after execution of the loop completed. Make sure that in this case, you define the
control variable local.

> mandelbrot := proc(x, v, iter, radius) is

> locali, c, z;

> z:=xly;

> c:=z

> for external i from O to iter while abs(z) <r adius do
> z:=2"2+¢cC

> od;

> returni # return the last iteration value

> end;

The procedure counts the number of iterations a complex value z takes to escape
a given radius by applying it to the formula z = z” 2+c. Since the loop control
variable i has been declared external, it can be used in the return statement.

> mandelbrot(0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

f:=proc() is
local i;
for external i to 3 do
local j;
for external j to 3 do od;
print(i, j)
od;
print(i, j)
end;

VVVVVVVVYV

\Y

—h
<)
<

4
4
4
n

WWN -

ull

6.13 Packages

6.13.1 Writing a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usuadlly stored to a table, so we first create a table called
helpers . After that, we assign the procedure ndigits and the auxiliary isinteger
function to this table.

agena >> 101

> create table helpers;
> helpers.isinteger ;= << x ->int(x) = x >>; # au x function

> helpers.ndigits := proc(n::number) is

> if not helpers.isinteger(n) then
> error('Error, argument is not an integer")
> fi;

> if n=0then
> return 1
> else

> return entier(In(abs(n))/In(10) + 1);
> fi;

> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
argument is not an integer

Stack traceback: in “error’
stdin, at line 3, at line 1

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;
> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order fo use the package again after you
have restarted Agena, use the run function.

> restart;

> run 'd:/agena/helpers/helpers.agn’
> helpers.ndigits(10):

2

You may print the contents of the package table at any fime:

> helpers:
[isInteger ~ procedure(0044A6EQ), ndigits ~ procedu re(0044A850)]

6.13.2 The with Function

The with function besides loading the package in a convenient way, automatically
assigns short names to all or a user-defined set of package procedures so that you
may use the shortcuts instead of the fully written function names.

102 6 Programming

In order to do this, you must prepend or append the location of your new package
fo liboname, or execute Agena in the directory containing your package. You may
do this by adding the following line into your personal Agena initialisation file (see
Chapter A6), assuming that the helpers.agn fle has been stored to
d:/agena/helpers

libname := libname & ';d:/agena/helpers’;

Alternatively, you may save the helpers.agn file into the lib folder of your Agena
distrioution if you do not want to modify libname.

Now in the interactive level, type:
> restart;

lioname is not reset by the restart statement because restart does not touch the
contents of this specific system variable.

> with 'helpers'
isInteger, ndigits

> isInteger(1); # same as helpers.isinteger(1)

You may also want with to print a start-up notice at every package invocation if you
assign a string to the table field packagename .initstring. Put the following line info
the helpers.agn file after the create table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of Decembe r 24, 2007\n’;

> restart;

> with 'helpers’
helpers v1.0 as of December 24, 2007

isInteger, ndigits

Since you may not want that short names are set for auxiliary functions, you can put
the names of all procedures for which short names shall be assigned as strings into
the packagename .loaded table using the register function. Insert the following line to
your helpers.agn ~ file at its end:

register(helpers, 'ndigits");
The contents of the helpers.agn file should finally ook like this:

create table helpers;
helpers.initstring := 'helpers v1.0 as of December 24, 2007\n";
helpers.isinteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n::number) is

agena >> 103

if not helpers.isinteger(n) then
error(‘'argument is not an integer’)
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

register(helpers, 'ndigits");

Save the file again and restart Agena.
> restart;

> with 'helpers’
helpers v1.0 as of December 24, 2007

ndigits

If your package includes an initialisation routine, then it will be run after the package
has been found successfully. The name if the initialisation routine must be of the
form "packagename.init’, e.qg.:

> helpers.init := proc() is
> writeline('l am run")
> end;

6.14 Remember tables

Agena features remember tables which if present hold the results of previous calls
to Agena or APl C procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed. Remember tables are called rfables or rofables for short.

There are two types of remember tables:

e Standard Remember Tables, called "rables’, that can be automatically
updated by a call to the respective function; they may e initialised with a list of
precomputed results (but do not need 10).

* Read-only Remember Tables, called rotables’, that cannot be updated by a
call to the respective function. Rotables should e inifialised with a list of
precomputed results.

6.14.1 Standard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have rememlber tables but do not rely
much on previously computed results.

104 6 Programming

By default, no procedure contains a remember table, they must explicitly be
created with the rinit function and opfionally filled with default values with the rset
function. Since those functions are very basic, a more convenient facility is the
rememiber function which will exclusively be used in this chapter.

In order for an rtable to be automatically updated, the respective function must
retun its result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return stafement adds these arguments and the corresponding result or results fo
the rfable.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First the function is defined:
>fi=<<x->x>>;

Only after the function has been created, the rable (short for remnemlber table) can
be set up. The remember function can be used to initialise rtables, explicitly set
predefined values to them, and add further values later in a session.

> remember(f, [0 ~ undefined));

The rtable has now been created and a default entry included in it so that calling f
with argument O returns undefined and not O.

> f(1):
1

> £(0):

undefined

If the function is redefined, the rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers can be implemented recursively and run with astonishing
speed using rtables.

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)
> end;

The call to assume assures that n is always non negafive and serves as an
“emergency brake” in case the remember table has not been set up propertly.

The rtable is being created with two default values:
> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):

agena >> 105

20365011074

the contents of the rtable will be:

> remember(fib):

[[22] ~ [28657], [39] ~ [102334155], [17] ~ [2584], 5] ~ [8], [27] ~
[317811], [50] ~ [20365011074], [3] ~ [3], [0] ~ [1], [46] ~ [2971215073],
[41] ~ [267914296], [1] ~ [1], etc.]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f:=proc(x, y) is
> returnx,y
> end;

> remember(f, [[1, 2] ~ [0, 0]]);
>a, b:=1(1, 2);

Please check Chapter 7.1 for more details on their use.

6.14.2 Read-Only Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
‘rotable” for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries 1o its rememier table via the
return statement; it can only do so via a call to the rset function (or a ufility that is
based on rset). This gives you total control of the contents and the amount of data
stored in a rememioer table - and thus on the speed of your procedure.

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results forn < 11, but retrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x::number) is

if int(x) = x then # is x an integer and nonne gative ?
return exp(Ingamma(x+1))

else
return undefined

fi

>
>
>
>
>
> end;

106 6 Programming

The defaults function can set up the rotable and enter precomputed values into it.
> # set precompiled results for 0! to 10! to fact

> defaults(fact, [

> 0~1,1, 2,6, 24, 120, 720, 5040, 40320, 36288 0, 3628800

>]

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3 1~1[6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the defaults function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):

[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880 1, [10] ~ [3628800], [0]
fS][l],[g_lzlg]f [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6].

A read-only remember table can be deleted by passing null as a second
argument to defaults.

6.14.3 Functions for Remember Tables

For completeness, all basic functions that work on remember tables are the
following:

Procedure Details

hasrtable (f) Checks whether procedure f possesses an rtable.

rget(f) Returns the rtable of function f .

rinit(f) Initialises a standard remember table for the
function f .

roinit(f) Initialises a read-only remember table for the
function f .

rset(f, argument, return) Adds function argument(s) and the corresponding

rset(f, [arguments], [returns]) | retum(s) to the rable of procedure f .

rdelete(f) Deletes the rtable of function f entirely. If you want
to use a new rtable with the function, you have to
inifialise it with rinit again.

rwritemode(f) Returns true if a function has a standard
remember table, false if it has a read-only
remember table, and fail if it has no rememiber
table at all.

Table 17: Functions for remmember tables

agena >> 107

6.15 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means 1o apply existing operators to tables, setfs, sequences, and pairs.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to learn names of new functions'?.

This method of defining additional functionality to existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a consfructor to produce complex values and three metamethods for
adding complex values with the + foken, determining their absolute value with the
standard abs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part af the second.

> cmplx := proc(a::number, b::number) is
> create local seq r(2);

> inserta, bintor;

> returnr

> end;

To define a complex value, say z = 0 + J, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0,1) . This can be easily done with the settype function:

> cmplx := proc(a::number, b::number) is
> create local seq r(2);

> inserta, bintor;

> settype(r, 'cmplx’);

> returnr

> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error in stdin, at line 1:
attempt to perform arithmetic on a sequence valu e

2For performance reasons, complex arithmetic has been built directly into the Agena kemnel.

108 6 Programming

Metamethods are defined using dictionaries, called “metatables” . Their keys, which
are always strings, denote the operators 1o be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See the Appendix A2 for
a list of all available method names. To overload the plus operator use the ' add'
string.

Assign this metamethod to any name, cmplx_mt in this example.

>cmplx_mt =

> ' add'~ proc(a, b) is

> return cmplx(a[1]+b[1], a[2]+b[2])
> end

>]

Next, we must attach this metatable cmplx_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable

> cmplx := proc(a::number, b::number) is
create local seq r(2);
inserta, bintor;
settype(r, '‘cmplx’);
setmetatable(r, cmplx_mt);
return r
end;

VVVYVYVYV

Try it:

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method 1o calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt.__abs := << (a) -> hypot(a[1l], a[2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), abs ~ procedure(004 D2D30)]

>z :=cmplx(1, 1)

> abs(z):
1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the ' tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is
> return is z[2]<0 then z[1]&z[2]&'I" else z[1]& '+'&z[2]&'l' si;
> end;

agena >> 109

>z
1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit | = O+i and use it in subsequent operations. Before assigning the i
unit, we have to add a metamethod for multiplying a number with a complex
number.

> cmplx_mt.__mul := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = ‘cmplx’ then

> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx’ then

> return cmplx(a*b[1], a*b[2])

> fi

> end;

and also extend the metamethod for complex addition.

>cmplx_mt.__add ;= proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = ‘cmplx’ then
> return cmplx(a[1]+b[1], a[2]+b[2])

> elif type(a) = number and typeof(b) = 'cmplx’ then
> return cmplx(a+b[1], b[2])

> i

> end;

> i:= cmplx(0, 1);

> a = 1+2*:
1+2i

Until now, the real and imaginary pars can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like zre and z.im in
both read and write operations is provided by the ' _index and ' writeindex'
metamethods, respectively.

The _index metamethod for reading values from a structure works as follows:

e |f the structure is a table, then the metamethod is called if the call to an indexed
name results to null.

e |f the structure is a set, then the metamethod is called if the call to an indexed
name results to false.

* If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The wiiteindex metamethod for writing values to a structure works as follows:
e |f the structure is a table, sequence or pair, then the metamethod is always
called.

¢ The metamethod is also supported by the insert statement.

The respective procedures assigned to the index and _ writeindex keys of a
metatable should not include calls 1o indexed names, for in some cases this would

110 6 Programming

lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawget function to directly read values from a
structure, and the rawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to infeger keys:
> cmplx_indexing = [re'~1, 'im'~2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like are and a[1] . In the following read procedure the argument x
represents the complex value, and the argument y is assigned either the string 're’

or 'im . Thus, cmplx_indexing[re] will evaluate to the index 1, and
cmplx_indexing['im’] to index 2.

> cmplx_mt.__index := proc(x, y) is # read operati on

> if type(y) = string then # for calls like "a. re’ or "a.im’

> return rawget(x, cmplx_indexing[y])

> else

> return rawget(x, y) # for calls like "a[1] or "a[2]

> fi

> end;

In the write procedure, argument x will hold the complex value, y will be either 're'
or'im , and z is assigned the component - a rational number -, i.e. x.re := z or
X.im:=z

> cmplx_mt.__ writeindex := proc(X, Y, z) is # writ e operation
> if type(y) = string then

> rawset(x, cmplx_indexing[y], z)

> else

> rawset(x, y, z) # for assignments like "a[1] := value’
> fi

> end;

You can now use the new methods.

>a:
1+2i

> a.re:
1

>a.im:=3

>a:
1+3i

6.16 Extending built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

agena >> 111

Note that only Agena functions wriften in C or in the language itself can be
redefined, and that operators cannot.

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch 1o the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> root(-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

> scope
save the original function in a “hidden’ var iable

local oldroot := root;
root := proc(x, n) is # new definition
local result := oldroot(x, n);
if result = undefined then # switch to com plex domain
result := oldroot(x+0*I, n)
fi;
return result
end;

VVVVVVVVVYVYVYVYV

epocs;

The original function root is stored to the local oldroot variable so that the user can
no longer directly access it.

> root(-2, 2):
8.6592745707194e-017+1.4142135623731*1

If you wish to permanently use your redefined functions, just put them into the
agena.ini file, located either in the lib folder of your Agena installation, or your
home directory. Since files have their own “scope ', the scope and epocs keywords
are no longer needed (but can be left in the file).

112 6 Programming

6.17 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's
internal variables which can survive and keep their values even after the call to the
procedure completed.

SO with a successive call to the same procedure, it can access these values and
use them in the current call again.

Let us define an iterator function that successively returns an element of a table:

> traverse := proc(o::table) is
local count := 0;
return proc() is
inc count;
return o[count]
end
end;

VVVYVYVYV

The traverse procedure is called a factory for it returns the closure as a function
which we assign to the name iterator . The iterator ~ function remembers its state
and can be called like "normal’ functions:

> iterator():
a

What happened ? The call to traverse with the table [a', b, 'c] as its only
argument initialised the variable count and assigned it to 0. The table you passed is
also stored to the closure's internal state. With the first call 1o iterate , count was
incremented from 0 to 1, followed by the return of the first element in the table.

> iterator():
b

> iterator():
c

Since the table has no more elements left (count = 4), it now returns null.

> iterator():
null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2():
a

> iterator2():

agena >> 113

> iterator3():
a

6.18 File /O

Agena features various functions to deal with files, to read lines and write values to
them. Most of the functions come from Lua. All the functions processing files are
included in the io and the binio packages.

6.18.1 Reading Text Files

One of the most useful functions to read in a text file line by line is the io.lines
procedure which accepts the name of the file to be read as a sting. They are
usually used in for loops. The line read is stored to the loop key, the loop value is
always null.

> for i, j inio.lines('d:/agena/lib/agena.ini') do

> print(, j)

> od

execute := os.execute; null
getmeta ;= getmetatable; null
setmeta := setmetatable; null

6.18.2 Writing Text Files

To write numbers or strings into a file, we must first create it with the io.open function.
The second argument tells Agena to open the file in “write” mode.

> file := io.open('d:/file.text', 'w");

i0.open returns an infeger, a so-called file handle. File handles are used in many 10
functions, e.qg. the write procedure.

> jo.write(file, 'l am a text.");

> jo.write(file, 'Me ', 't00.");

After all values have been written, the file must be closed with io.close.

> jo.close(file);

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numibers or strings - can
be accessed and stored to the file thereafter. The same qpplies to pairs: use the
left and right operators to write their components.

The following statements write all keys and values to the file. The keys and values are

separated by a pipe ' , and a newline is inserted after each key~value pair has
been added. Notfe that you can mix numiers and strings.

114 6 Programming

>a :=[10, 20, 30];

> file := io.open('d:/table.text’, 'w");
> fori, jinado

> jo.write(file, i, |, j, "\n")

> od;

> jo.close(file);

agena >>

115

Chapter Seven

Standard Libraries

116

7 Standard Libraries

agena >> 117

7 Standard Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services fo the language (e.g., next and getmetatable; others provide
access to "outside" services (e.g., I/O); and others could be implemented in Agena
itself, but are quite useful or have ciritical performance requirements that deserve
an implementation in C (e.Q., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Agena has the following standard libraries:

* the basic library,

* package library,

o string library,

« table library,

« mathematical library,

» two input and output libraries,
» operating system library,

* debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

7.1 Basic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

abs (x)

If x is a number, the abs operator will return the absolute value of x. Complex
numbers are supported.

If x is a Boolean, it will return 1 for frue, O for false, and -1 for fail.

If x is null, abs will return -2.

118 7 Standard Libraries

If x is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function retumns fail.

anames ([option])

Returns all global names that are assigned values in the environment. If called
without arguments, all global names are refumned. If option is given and option is a
string denoting a basic or user-defined type (e.9. 'boolean' , 'table’ , etc.), then all
variables of that type are returned.

The function is writfen in the Agena language and included in the library.agn file.

assigned (obj)

This Boolean operator checks whether any value different from null is assigned to
the expression obj . If obj is dlready a constant, i.e. a number, boolean including
fail, or a string, the operator always returns true. If obj evaluates 1o a constant, the
operator also returns true.

See also: unassigned.

assume (obj [, message])

Issues an eror when the value of its argument obj is false (i.e., null or false);
otherwise, retuns all its arguments. message is an error message; when absent, it
defaults to "assumption failed".

attrib (obj)
With the table obj , returns a new table with

e the cumrent maximum number of key~value pairs allocable to the array and
hash parts of obj ; in the resulting table, these values are indexed with keys
‘array_allocated' and 'hash_allocated' , respectively,

* the number of key~value pairs actually assigned to the respective array and
hash sections of obj; in the resulting fable, these values are indexed with keys

‘array_assigned' and 'hash_assigned' ,
e an indicator ‘array_hasholes' stating whether the array part contains af least
one hole.

With the set obj , returns a new table with

* the current maximum number of items allocable to the sef; in the resulting
table, this value is indexed with the key 'hash_allocated'

* the number of items actually assigned 1o obj ; in the resulting table, this value is
indexed with the key 'hash_assigned'

With the sequence obj , refurns a new table with

agena >> 119

* the maximum numlber of items assignable; in the resulfing table, this value is
indexed with the key 'maxsize’ . If the numlber of entries is not restricted,
'maxsize’ s infinity.

* the curent number of items actually assigned 1o obj ; in the resulting table, this
value is indexed with the key 'size'

With the function obj returns a new table with

* the information whether the function is a C or an Agena function. In the resulting
table, this value is indexed with the key 'C' ;

* the information whether a function contains a remember table, indicated by the
key 'mableWritemode', where the entry true indicates that it is an rtable (which is
updated by the return statement), where false indicates that it is an rotable
(which cannot be updated by the return statement), and where fail indicates
that the function has no remember table at all.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return

may be a number or complex value. The Beta function is defined as: Betq(x, y) =
IxxI'y
W.wi’rh special treatment if x and y are integers.

bintersect (obj1, obj2 [, option])

Returns all values of table or sequence objl that are also values in table or
seqguence obj2 . objl and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in objl . If N0 opfion is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
already have been sorted, for no correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the intersect
operator,

The function is written in the Agena language and included in the library.agn file.

bisEqual (obj1, obj2 [, option])

Determines whether the tables objl and obj2 oOr sequences objl and obj2 contain
the same values. The function performs a binary search in obj2 for each value in
objl . If N0 option is given (any value), obj2 is sorted before starting the search. If
you pass an option of any type then obj2 should already have been sorted, for no
correct results would be returned otherwise.

With larger tables or sequences, this function is much faster than the = operator.

The function is writfen in the Agena language and included in the library.agn file.

120 7 Standard Libraries

bminus (obj1, obj2 [, option])

Returns all values of table or sequence objl that are not values in table or
sequence obj2 . objl and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in objl . If NO option is given, obj2 is sorted
before staring the search. If you pass the option then obj2 should already have
been sorted, for no correct results would be returned otherwise.

With larger tables or seqguences, this function is much faster than the minus
operator.

The function is writfen in the Agena language and included in the library.agn file.

bottom (obj)

With the sequence obj , the operator returns the element atf index 1. If the sequence
is empty, it returns null.

See also: top.

bye
Quits the Agena session. No arguments or brackets are needed.

clearvli[, v2,..]

Deletes the values in variables vi, v2, ..., and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

concat (obj [, sep [, i [, jlll)

Returns objli] & sep & obj[i+1] --- sep & objj] , where obj is either a table or
sequence of strings. The default value for sep is the empty string, the default for i is
1, and the default for j is the length of the table. If i is greater than j, returns the
empty string. The empty string is also returmned, if obj consists entirely of non-strings.

Use the toString function if you want to concatenate other values than strings, e.g.:

> concat(map(toString, [1, 2, 3])):
123

countitems (item, s)
countitems (f, s [, ...])

In the first form, counts the number of occurrences of an item in the structure (tfable,
set, or sequence) s.

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in s that satisfy the given relation are counted.

agena >> 121

The return is a number. The function may invoke metamethods.
See also: select.

defaults (f)
defaults (f, tab)
defaults (f, null)

Administrates read-only remember tables of functions. As it works exactly like the
remember function, except that it creates remember tables that cannot be
updated by the return statement, please refer to the description of the remember
function for further details.

dimension (a:b [, c:d] [, init])

Creates a 1-dimensional sparse table or a 2-dimensional sparse table with arbitrary
index ranges (of type pair) a:b and c:d. If the last argument is not a pair, it is used as
an initialiser for all elements, otherwise all elements default to null.

duplicates (obj, option)

Retuns all the values that are stored more than once to the given table or
sequence obj , and returns them in a table or sequence. Each duplicate is returned
only once. If option is not given, the structure is sorted before evaluation since this is
needed to determine all duplicates. The original structure is left untouched,
however. If a value of any type is given for option , the function assumes that the
structure has been already sorted.

The function is writfen in the Agena language and included in the library.agn file.

error (message [, level])

Terminates the last protected function called and retuns message as the error
message. Function error never returns.

Usually, eror adds some information about the error position at the beginning of the
message. The level argument specifies how to get the eror position. With level 1
(the default), the error position is where the error function was called. Level 2 points
the error to where the function that called eror was called; and so on. Passing a
level O avoids the addition of error position information to the message.

G

A global variable (not a function) that holds the glolbal environment (that is, _G._G =
_G) . Agena itself does not use this variable; changing ifs value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

122 7 Standard Libraries

filled (obj)

This Boolean operator checks whether a table, set, or sequence obj contains at
least one item and returns true if so; otherwise it returns false.

gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt :

» 'stop': stops the garbage collector.

* 'restart: restarts the garbage collector.

» 'collect: performs a full garbage-collection cycle (if no option is given, this is
the default action).

* 'count: returns the total memory in use by Agena (in Koytes).

» 'step". performs a garbage-collection step. The step 'size' is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
frue if the step finished a collection cycle.

» 'sefpause': sets arg /100 as the new value for the pause of the collector.

» ‘'setstepmul: sets arg /100 as the new value for the sfep mulfiplier of the
collector.

getentry (o [, k 1 - K nl)

Returns the enfry ok 4, .., k] from the table or sequence o without issuing an error
if one of the given indices (second to last argument) does not exist. It conducts a
raw access and thus does not invoke any metamethods.

Ifolk 1, ...,k] does not exist, null is returned. If only o is given, it is simply retumed.

getfenv (f)

Returns the current environment in use by the function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling geffenv. If the given function is not an Agena function, or if f is O, getfenv
returns the global environment. The default for f is 1.

getmetatable (obj)

If obj does not have a metatable, returns null. Otherwise, if the obj 's metatable has
A ' metatable' field, returns the associated value. Otherwise, returns the
metatable of the given obj .

agena >> 123

gettype (obj)

Returns the type - set with seftype - of a function, sequence, set, or pair obj as a
string. If no user-defined type has been set, or any other data type has been
passed, null is returned.

See also: settype, typeof.

globals (f)

Determines'® whether function f includes global variables (names which have not
been defined local).

has (s, X)

Checks whether the structure s (a table, set, sequence, or pair) contains element x.
With tables, both indices (keys) and entries are scanned (if the index is a seft, table,
pair, or sequence, the index is not scanned, however). With sequences, only the
entries (not the keys) are scanned. With pairs, both the left and the right item is
scanned. The function performs a deep scan so that it can find elements in deeply
nested structures.

The function is writfen in the Agena language and included in the library.agn file.

hasrotable (f)

Checks whether function f has a read-only remember table (that cannot be
updated by the return statement). It retuns true if it has got one, and false
otherwise.

hasrtable (f)

Checks whether function f has a remember table (that can be updated by the
return statement). It returns true if it has got one, and false otherwise.

isBoolean (obj)

Checks whether obj is of type boolean and returns true or false.

isComplex (obj)
Checks whether obj is of type complex and returns true or false.

"*Note that the function not always returns all global names.

124 7 Standard Libraries

isEqual (obj1, obj2)
Equivalent to obj1 = obj2 and returns true or false.

The function is written in the Agena language and included in the library.agn file.

isNegint (x)

Checks whether the number x is a negative integer and returns true or false. If x is
not a number, the function returns fail.

isNonnegint (x)

Checks whether the number x is O or a positive integer and retums true or false. If x
is not a number, the function returns fail.

isNumber (obj)
Checks whether obj is of type number and returns true or false.

isNumeric (obj)

Checks whether obj is of type number or of type complex and returns frue or false.

isPair (obj)
Checks whether obj is of type pair and returns true or false.

isPosint (x)

Checks whether the number x is a positive integer and returns true or false. If x is not
a number, the function returns fail.

isselfref (s)

Checks whether a structure s (table, set, sequence, or pair) references to itself. It
returns true if it is self-referencing, and false otherwise.

The function is writfen in the Agena language and included in the library.agn file.

isSequence (obj)

Checks whether obj is of type sequence and returns frue or false.

isString (obj)
Checks whether obj is of type string and returns true or false.

isStructure (obj)

Checks whether obj is of type table, set, sequence, or pair and returns true or false.

agena >> 125

isTable (obj)
Checks whether obj is of type table and retumns true or false.

kernel (setting)
kernel (setting:value)

Queries or defines kernel settings that cannot be changed or deleted automatically
by the restart statement.

In the first form, by passing the given setting as a string, the current configuration is
returned.

In the second form, by passing a pair of the form setting:value , Where setting is Q
string and value the respective sefting given in the table below, the kerel is set fo
the given configuration.

The return is the new configuration.

Settings are:
Setting Value Description
‘debug’ true or false Prints further debugging information if the
initialisation of a C dynamic library failed
digits’ an integer in Sets the number of digits used in the output
[1.17] of numbers. Note that this setting does not

affect the precision of arithmetic operations.
The default is 14.

‘emptyline’ true or false If set true (the default), two input prompts are
always separated by an empty line. If set
false, no empty line is inserted.

libnamereset true or false If set true, the restart statement resets
liboname and mainlibname fo their original
values. Default is false.

longtable’ true or false If set true, then each key~value pair in a
table will be printed at a separate line,
otherwise a table will be printed like sets or
sequences. Default is false.

‘signedbits’ true or false If set to true, the bitwise operators &&, ~~,
||, ~ 7, and shift internally use signed
integers (the default), otherwise they use
unsigned infegers.

Examples:

> kernel('signedbits’):
true

126 7 Standard Libraries

> kernel(signedbits = false):
false

left (obj)
With the pair obj , the operator returns its left operand.

See also: right.

load (f [, chunkname])

Loads a chunk using function f to get ifs pieces. Each call to f must return a string
that concatenates with previous results. A return of null (or no value) signals the end
of the chunk.

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment,

chunkname is used as the chunk name for error messages and debug information.

loadClib (packagename, path)

Loads the C library packagename (with extension .so in UNIX and Mac, or .dil in
Windows) residing in the folder denoted by path . path must be the name of the
folder where the C library is stored, and not the absolute path name of the file. The
function refuns true in case of success and false otherwise. On successful
initialisation, the name of the package is entered info the package.readlibbed sef.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from standard input, if no file
name is given.

loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string. To load and run a given
string, use the idiom

assume(loadstring(s))()

map (f, obj [, ...])

This operator maps a function f to all the values in table, set, sequence, or pair
obj . f must return only one value. The type of return is the same as of obj . If obj has
metamethods or user-defined types, the return will also have them.

If function f has only one argument, then only the function and the structure obj
must be passed to map. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

agena >> 127

Examples:

> map(<< x->x"2>> 1,2, 3]):
[1, 4, 9]

>map(<< (X, y)->x>y>>1[-1,0,1,0): #0 fory
[false, false, true]

See also: remove, select, subs, zip.

maptoset (f, obj [, ...])

Maps a function f to all the values in table or sequence obj and refurns a set.
Metamethods, if existing, are not copied. See map for further information.

max (obj [, 'sorted?)

Returns the maximum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in
ascending order and retumns the last entry. The function in general returns null if it
receives an empty table or sequence.

See also: min.

min (obj [, 'sorted])

Returns the minimum of all numeric values in table or sequence obj . If the option
'sorted’ is passed than the function assumes that all values in obj are sorted in
ascending order and returns the first entfry. The function in general returns null if it
receives an empty table or sequence.

See also: max.

next (obj [, index])

Allows a programme to tfraverse all fields of a table or all items of a set or sequence
obj . With strings, it iterates all its characters. Its first argument is a table, seft, string, or
seguence and its second argument is an index in the structure.

With tables or sequences, next returns the next index of the structure and its
associated value. When called with null as its second argument, next retfurns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With setfs, next returns the next item of the set twice. When called with null as its
second argument, next retuns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

128 7 Standard Libraries

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use next(t) to check whether a table or set is empty. However, it is recommended
to use the filled operator for this purpose.

The order in which the indices are enumerated is not specified, even for numeric
indices. The same applies to set items.

The behaviour of next is undefined if, during the tfraversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

nseq (a, b [, step])

Creates a sequence seq(a, a+step , ..., b-step , D), with a, b, and step being
numibers. The step size is 1 if step is NoOt given.

The function uses the Kahan summation algorithm to prevent round-off errors. Thus,
the retun is much more precise with step sizes that are not integers than iterations
with for/to loops are.

See also: calc.fseq.

ops (index, ---)

If index is @ number, returns all arguments after argument number index . Otherwise,
index Must be the string '# , and ops returns the total number of extra arguments it
received. The function is useful for accessing multiple retuns (e.g. ops(n, ?)).

pcall (f, argl, ---)

Calls function f with the given arguments in protected mode. This means that any
error inside f is not propagated; instead, pcall catches the error and returns a status
code. lIfs first result is the status code (a boolean), which is tfrue if the call succeeds
without errors. In such case, pcall also returns all results from the call, after this first
result. In case of any error, pcall returns false plus the error message.

pointer (obj)

Converts obj to a generic C pointer (void*) and returns the result as a string. obj
may e a userdata, table, set, sequence, pair, thread, function, or complex value;
otherwise, pointer returns fail. Different objects will give different pointers.

agena >> 129

print (--- [, option])

Receives any number of arguments, and prints their values to the console, using
the toString function to convert them to strings. print is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the confents of tables and nested tables to stdout if No
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'delim: <any sting> is given as the last argument, then print
separates multiple values with the given <string>, otherwise \t is used. If the
opftion 'nonewline":true is passed, then Agena does not print a final newline when
finishing output. Note that these two options cannot be used together.

If the kernel setting kernel(longtable’) is set to frue, then each key~value pair is
printed on a separate line, and Agena halts after Env.More number of lines for the
user to press any key for further output. Press 'q', 'Q’, or the Escape key to quit. The
default for Env.More is 40 lines, but you may change this value in the Agena
session or in the Agena initialisation file.

You may change the way print formats objects by changing the respective
_EnvPrint functions in the library.agn file. See Appendix A5 for further details.

purge (obj [, pos])

Removes from table or sequence obj the element at position pos, shiffing down
other elements to close the space, if necessary. Returns the value of the removed
element. The default value for pos is n, where n is the length of the fable or
sequence, so that a call purge(ob)) removes the last element of obj .

Use the delete element from tfable statement if you want to remove any
occurence of the table value element from a table or sequence.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive integral and consecutive keys only.

put (obj, [pos,] value)

Inserts element value at position pos in table or sequence obj , shiffing up other
elements to open space, if necessary. The default value for pos is N+1, where n is
the length of the table or sequence, so that a call put(obj, x) inserts x at the end
of obj .

Use the insert element into table statement if you want to add an element at the
current end of a table, for it is much faster.

130 7 Standard Libraries

The function returns nothing.

rawequal (objl, obj2)

Checks whether obj1 is equal to obj2 , without invoking any metamethod. Returns a
boolean.

rawget (obj, index)

Gefts the real value of objlindex] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index MaAy be any value.

rawset (obj, index, value)
rawset (obj, value)

In the first form, sets the real value of objlindex] fo value , without invoking any
metamethod. obj mMmust be a table, sequence, or pair, index any value different
from null, and value any value.

In the second form, the function inserts value into the next free position in the given
structure obj . obj can be a table, set, or sequence.

This function returns obj .

rdelete (f)

Deletes the remember table or read-only remember table of procedure f entirely.
The function returns nuill.

read (fn)
Reads an object stored in the binary file denoted by file name tn and returns it.

The function is written in the Agena language and included in the library.agn file.

See also: save.

readlib (packagename [, packagename?, ...] [, true])

Loads and runs packages stored to agn text files (with flename packagename .Qgn) or
binary C libraries (packagename .SO in UNIX, packagename .dll in Windows), or to both.

If frue is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first fries to find the libraries in the current working directory, and
thereafter in the path in mainlioname. If it fails, it fraverses all paths in lioname until it
finds them. If it finds a library and the current user has at least read permissions for it,

agena >> 131

it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbed set.

Nofte that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end with slashes. In UNIX, if AGENAPATH has not been set, readlib by default
searches in /usr/agenallib

In OS2 and Windows, the Agena installation program automatically sets
AGENAPATH. If it failed, or you want to modify its contents, you may manually set the
variable like in the following examples, assuming that the Agena lioraries are
located in the d:\agenallib folder and optionally in the d:\agena\mypackage folder.

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /homelusr/agenallib folder and
opftionally in the /home/usr/agena/mypackage folder.

SET AGENAPATH=/home/usr/agena/lib or
SET AGENAPATH=/home/usr/agenal/lib;/home/usr/agen a/mypackage

In DOS, you have to set AGENAPATH in the autoexec.bat file:

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
fo libname as you need them.

The function returns true if all the packages have been successfully loaded and
executed, or fail if an error occurred.

See also: run, with.

register (packagename, namel [, namez2, ...])

Defines short names for a package. It enters the strings namel (Gnd name2, etc., if
given) into the table pkgname.loaded, so that if you initialise a package with the
with function, those names name, can be used as short names for package
functions instead of the fully written function names.

132 7 Standard Libraries

Thus instead of later calling a function by " packagename.name(arguments)” you
may use the shortcut "name(arguments) . See with for more details.

This is short for insert namel [, name2, ...] iINfO packagename .loaded. If a name is already
included in the table, register does not add it.

_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>'

See also: global environment variable _Env.Release.

remember (f)
remember (f, tab)
remember (f, null)

Administers remmember tables.

In the first form, the remember table stored to procedure f is retfurned. See rget for
more information.

In the second form, remember adds the arguments and returns contained in table
tab to the remember table of function f. If the rememlber table of f has not been
initialised before, remember creates it. If there are already values in the remember
table, they are kept and not deleted.

If f has only one argument and one retumn, the function arguments and returns are
passed as key~value pairs in table tab .

If f has more than one argument, the arguments are passed in a table. If f has
more than one return, the returns are passed in a table, as well.

Valid calls are:

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); # one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]; # two arguments 1, 2 & one return 3

In the third form, by explicitly passing null as the second argument, the remember
table of f is destroyed and a garbage collection run to free up space occupied by
the former rtable.

remember always retuns null. It is written in the Agena language and included in
the library.agn file.

See chapter 6.14 for examples. See also: defaults.

agena >> 133

remove (f, obj [, ...])

Returns all values in table, set, or sequence obj that do not satisfy a condition
determined by function f, as a new table, set, or sequence. The type of return is
determined by the type of second argument, depending on the type of obj .

If the funcfion has only one argument, then only the function and the
table/set/sequence are passed to remove.

>remove(<< x ->x>1>>[1, 2, 3]):

[1]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set.

>remove(<< X,y ->x>y>>1[1,2,3],1): #1 fory

[1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

See also: map, select, subs, zip.

restart

Restarts an Agena session. No argument is needed.

During start-up, Agena stores all initial values, e.q. package tables assigned, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restart, all values in the Agena environment are
unassigned including the environment variable G, but except of _origG, homedir,
mainlioname, and liboname (mainliboname and liibname are reset to their original
values if the kernel setting kernel(libnamereset') results to true, however.) Then all
entries in _origG are read and assigned to the new environment.

After this, the library base file agena.lib and thereafter the initialisation file agena.ini
- if present - are read and executed. Findlly, restart runs a garbage collection.

The return of the function is false if evaluation of origG failed lbecause it is no
longer a table (which should never happen). Otherwise, the return is true.

rget (f [, option])

Returns the contents of the current remember table or read-only rememiber table of
procedure f . If any value for option is given, the internal rememiber table including
all the hash values are returned.

134 7 Standard Libraries

> fib := proc(n) is

> assume(n >=0);

> return fib(n-2) + fib(n-1)
> end;

> remember(fib, [0~0, 1~1]);
> rget(fib):

({01 ~ [0, [1] ~ [1]]

You cannot destroy the infernal rememiber table by changing the table returned by
rget.

right (obj)
With the pair obj , the operator returns its right operand.

See also: left.

rinit (f)
Creates a remember table (an empty table) for procedure f. The procedure must

have been written in the Agena language; reminisce that nables for C API functions
are not supported and that in these cases the function quits with an error.

If there is already a rememiber function for f, it is overwritten. rinit returns null.

roinit (f)

Creates a read-only rememiber table (an empty table) for procedure f, which may
be either a C function or an Agena procedure.

If there is already a rememiber function for f, it is overwritten. roinit returns null.

rset (f, arguments, returns)

The function adds one (and only one) function-argument-and-retums "pair’ to the
already existing remember table or read-only remember table of procedure f .

arguments Must be a table array, returns mMust also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding resulf(s)
are replaced with returns

Given a function f:= << x -> x >> for example, valid calls are:

rset(f, [1], [2]) ; rset(f, [1, 2], [2 D; rset(f, [1], [1, 2])

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contenfs of the standard input (stdin). Retumns all

agena >> 135

values returned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

save (obj, fn)

Saves an object obj of any type into a binary file denoted by file name n .
The function is writfen in the Agena language and included in the library.agn file.

save returns an error if an object that cannot be stored to a file has been passed:
procedures, threads, userdatq, for example. It also retuns an error if the object 1o
e written is self-referencing (e.g. _G).

Note that save overwrites existing files without warning.

See also: read.

select (f, obj [, ...])

Returns all values in table, set, or sequence obj that satisfy a condition determined
by function f . The type of return is determined by the type of the second argument.

If f has only one argument, then only the function and the object are passed to
select.

> select(<< x->x>1>>[1, 2, 3)):
[2, 3]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object.

>select(<< x,y->x>y>>{1,2,3} 1) #1 fory
{3, 2}

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

See also: countitems, map, remove, subs, zip.

setbit (x, pos, bit)
Sets or unsets a bit in a negative or positive integer x.

Infernally, x is first converted into its binary representation. Then bit is set to the
pos -th position from the right of this binary representation of x. bit may be either
true or false, or the numbers O or 1. E.Q. if x is 2 = 00010, pos is 1, and bit is true,
then the result is 3 = 00011,

136 7 Standard Libraries

pos should be an integer in the range |pos | € [1 .. 31]

Please note that if x is negative, then the result is sign(x) * setbit(abs(x), pos, bit),
thus abstracting from the internal hardware representation of x.
The function is written in the Agena language and included in the library.agn file.

setfenv (f, table)

Sets the environment to be used by the given function. f can bbe an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling setfenv. seffenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running
thread. In this case, setfenv returns no values.

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, or pair obj . (You cannot
change the metatable of other types from Agena, only from C.) If metatable is null,
removes the metatable of the given table. If the original metatable has a
' _metatable' field, raises an error.

This function returns obj .

settype (obj [, ...], str)
settype (obj [, ...], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sets, or pairs obj o the name denoted by string str . geftype and typeof will
then return this string when called with obj .

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will return the basic type of obj .

If obj has NO _tostring metamethod, then Agenad's pretty printer outputs the
object in the form str & '(' & <elements> & ')’ instead of the standard 'seq(' &
<elements> & ')’ Or '<element>:<element>' string.

Note that the fry statement does not handle user-defined types.

See also: gettype.

size (obj)

With tables, the operator returns the numlber of key~value pairs in table obj .

With sets and sequences, the operator returns the number of items in obj . With
strings, the operator returns the number of characters in string obj , i.e. the length of

agena >> 137

obj .

sort (obj [, comp])

Sorts table or sequence elements in a given order, in-place, from obj[1] 1O objin] .,
where n is the length of the structure. If comp is given, then it must be a function that
receives two structure elements, and returns true when the first is less than the
second (so that not comp(ali+1], ali]) will be true after the sor). If comp is not
given, then the standard operator < (less than) is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort.

Example:
>s:=[1,2, 3]

> sort(s, << X,y -> X >y >>)

> s:
[3,2,1]

subs (x:v [, ...], obj)

Substitutes all occurrences of the value x in the table, set, or sequence obj with the
value v. More than one substitution pair can be given. The substitutions are
performed sequentially and simultaneously starting with the first pair. The type of
return is determined by the type of obj .

> subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

See also: map, remove, select, zip.

time ()

Returns the time till start-up in seconds as a number.

top (obj)

With the sequence obj , the operator retuns the element with the largest index. If
the sequence is empty, it returns null.

See also: bottom.

138 7 Standard Libraries

toSeq (obj)

If obj is a string, the function will split it into its characters and return them in a
sequence with each character in obj as a sequence value, and in the same order
as the characters in obj .

If obj is a table, the function puts all its values - but not its keys - iNntfo a sequence.

If obj is a seft, the function puts all its items into a sequence.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.
See also: 1oSet, toTable.

toSet (obj)

If obj is a string, the function will split it info its characters and returns them in a set.
Note that there is no order in the resulting set.

If obj is a table or sequence, the function puts all its values - but not its keys - into a
new set.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toSeq, tolable.

toTable (obj)

If obj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obj .

If obj is a sequence or set, the function converts it into a table.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toSeq, toSet.

agena >> 139

type (obj)

This operator returns the basic type of its only argument obj , coded as a string. The
possible results of this function are 'null’ (the string, not the value null), 'number'
'string’ , '‘boolean’ 'table’ , ‘'set , ‘'sequence' , ‘pair , 'complex'
‘procedure’ , 'thread' , 'lightuserdata’ , and 'userdata’

If obj is a table, set, sequence, pair, or procedure with a user-defined type, then
type always returns the basic type, e.g. 'sequence’ Of 'procedure'

See also: typeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument obj ,
coded as a string.

A special type can be defined for procedures, tables, pairs, sets, and sequences
with the settype function. If there is no user-defined type for obj , then the basic type
is retuned, i.e. 'null (the string, not the value null), 'number , ‘string'
'boolean' , ‘'table’ , ‘'set' , ‘'sequence' , ‘'pair' , 'complex' , ‘'procedure' ,
'thread' , And 'userdata'

See also: type, gettype.

unassigned (obj)

This Boolean operator checks whether an expression obj evaluates to null. If obj is a
constant, i.e. a number, boolean including fail, or a string, the operator always
returns false.

See also: assigned.

unique (obj)

With a table obj , the unique operafor removes all holes (missing keys') and
removes multiple occurrences of the same value, if present. The return is a new
table with the original table unchanged.

With a sequence obj , the unique operator removes multiple occurrences of the
same value, if present. The return is a new sequence with the original sequence
unchanged.

unpack (obj [, i [, jlI)

Retuns the elements from the given table or sequence obj . This function is
equivalent to

return obij[i], obj[i+1], ---, obj[j]

140 7 Standard Libraries

except that the above code can be written only for a fixed number of elements. By
default, i is 1 andj is the length of the object, as defined by the size operator.

used ([opt])

By default, returns the total memory in use by Agena in Kbytes. If opt is the string
'bytes' , 'kbytes' , 'mbytes' , Of 'gbytes’ , the number is returned in the given unit.

See also: os.freemem.

userinfo (f, level [, ...])

Wirites information to the user of a procedure f depending on the given level , an
integer. The information o e printed is passed as the third, etc. arguments and
may be either numbers or strings.

At first the procedure should be registered in the global infolevel table along with a
level (an integer) indicating the infolevel setting at which information will be printed.

If you do not enter an entry for the function to the infolevel table, then nothing is
prinfed.

> f = proc(x) is

> userinfo(f, 1, 'this is a primary info to the user: ', Xx);
> userinfo(f, 2, 'this is an additional info to the user: ', x)
> end;

If the level argument to userinfo is equal or less than the infolevel table setting,
then the information is printed, otherwise nothing is printed.

> infolevel[f] := 2;

> f(hello 1);

this is a primary info to the user: hello!
this is an additional info to the user: hello !

Now the infolevel is decreased such that less information will be output.

> infolevel[f] := 1;

> f(hello 1");
this is a primary info to the user: hello!

whereis (obj, x)

Returns the indices for a given value x in table or sequence obj as a new fable or
sequence, respectively. The function is written in the Agena language and
included in the library.agn file.

See also: tables.indices.

agena >> 141

with (packagename [, key1, key2, ...])

Assigns short names to package procedures such that:

name = packagename.name

The function works as follows:

In both forms, with first fries fo load and run the respective Agena package.
The package may reside in a text file with file suffix .agn , or in a C dynamic
link library with file suffix .so in UNIX and .dil in Windows, or both in a text file
and in a dynamic link library. The function first tries to find the package in the
current working directory and if it failed, in the path pointed to by
mainlibname; if this fails, too, if fraverses all paths in libname from left fo right
until it finds at least the C DLL or the Agena text file, or both. If a package
consists of both the C DLL and an Agena text file, then they both must reside
in the same folder.

If the function does not find the package, an error is returned.

Next, with fries to find a package initialisation procedure. If a procedure
named " packagename .init" is present in your package then it is executed if the
package has been found successfully.

In the first form, if only the string packagename is Qiven, short names to all
functions residing in the global table packagename are created.

You may opfionally assign short names to either all or only specific
procedures. If you only want define short names to some of the functions,
define a table packagename .loaded and include the respective function
names as strings. If the table packagename .loaded is not present, with assigns
short names 1o all keys in packagename .

Note that if packagename.name is not of type procedure, a short name is not
created for this object.

If there is a table packagename .loaded, then with prints only those values
included in this table. If packagename .loaded does not exist, all keys in
packagename Qre printed.

An example: If your package is called "agenapackage’, then the short
names to be printed are included in:

agenapackage.loaded := ['run’, 'dosomething;
If you would like to display a welcome message, put it info the string

packagename .initstring. It is displayed with an empty line before and after the
text. An example:

142 7 Standard Libraries

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \
December 24, 2008\n’;

* In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table
packagename .

As opposed to the first version, with does not print any short names or
welcome messages on screen.

» Further information regarding both forms:
The function returns a table of all short names assigned .

If the global enviionment variable EnvWithVerbose is set to false, no
messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table EnvProtected), it cannot be overwritten
by with and a proper message is displayed on screen. You can control
which names are protected by modifying the contents of _EnvProtected.

For information on which folders are checked and how to add new
directories to be searched by with, see readlib.

Note that with executes any statements (and thus also any assignment)
included in the file packagename .Qgn.

The function is written in the Agena language and included in the library.agn file.

See also: readlib, run, register.

write ([fh,] v 1Lv o 2], delim = <str>])

This function prints a sequence of numbers or strings v 1o the file denoted by the
handle th , or to stdout (i.e. the console) if th is not given.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim":<str> (e.g. 'delim'| or delim="[) as
the last argument to the function with <str> being a string of any length.
Remember that in the function call, a shortcut to 'delim":<str> iS delim = <str>

The function is an interface to io.write.

agena >> 143

writeline ([fh,] v 1Lv o 2], delim = <str>])

This function prints a sequence of numbers or strings vy followed by a newline to the
file denoted by the handle th , or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim':.<str> (i.e. a pair, e.g. 'delim"|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut fo 'delim":<str> is delim = <str>

The function is an interface to io.writeline .

xpcall (f, err)

This function is similar to pcall , except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error
inside f is not propagated; instead, xpcall catches the error, calls the err function
with the original error object, and returns a status code. Its first result is the status
code (a boolean), which is frue if the call succeeds without errors. In this case,
xpcall also returns all results from the call, after this first result. In case of any error,
xpcall returns false plus the result from err .

zip (f, s1, s2)

This function zips together either two sequences or two tables s1, s2 by applying the
function f to each of its respective elements. The result is a new sequence or table
s where each element s[k] is determined by s[k] : = f(s1[k], s2[k]).

sl and s2 must have the same number of elements. If you pass tables, they must
have the same keys.

If s1 or s2 have user-defined types or metatables, they are copied to the resulting
structure, as well. If s1 has a metatable, then this metatable is copied, else the
metatable of s2 is used if the latter exists. The same applies to user-defined types.

See also: map., remove, select, subs.

144 7 Standard Libraries

7.2 Coroutine Manipulation

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine

coroutine.create (f)

Creates a new coroutine, with body f . f must be a Agena function. Returns this new
coroutine, an object with type 'thread'.

coroutine.resume (co [, vall, ---])

Starts or continues the execution of coroutine co. The first fime you resume a
coroufine, it starts running its body. The values vall , -+ are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values vali |,
-+ are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed
fo yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any eror, resume returns false plus the eror
message.

coroutine.running ()

Returns the running coroutine, or null when called by the main thread.

coroutine.status (co)

Returns the status of coroutine co, as a sting: 'running', if the coroutine is running
(that is, it called status); 'suspended!, if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutfine, with body f. f must be a Agena function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Returns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (---)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments 1o yield are passed as
extra results to resume.

agena >> 145

7.3 Modules

The package library provides a basic facility to inspect which packages have been
loaded in a session.

package.checkClib (pkg)

Checks whether the package denoted by the string pkg and stored 1o a C dynamic
library has already been initialised. If not, it returns a warning printed on screen and
creates an empty package table. Otherwise it does nothing.

package.loaded

A table with all the packages that have been initialised.

package.readlibbed

A table with all the names of the packages that have been initialised with the
readlib and with functions.

146 7 Standard Libraries

7.4 String Manipulation

A nofe in advance: All operators and strings package functions know how to handle
many diacritics properly. Thus, the lower and upper operators know how to convert
these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

aAaAaAaAalRae EEaA
BEEGEEEE
irititiiyyy
00600080 6006O0
auouauuau
cCANODpPPR

7.4.1 Kerel Operators and B asic Library Functions

sl atendof s2

This binary operator checks whether a string s2 ends in a substring s1. If true, the
position of the position of s1 in s2 is returned; otherwise null is returned. The operator
also returns null if the strings have the same length or af least one of them is the
empty string.

slin__s2

This binary operator checks whether the string s2 includes s1 and retfurns its position
as a number, or null if s1 cannot be found. Like atendof, the operator also returns
null if the strings have the same length or at least one of them is the empty string.

s1 split s2

Splits the string s1 info words. The delimiter is given by string s2, which may consist of
one or more characters. The return of the operator is a sequence. If s1 = s2, or if s2
is the empty string, then an empty sequence is returned.

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

instr (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds a match, then instr returns
the index of s where this occurrence starts; otherwise, it returns null. A third, optional
numerical argument init specifies where to start the search; its default value is 1
and may be negative. The function supports pattern matching, almost similar to
regular expressions, see chapter 7.4.3. instr is 45 % faster than strings.find.

agena >> 147

See also: in operator, strings.find, strings.seek.

lower (s)

Receives a string and returns a copy of this string with all uppercase letters (‘A' to 'Z'
plus the above mentioned diacritics) changed to lowercase ('a' to 'z' and the above
mentioned diacritics). The operator leaves all other characters unchanged.

replace (s1, s2, s3)
replace (s1, struct)
replace (s1, pos, s2)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3.

In the second form, the operator receives a string s1 and a table or sequence
struct Of one or more string pairs of the form s2:s3 and replaces all occurrences of
s2 in string s1 with the corresponding string s3. Thus you can replace multiple
patterns simultaneously with only one call to replace.

In the third form, the operator inserts a new string s2 info the string s1 at the given
position pos, substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted.

The return is always a new string.

See also: strings.gsub .

size (s)

With a string s, the operator returns its length, i.e. the number of characters in s.

toNumber (e [, base])

Tries to convert its argument 1o a number or complex value. If the argument is
already a number, complex value, or a string convertible to a numiber or complex
value, then toNumber returns this value; otherwise, it returns e if e is a string, and fail
otherwise. The function recognises the strings 'undefined' and ‘infinity' properly,
i.e. it converts them to the corresponding numeric values undefined and infinity,
respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any infeger between 2 and 36, inclusive. In bases above 10, the letter ‘A’ (in either
upper or lower case) represents 10, B' represents 11, and so forth, with Z
representing 35. In base 10 (the defaulf), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned integers are

148 7 Standard Libraries

accepted. If an option is passed, 'undefined' and 'infinity’ are not converted
fo numbers; and if e could not be converted, fail is returned.

toString (e)

Receives an argument e of any type and converts it to a sting in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' tostring' field, then the toString function calls the
corresponding value with e as argument, and uses the result of the call as its result.

With numbers, the number of digits in the resulting string is dependent on the
kernel/digits setting. See kernel for further information.

trim (s)

Returns a new string with all leading, trailing and excess embedded white spaces
removed. trim is an operator.

upper (s)

Receives a string and returns a copy of this string with all lowercase letters (‘' to ‘2
plus the above mentioned diacritics) changed to uppercase (A' to Z' and the
above mentioned diacritics). The operator leaves all other characters unchanged.

7.4.2 The strings Library

The strings liorary provides generic functions for string manipulation, such as finding
and exfracting substrings, and patftern matching. When indexing a string in Agena,
the first character is at position 1 (not at O, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings

strings.diamap (s)

The function corrects problems in the Solaris, Linux, OS/2, Windows, and DOS
consoles with diacritics and ligatures read in from a text file (even .agn programme
files) by mapping them to their correct character codes. It takes a strings s, applies
the mapping, and returns a new string. All other characters are returned
unchanged.

Example:

> strings.diamap('AEIOU-I_&+1"):
AEIOUAOUEAD

agena >> 149

Note that the function does not convert all existing special fokens.

Agena is shipped with substitution tables for codepage 1252. If you want fo use
another codepage, edit the _c2f and _f2c tables in the lib/library.agn file
accordingly.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starts and ends; otherwise, it returns null. The
function does support pattern matching facilities (which you can fumn off, see
below).

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of frue as a fourth, optional
argument plain furns off the pattern matching facilities (see chapter 7.4.3), so the
function does a plain "find substring" operation, with no characters in pattern being
considered "'magic". Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: in and instr operator, strings.seek, strings.rseek.

strings.format (formatstring, ---)

Returns a formatted version of its variable number of arguments following the
descriptfion given in its first argument (which must be a string). The format string
follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, I, L, n, p, and h are not supported and
that there is an extra option, . The g option formats a string in a form suitable to be
safely read back by the Agena interpreter. the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the
string are correctly escaped when written. For instance, the call

strings.format('%q', ‘a string with "quotes" and \ n new line")

will produce the string:

‘a string with \"quotes\" and \
new line'

The options ¢, d, E, e, f, g, G, i, 0, u, X, and x all expect a number as argument,
whereas g and s expect a string.

This function does not accepf string values containing emibbedded zeros.

150 7 Standard Libraries

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over sting s. The function supports pattern matching facilities
described in Chapter 7.4.3.

If pattern ~ specifies no captures, then the whole match is produced in each call.

As an example, the following loop

s := 'hello world from Lua’

for w in strings.gmatch(s, '%a+") do
print(w)
od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

create table t;
s := 'from=world, to=Lua'
for k, v in strings.gmatch(s, '(%w+)=(%w+)") do

tk] == v
od

See also: strings.match, strings.gmatches .

strings.gmatches (s, pattern)

Wrapper around strings.gmatch which returns all occurrences of a substring pattern
in string s @ in a new sequence.

The function is written in the Agena language and included in the library.agn file.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by repl , which may be a string, a table, or a
function. gsub also returns, as its second value, the total number of sulbstitutions
made.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and
@, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

agena >> 151

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retuned by the table query or by the function call is a sting or a
number, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum numlber of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

X := strings.gsub(‘hello world', '(%w+)', '%1 %1")
--> x = 'hello hello world world'

X := strings.gsub(‘hello world', '%w+'", '%0 %0', 1)

--> x = 'hello hello world'

X := strings.gsub(‘hello world from Lua’, '(%w+)%s *(%w+)", '%2 %1")
--> x = 'world hello Lua from'

X := strings.gsub(‘home = $HOME, user = $USER’, ‘% $(%w+)', os.getenv)
--> x ='home = /home/roberto, user = roberto’

X := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$' , proc (s)

return loadstring(s)()

end)

->Xx='445=9

local t := [name~'lua’, version~'5.1"]
X = strings.gsub(‘$name%-$version.tar.gz', '%$(Yow+), t)
-->x = 'lua-5.1.tar.gz'

See also: replace.

strings.hits (s, pattern)

Returns the numiber of occurrences of substring pattern in string s. The function
does not support paftern matching expressions.

strings.isAbbrev (s, pattern [, true])

Determines whether a string s is abbreviated by the substring pattern , i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern s
less than the length of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see chapter 7.4.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

See also: atendof, strings.isEnding .

152 7 Standard Libraries

strings.isAlpha (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and returns frue or false.

See also: strings.isLatin.

strings.isAlphaNumeric (s)

Checks whether the string s consists entirely of numbers or alphabetic letters
(including diacritics) and returns true or false.

See also: strings.isLatinNumeric.

string.isAlphaSpace (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and/or a white space and returns true or false.

strings.isEnding (s, pattern [, true])

Determines whether a string s is ending in the substring pattemn, i.e. whether pattern
fits entirely to the end of the string s in case the length of pattern is less than that of
s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see chapter 7.4.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isAbbrev, atendof.

strings.isFloat(s)

Checks whether the string s consists entirely of the digits O to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
returns true or false.

See also: strings.isNumber.

agena >> 153

strings.isLatin (s)

Checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

See also: strings.isAlpha.

strings.isLatinNumeric (s)

Checks whether the string s consists entirely of numbers or Latin letters and returns
true or false.

See also: strings.isAlphaNumeric .

strings.isLowerAlpha (s)

Checks whether the string s consists entirely of the characters a fo z and lower-case
diacritics, and returns true or false. If s is the empty string, the result is always false.

See also: strings.isUpperAlpha.

strings.isLowerLatin (s)

Checks whether the string s consists entirely of the characters 'a' to 'z, and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isUpperLatin .

strings.isMagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' to
'Z','d' to 'Z', and the diacritics listed at the top of this chapter.

strings.isNumber(s)

Checks whether the string s consists entirely of the digits O to 9 and returns true or
false.

See also: strings.isFloat.

strings.isNumberSpace (s)

Checks whether the string s consists entirely of the digits O to 9 or white spaces and
returns true or false.

154 7 Standard Libraries

strings.isUpperAlpha (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns true or false. If s is the empty string, the result is
always false.

See also: strings.isLowerAlpha.

strings.isUpperLatin (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isLowerLatin.

strings.Itrim (s [, c])

Retuns a new string with all leading white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all leading
characters given by ¢ are removed.

See also: trim operator, strings. ririm.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns
the captures from the pattemn; otherwise it returns null. If pattern specifies no
captures, then the whole match is returned. A third, optional numerical argument
init specifies where to start the search; its default value is T and may be negative.

The function does not support pattern matching facilities.
See also: strings.gmatch.

strings.put (s1, n, s2)
The function has been deprecated. Use the replace operator instead.

strings.remove (s, pos, len)

Starting from string position pos, the function removes len characters from string s.
The return is a new string.

It is not an eror if len is greater than the actual length of s. In this case all
characters starting at position pos are deleted.

See also: replace.

agena >> 155

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s.

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rseek (s, pattern [, init])

Starting from the right end and always running to its left beginning, the function looks
for the first match of pattern in the string s. If it finds a match, then rseek returns the
index of s where this occurrence starts with respect to its left beginning; otherwise, it
returns null.

A third, optional numerical argument init specifies where to start the search; its
default value is size pattern and may be negative. If init is positive, the search
begins from the init 's character from the left (and also runs to the left). If init is
negative, the search begins from the |init |'s character from the right (and runs to
the left, also).

The function is useful for example in linguistic research to search for inflectional
endings. The function does not support pattern matching facilities.

See also: in and instr operators, sting.find, strings.seek.

strings.rtrim (s [, c])

Returns a new string with all trailing white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all trailing
characters given by ¢ are removed.

See also: trim operator, strings.rim.

strings.seek (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds a match, then seek
retuns the index of s where this occurrence starts; otherwise, it returns null. A third,
optional numerical argument init specifies where to start the search; its default
value is 1 and may be negative. Confrary to strings.find, the function does not
support pattern matching facilities but is around 8 % faster. If you have to search a
string from its beginning, use the faster in operator.

See also: in and instr operators, strings.find, strings.rseek .

156 7 Standard Libraries

strings.toBytes (s)

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence is returned.

Note that numerical codes are not necessarily portable across platforms.

strings.toChars (--+)

Receives zero or more integers and returns a string with length equal to the number
of arguments, in which each character has the internal numerical code equal to its
corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

strings.words (s [, delim])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character delim (of type string) as a second
argument. The return is a number.

7.4.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

X: (Where x is not one of the magic characters ~$()%.[1*+-?) represents the

character x itself.

* .. (a dof) represents all characters.

* %a: represents all letters.

* %c: represents all control characters.

* %d: represents all digits.

* %l: represents all lowercase lefters.

* %p: represents all punctuation characters.

* %s: represents all space characters.

* %u: represents all uppercase letters.

* %w: represents all alphanumeric characters.

* %x: represents all hexadecimal digits.

* %z represents the character with representation O.

* %y: (Where y is any non-alphanumeric character) represents the character vy.
This is the standard way to escape the magic characters. Any punctuation
character (even the non magic) can be preceded by a '%' when used to
represent itself in a pattern.

* [set]: represents the class which is the union of all characters in sef. A range

of characters may be specified by separating the end characters of the

agena >> 157

range with a -'. All classes %y described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w_] (or [%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
octal digits plus the lowercase letters plus the -' character.

The interaction between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [a-%%] have no meaning.

[* set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single lefters (%a, %c, etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to %l.

Paftern ltem:

A pattern item may be

a single character class, which matches any single character in the class;

a single character class followed by *', which matches 0 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

a single character class followed by -, which also matches 0 or more
repetitions of characters in the class. Unlike *', these repetition items will
always match the shorfest possible sequence;

a single character class followed by 2, which matches 0 or 1 occurrence of
a character in the class;

%N, for n between 1 and 9; such item matches a substring equal fo the n-th
captured string (see below);

%bxy, where x and y are two distinct characters; such item matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left fo right, counting +1 for an x and -1 for a
y, the ending vy is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses.

Pattern:

A pattfern is a sequence of pattern items. A "' at the beginning of a pattern anchors
the match at the beginning of the subject sting. A '$' at the end of a pattemn
anchors the match at the end of the subject string. At other positions, '~' and '$'
have no special meaning and represent themselves.

158 7 Standard Libraries

Captures:

A pattern may contain sub-patterns enclosed in parentheses;, they describe
captures. When a matfch succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numibered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*)), the part of the
sting matching 'a*(.)%w(%s*)' is stored as the first capture (and therefore has
number 1); the character matching "' is captured with number 2, and the part
matching '%s*' has number 3.

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattemn '(Jaa()' on the string 'flaaap’, there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

agena >> 159

/.5 Table Manipulation

7.5.1 Kermnel O perators

Most of the following functions have been built info the kermnel as unary operators,
with the exception of map and zip.

copy (1)

The operator copies the entire contents of a table t into a new table. If the table
contains tables itself, those tables are also copied properly (by a "deep copying
method). Metatables and user-defined types are copied, 100.

dimension (a:b [, c:d] [, init])

Creates a table of dimension 1 or 2 with arbitrary index ranges and an optional
default for all its elements. See Chapter 7.1 for more information.

filled (t)

Checks whether table t contains atf least one element. The return is frue or false.
The function works with dictionaries, as well.

getentry (o [, k Lo K]

Returns the entry ok 4, .., k] from the table o without issuing an error if one of the
given indices (second to last argument) does not exist.

join (t)
Concatenates all string values in the table t in sequential order and returns a string.

map (f, t[, ...])

Maps the function £ on all elements of a table t . See map in chapter 7.1 for more
information. See also: select, remove, and subs.

gsadd (obj)

Raises all numeric values in table or sequence obj 10 the power of 2 and sums up
these powers. The return is a number. If obj is empty or consists entirely of
non-numbers, null is returned. If the table or sequence contains numbers and other
objects, only the powers of the numbers are added. Entries with non-numeric keys
are ignored.

160 7 Standard Libraries

sadd (obj)

Sums up all numeric values in table or sequence obj . The return is a numiber. If obj

is empty or consists entirely of non-numbers, null is returned. If the object contains
numibbers and other objects, only the numbers are added. Entries with non-numeric
keys are ignored.

unique (t)

The unique operator removes all holes (“missing keys') in a fable t and removes
multiple occurrences of the same value, if present. The return is a new table with
the original table unchanged.

zip (f, t1, t2)

This function zips together either two tables t1, t2 by applying the function f to
each of its respective elements. See Chapter 7.1 for more information.

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - frue, {1, 2} xsubset {1, 1, 2,2, 3,3 } - true.

tl=_t2

This equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

tl==_1t2

This strict equality check of two tables t1 , t2 first tests whether t1 and table2 point to
the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

tl<> t2

This inequality check of two tables t1 , t2 first fests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether t1 and t2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

agena >> 161

cin_t

Checks whether the table t contains the value ¢ and returns true or false. The
search is linear.

tl intersect 2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersect instead if you want to compare
large tables since bintersect performs a binary search.

tl minus __ t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminus instead if you want to
compare large tables since bminus performs a binary search,

tl subset t2

Checks whether all values in table t1 are included in table t2 and returns true or
false. The operator also returns true if t1 = t2 . The search is quadratic.

tl union _ t2

Concatenates two tables t1 and t2 simply by copying all its elements - even if they
occur multiple times - to a new table.

tl Xx_subset t2

Checks whether all values in table t1 are included in table t2 and whether t2
contains at least one further element, so that the result is always false if t1 = t2 . The
search is quadratic.

See also: bintersect, bisEqual, bminus, countitems, purge, put, remove, select, sort
in Chapter 7.1 Basic Functions.

7.5.2 tables Library

This liorary provides generic functions for table, and also sequence manipulation. It
provides all its functions inside the table tables

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length’ of a table we mean the result of
the length operator.

162 7 Standard Libraries

tables.allocate (t, key 1, value [, key , value ,, ... key . value 1))

Sets the specified keys and values to table t, i.e. tkey (] := value . Note that if a
key is given multiple times, then only the first occurrence of the key in the argument
sequence is processed. The function returns nothing.

tables.entries (t)

Returns all entries of table t (not its keys) in a new table array.

See also: tables.indices.

tables.indices (t)

Returns all keys of table t in a new table.

See also: tables.entries, whereis.

tables.maxn (t)

Returns the largest positive numerical index of the given table t, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole fable.)

agena >> 163

7.6 Set Manipulation

The following functions have been built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a set s into a new set. If the set contains
other setfs - even nested ones-, those setfs are also copied properly (by a "deep
copying” method). Metamethods if present, are also copied.

filled (s)
Checks whether a set s contains at least one element. The return is true or false.

size (s)

Returns the number of items in a set s.

The following functions have been built intfo the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - true, {1, 2} xsubset{1,1,2,2,3,3 } - true.

sl=_s2

This equality check of two sets s1, s2 first tests whether s1 and s2 point o the same
set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
retuns true or false. In this case, the search is linear.

sl== s2

With sefts, the == operator acts exactly like the = operator,

sl<> s2

This inequality check of two sets s1, s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns true or false. In this case, the search is linear.

cin_s

Checks whether the set s contains the item ¢ and returns true or false. The search is
constant.

164 7 Standard Libraries

sl intersect s2

Searches all items in set s1 that are also items in set s2 and returns them in a set.
The search is linear.

sl minus _s2

Searches all items in set s1 that are not items in set s2 and returns them as a set.
The search is linear.

sl subset s2

Checks whether all items in set s1 are included in set s2 and returns true or false.
The operator also returns frue if s1 = s2. The search is linear.

sl union _ s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set.

sl x_subset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always false if s1 = s2. The search is linear.

agena >> 165

7.7 Sequence Manipulation

With the excepftion of getentry, map and zip, the following functions have been
built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a sequence s into a new sequence. If
the sequence contains sequence itself, those sequence are also copied properly
(oy a "deep copying' method). Metatables and user-defined types are copied,
too.

filled (s)

Checks whether the sequence s contains at least one element. The retumn is true or
false.

getentry (s [, k 1o K)]

Retuns the entry sk 4, .., k] from the sequence s without issuing an error if one
of the given indices (second to last argument) does not exist.

join (s)

Concatenates all string values in the sequence s in sequential order and refumns a
string.

map (f, s, ...])

Maps the function f on all elements of a sequence s. See map in chapter 7.1 for
more information.

gsadd (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. The return is a number. If s is empty or consists entirely of non-numibers, null
is returned. If the sequence contains numbers and other values, only the powers of
the numbers are added.

sadd (s)

Sums up all numeric values in sequence s. The retumn is a number. If s is empty or
consists entirely of non-numbers, null is refurned. If s contains numbers and other
values, only the numbers are added.

size (s)

Returns the number of items in a sequence s.

166 7 Standard Libraries

unique (s)

With a sequence s, the unique operator removes multiple occurrences of the same
item, if present in s. The return is a new sequence with the original sequence
unchanged.

zip (f, s1, s2)

This function zips together either two sequences s1, s2 by applying the function f to
each of its respective elements. See Chapter 7.1 for more information.

See also: bintersect, bisEqual, bminus, countitems, purge, put, remove, select, sort
in Chapter 7.1 Basic Functions.

The following functions have been built info the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(l,
1) = seq(l) - frue, seq(l, 2) xsubset seq(1, 1, 2, 2, 3, 3) - frue.

sl=_s2

This equality check of two sequences s1, s2 first tests whether s1 and s2 point 1o the
same sequence reference in memory. If so, it retuns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

sl==_s2

This strict equality check of two sequences s1, s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the same and are in the
same order, and returns true or false. In this case, the search is linear.

sl<> s2

This inequality check of two sequences si1, s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

cin_s

Checks whether the sequence s contains the value ¢ and returns true or false. The
search is linear.

agena >> 167

sl intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic.

sl minus _s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic.

sl subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
frue or false. The operator also returns true if s1 = s2. The search is quadratic.

sl union _ s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - 10 a new sequence.

sl x_subset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains at least one further element, so that the result is always false if
sl = s2. The search is quadratic.

The following functions in the base library also support sequences:

Function Meaning

bintersect same as the intersect operator but much faster with very
large sequences

bisEqual same as the = operator but much faster with very large
sequences

bminus same as the minus operator but much faster with very large
seguences

duplicates returns all the values that are stored more than once in the
given sequence

168 7 Standard Libraries

7.8 Mathematical Functions

7.8.1 Kermnel O perators
The following mathematical functions have been built into the kermel as operators.

X && Y

Bitwise and operation on two numbers x and y. By default, the operator internally
calculates with signed integers. You can change this 1o unsigned integers by using
the kernel function with the signedbits option. See also: kernel in Chapter 7.1.

i) 9]

Bitwise complementary operation on the numiber x. By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the kernel function with the signedbits option. See also: kernel in Chapter
7.1.

X|L_y

Bitwise or operation on two numbers x and y. By default, the operator internally
calculates with signed integers. You can change this to unsigned infegers by using
the kernel function with the signedbits option. See also: kernel in Chapter 7.1.

X/\/\

Bitwise exclusive-or operation on two numbers x and y. By default, the operator
internally calculates with signed integers. You can change this to unsigned integers
by using the kernel function with the signedbits option. See also: kernel in Chapter
7.1.

abs (x)

If x is a number, abs returns the absolute value of x. Complex numbers are
supported.

arccos (X)

The inverse cosine function (x in radians). Complex numibers are supported.

arcsin (x)

The inverse sine function (x in radians). Complex numbers are supported.

arctan (x)

The inverse tangent function (x in radians). Complex numbers are supported.

cos (x)

Returns the cosine of x (x in radians). Complex numbers are supported.

agena >> 169

cosh (x)
Returns the hyperbolic cosine of x. Complex numiers are supported.

entier (x)

Rounds x downwards to the nearest infeger. Complex numibers are supported.
See also: cell, int, roundf.

even (X)

Checks whether x is even. Returns true if x is even, and false otherwise. With the
complex value x, the operator retumns fail.

exp (X)
Exponential function, returns the value €*, Complex numbers are supported.

finite (x)

Checks whether x is a number and neither +infinity nor undefined (NaN). It returns
frue or false. If x is a complex number, it retumns fail.

float (x)

Checks whether the number x is a float, i.e. not an integer, and returns true or false.
If x is not a number, the operator returns fail.

Ingamma (x)

Computes In T' x. If x is a non-positive number, the function returns undefined.
Complex numbers are supported.

See also: gamma function.

gethigh (x)
Returns the higher bytes of a number x as an infeger. See also: getlow.

getlow (x)

Returns the lower bytes of a number x as an integer. See also: gethigh.

int (x)
Rounds x to the nearest integer towards zero. Complex numbers are supported.

See also: ceil, entier, roundf.

In (X)

Natural logarithm of x. If x is non-positive, the function returns undefined. Complex
numbers are supported.

170 7 Standard Libraries

sethigh (x, i)

Sefts the higher bytes of the number x fo the integer i , and returns the new number.
See also: setlow.

setlow (x, i)

Sets the lower bytes of the number x 1o the integer i , and returns the new number.
See also: sethigh.

xshift vy

Bitwise shift operation. If the right-hand side y is a positive integer, the bits in x are
shiffed 1o the left (multiplication with 2), else they are shiffed to the right (division by
2). By default, the operator internally calculates with signed integers. You can
change this to unsigned infegers by using the kernel function with the signedbits
option. See also: kermnel.

sign (x)
Determines the sign of the number or complex value x. If x is a complex value, the
result is determined as follows:

e 1,ifredl(x) > O orredl(x) = 0 and imag(x) > O
e -1, ifreadl(x) < O orredl(x) = 0 and imag(x) < O
* 0 otherwise.

sin (x)

Returns the sine of x (x in radians). Complex numibers are supported.

sinh (x)
Returns the hyperbolic sine of x. Complex numibers are supported.

sqrt (X)
Returns the square root of x.
If x is a number and negative, the function returns undefined.

With complex numbers, the operator returns the complex square roof, in the range
of the right halfplane including the imaginary axis.

tan (x)

Returns the tangent of x (x in radians). Complex numbers are supported.

tanh (x)

Retuns the hyperbolic tangent of x (x in radians). Complex numibers are supported.

agena >> 171

7.8.2 Base Library Functions

The following mathematical functions are provided as part of the base library.

approx (x, y [, eps])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, Eps is used.

The algorithm uses a combination of simple distance measurement (x-y| eps)
suited for values ‘near’ 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (x-y| eps * max(|x|,

|'y])). that checks whether the relative error is bound to a given tolerance eps.

The function returns true if x and y are considered equal or false otherwise.

arccosh (x)

Retumns the inverse hyperbolic cosine of x (in radians). The function is implemented
in the Agena language and included in the library.agn file. The function works on
both numbers and complex values.

arccsc (x)

Returns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

arccsch (x)

Retuns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

arccoth (x)

Retuns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

arcsec (x)

Returns the inverse secant of x (in radians). The function works on both numbers
and complex values. The function is implemented in the Agena language and
included in the library.agn file.

172 7 Standard Libraries

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numbers and complex values. The function is implemented in the Agena language
and included in the library.agn file.

arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function is implemented in
the Agena language and included in the library.agn fle. The function works on
both numbers and complex values.

arctanh (x)

Retumns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in the Agena
language and included in the library.agn file.

arctan2 (y, x)

Returns the arc tangent of y/ix (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns O if x > 0, and z otherwise.

binomial (n, k)

Returns the binomial coefficient (Dos a number. The function retuns undefined, if
n Or k are negative, or if at least one of its arguments is not an integer.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values.

bessely (n, x)

Returns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The return is a number. The
function works on both numbers and complex values.

agena >> 173

ceil (x)

Rounds upwards to the nearest integer larger than or equal to the number or
complex number x. See the entier operator for a function that rounds downwards to
the nearest integer. The function is implemented in the Agena language and
included in the library.agn file.

See also: entier, int, roundf.

conjugate (z)

The conjugate x-1*y of the complex value z=x+I*y. If z is of type number, it is simply
returned.

cot (X)

Retumns the cotangent -tan(5 +x) as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numbers and complex values.

coth (x)

Returns the hyperbolic cotangent ‘ron]w as a number. The function is

implemented in the Agena language and included in the library.agn fle. The
function works on both numbers and complex values.

csc (X)

Returns the cosecant sin(x) 98 @ numiber. The function is implemented in the Agena

language and included in the library.agn file. The function works on both numibers
and complex values.

csch (x)

Returns the hyperbolic cosecant as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numibers and complex values.

erf (x)

X
Refurns the eror function of x. It is defined by erf{x) = % { &2, The function
=0

works on both numbers and complex values.

erfc (x)

Returns the complementary error function of x, a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The return is a number or complex value.

174 7 Standard Libraries

expx2 (x, sign)

Computes either €2 if sign > 0, or e*"2 if sign < O while suppressing error
amplification that would occur from the in-exactness of the exponential argument
X2. x May be a number or complex number.

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is Nnot an
infeger or if n is negative, the function returns undefined. The function is
implemented in the Agena language and included in the library.agn file. It
features a defaults remember table which you may extend by editing the
library.agn file.

fma (%, y, 2)

Performs the floating-point multiply-add operation (x * y) + z , with the
intermediate result not rounded to the destination type, to improve the precision of
a calculation. x, y, and z must be numbers.

frac (X)

Returns the fractional part of the number x, i.e. x - int(x) . The function is
implemented in the Agena language and included in the library.agn file.

frexp (x)

Returns m and e such that x = m2°, e is an infeger and the albsolute value of mis in
the range [0.5, 1) (or zero when x is zero).

gamma (X)

The gamma function I'" x. x may be a number or complex value.

See also: Ingamma operator.

heaviside (x)

The Heaviside function. Retumns O if x < O, undefined if x = 0, and 1 if x > 0. The
function is implemented in the Agena language and included in the library.agn
file.

hypot (x, y)
Retuns /x2+y? with x, y numbers. This is the length of the hypotenuse of a right
friangle with sides of length x and y, or the distance of the point (x, y) from the

origin. The function is slower but more precise than using sqrt. The refun is a
number.

agena >> 175

irem (X, y)

Evaluates the remainder of an infeger division x/y (with x, y two Agena numbers).
The return is a number. The remainder r has the same sign as the numerator. If x
and y are integers and g the infeger quotient of x and y, then the function returns
the remainder such that x = y*q + 1, |r| < |y| and x*r > 0.

Idexp (m, e)
Returns m2° (e should be an integer).

log (x, b)

Returns the logarithm of the numibber or complex number x to the base b, with b a
number or a complex number. The function is implemented in the Agena
language and included in the library.agn file.

log10 (x)

Returns the base-10 logarithm of the numibber or complex number x. The function is
implemented in the Agena language and included in the library.agn file.

modf (x)
Returns two numbers, the integral part of x and the fractional part of x.

root (X, n)

Returns the non-principal n-th root of the numibber or complex value x. n must be an
infeger.

roundf (x [, d])

Rounds the number x fo the d-th digit. Return is a number. If d is omiftted, the
number is rounded fo the nearest integer. The following Agena code explains the
algorithm used:

roundf := proc(x, digs) is
local d;
if digs = null then d := 0 else d ;= digs fi;
return int((10~d)*x + sign(x)*0.5) * (10/(-d))
end;

See also: ceil, entier, int.

sec(x)

Returns the secant co]s(x) as a number. The function is implemented in the Agena

language and included in the library.agn file. The function works on both numbers
and complex values.

176 7 Standard Libraries

sech(x)

Returns the hyperbolic secant as a number. The function is implemented in the
Agena language and included in the library.agn file. The function works on both
numibers and complex values.

7.8.3 math Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table math .

math.convertbase (s, a, b)

Converts a number s or a number represented as a string s from base a to base b.
a and b must be integers in the range 1 to 36. The number in s must be an integer
of any sign. Floats are not allowed. The retun is a string. The function is
implemented in the Agena language and included in the library.agn file.

math.fraction (x [, err])

Given a number x, this function outputs two integers, the numerator n and the
denominator d, such that x := n/ dfo an accuracy epsilon := | (x - n/d)/ x | <err .
The eror err should be a non-negative number, and by default is 0.

The returns are three numbers in the following order. the numerator n, the
denominator d, and the accuracy epsilon.

The function is implemented in the Agena language and included in the
library.agn file.

math.gcd (X, y)

Returns the greatest common divisor of the numbers x andy as a number. If x ory
is not an integral, 1 is returned. The function is implemented in the Agena language
and included in the library.agn file.

math.isPrime (x)

Returns true, if the integral number x is a prime number, and false otherwise. Note
that you have to take care yourself that x is an integer and is less than the largest
integer representable on your system.

See also: math.nextPrime, math.prevPrime.

agena >> 177

math.lcm (x, y)

Returns the least common multiple of to numbers x and y as a number. The
function is implemented in the Agena language and included in the library.agn
file.

math.max (x, ---)

Returns the maximum value among its arguments.

math.min (x, ---)

Retfurns the minimum value among its arguments.

math.nextafter (x, y)

Retumns the next machine floating-point number of x in the direction toward y.

math.nextPrime (x)

Returns the smallest prime greater than the given numiber x.

See also: math.prevPrime, math.isPrime.

math.norm (x, al:a2 [, b1:b2])

Converts the number x in the scale [a1, a2] to one in the scale [bl, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x is converted to a number in [0, 1]. The return is a number.

math.prevPrime (x)

Returns the largest prime les than the given number x.

See also: math.nextPrime, math.isPrime.

math.Phi

N L)
The golden number, Phi:= —5—.

math.random ([m [, n]])

This function creates random numbers.

When called without arguments, returns a pseudo-random real number in the
range [O,1). It can generate up to 2 * _Env.MaxLong unique random numbers in
this interval.

178 7 Standard Libraries

When called with a number m math.random returns a pseudo-random integer in
the range [1, m.

When called with two numbers m and n, math.random returns a pseudo-random
infeger in the range [m n].

math.randomseed (x, y)

Sets x and y as the "seeds" for the pseudo-random generator: equal seeds
produce equal sequences of numbers. x and y must both be positive integers. The
return are the two new settings.

math.toDecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes mand seconds s info
its decimal representation. The optional arguments m and s default to 0. The
function is implemented in the Agena language and included in the library.agn
file.

math.toRadians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments m and s default to O.

agena >> 179

7.9 Input and Output Facilities
The I/O library provides two ways for file manipulation:

1.

The first one uses file handles; that is, there are operations to set a default input
fle and a default output file, and all input/output operations are over these
default files. File handles are values of type userdata and are used as in the
following example:

Open a file and store the file handle to the name fh :

> fh := io.open('d:/agena/src/change.log’):
file(7803A6F0)

Read 10 characters:

> jo.read(fh, 10):
Change Log

Close the file:

> jo.close(fh):
true

In the following descriptions of the io functions, file handles are indicated with
the argument filehandle

The table io provides three predefined file handles with their usual meanings
from C: io.stdin , io.stdout , And io.stderr

The second style wuses file names passed as strings like
'd:/agenal/lib/library.agn' . File names are always indicated with the
argument filename in this chapter.

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.anykey ()

Checks whether a key is being pressed and returns either true or false. A common
usage is as follows:

> while io.anykey() = false then do od; # wait unti | a key has been pressed

The function works in the Solaris, Linux, and Windows editions only. On other systems,
it returns fail.

See also: io.getkey.

180 7 Standard Libraries

io.close ([filehandle])

Closes a file. Note that files are automatically closed when their handles are
garbage collected, but that takes an unpredictable amount of time to happen.
Without a filehandle , closes the default output file.

See also: io.open, io.popen.

io.flush (filehandle)
io.flush ()

In the first form, saves any written data to filehandle . In the second form, the
function flushes the default output.

io.getkey ()
Waits until a key is pressed and returns its ASCII number.

The function is available in the Solaris, Linux, Mac OS X, and Windows editions only.

See also: io.anykey.

io.input (filehandle)

io.input (filename)

io.input ()

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file

handle as the default input file. When called without parameters, it retumns the
current default input file.

In case of errors this function raises the error, instead of retuning an error code.

io.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns frue if filehandle is an
open file handle, or false if filehandle is Not a file handle.

io.lines (filename)

io.lines (filehandle)

io.lines ()

In the first form, the function opens the given file denoted by filename in read

mode and returns an iterator function that, each time it is called, returns a new line
from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

agena >> 181

Therefore, the constfruction

for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f, where f is either a file name or file
handle. When the iterator function detects the end of file, it retumns null (to finish the
loop) and automatically closes the file if a flename is given. In case of a file
handle, the file is not closed.

The call io.lines() (without a file name) iterates over the lines of the default input
file. In this case it does not close the file when the loop ends.

See also: io.readlines.

io.lock (filehandle)
io.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 243
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 29 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the curent file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: io.unlock.

io.nlines (filename)

io.nlines (filehandle)

The function counts the numiber of lines in the (text) file denoted by filename oOr
flehandle and refurns a non-negative intfeger.

io.open (filename [, mode])

This function opens a file, given by the string filename , in the mode specified in the
string mode. It retuns a new file handle. The function does not lock the file (see
io.lock).

In case of errors, the function quits with an error.

182 7 Standard Libraries

The mode string can be any of the following:

* ' read mode (the default);

* 'W'" write mode only; if the file already exists, it is fruncated o zero length;

e 'a" append mode;

* 'r+" update mode (both reading and writing), all previous data is preserved;
the inifial file position is at the beginning of the file;

* 'w+'"i update mode (reading and writing), all previous data is erased;

* 'a+" append update mode (reading and appending), previous data is
preserved, writing is only allowed at the end of file.

The mode string may also have a 'b* af the end, which is needed in some systems
fo open the file in binary mode. This string is exactly what is used in the standard C
function fopen .

See also: io.close, io.lock.

io.output ([filehandle])
Similar to io.input but operates over the default output file.

io.pcall (prog [, mode])

Starts programme prog in @ separated process, sends and receives data to this
programme (if mode is 'r , Or mode is NOt given) via stdout, or writes data to this
programme (if mode is 'w'). After communication finishes, the connecftion is
automatically closed.

The return is a sequence of strings containing the result sent back by the
application.

The function thus is a combination of io.popen, io.readlines, and io.pclose, has
been wrtten in the Agena language, and is included in the main Agena library
(lib/library.agn).

This function is system dependent and is not available on all platforms.

See also: os.execute, io.pcall.

io.popen ([prog [, mode]])

Starts programme prog in a separated process and returns a file handle that you
can use to read data that is sent from this programme (if modeis ', the default) via
stdout, or to write data to this programme (if mode is 'w').

Use io.close to close the connection.

The following example shows how to receive the output of the UNIX “Is° command:

agena >> 183

> p :=io.popen(ls -I', 'r):
file(779509B8)

> for keys i in io.lines(p) do print(i) od,;

total 1917

drwxrwxrwx 1 user group 0Oct12 17 :00 OS2
-rw-rw-rw- 1 user group 24481 Oct 13 18 :23 aauxlib.c
-rw-rw-rw- 1 user group 6205 Aug 10 02 :26 aauxlib.h
-rw-rw-rw- 1 user group 16067 Oct 12 23 :42 aauxlib.o
> jo.close(p):

true

This function is system dependent and is not available on all platforms.

See also: os.execute, io.pcall.

io.read(filehandle [, format])
io.read ()

In the first form, reads the file with the given filehandle , according to the given
formats, which specify what to read. For each format, the function returns a string
(or a number) with the characters read, or null if it cannot read data with the
specified format. When called without formats, it uses a default format that reads
the entire next line (see below).

The available formats are

* "*n" reads a number; this is the only format that returns a number instead of a
string.

* *a" reads the whole file, staring at the current position. On end of file, it
retuns the empty string.

* " reads the next line (skipping the end of line), returning null on end of file.
This is the default format.

* number: reads a string up to this number of characters, retumning null on end
of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

In the second form, the function reads from the default input stream and returns a
string or number.

io.readlines (filename [, options])

io.readlines (filehandle [, options])

Reads the entire file with name filename or file handle filehandle and retuns alll
lines in a table. If a string consisting of one or more characters is given as a further
argument, then all lines beginning with this string are ignored. If the option true is
passed, then diacritics in the file are properly converted 1o the console character
set, provided you use code page 1252.

184 7 Standard Libraries

An error is issued if the file could not be found.

If you use file handles, you must open the file with io.open before applying
io.readlines, and close it with io.close thereafter.

See adlso: io.lines.

io.seek (filehandle, [whence] [, offset])

Sefs and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

« ‘'set' base is position O (beginning of the file);
e 'cur: base is current position;
* ‘'end" base is end of file.

In case of success, function seek returns the final file position, Mmeasured in bytes
from the beginning of the file. If this function fails, it retumns null, plus a string
describing the error.

The default value for whence is ‘cur , and for offset is 0. Therefore, the call

io.seek(file) returns the current file position, without changing it; the call
io.seek(file, 'set’) sets the position o the beginning of the file (and returns 0O);
and the call io.seek(file, 'end’) sets the position to the end of the file, and

returns its size.

io.setvbuf (filehandle, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

* 'no" no buffering; the result of any output operation appears immediately.

o 'full's full buffering; output operation is performed only when the buffer is full
(or when you explicitly flush the file (see io.flush).

* lline": line buffering; output is buffered until a newline is output or there is any
input from some specidal files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is
an appropriate size.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the programme ends.

agena >> 185

io.unlock (filehandle)
io.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see io.lock.

io.write (---)
io.writeline (---)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument (a file handle). Except
for the file handle and the 'delim' option described below, all arguments must be
strings or numbers. To write other values, use toString or strings.format before using
write or writeline.

writeline adds a new line character at the end of the data written, whereas write
does notf.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim':.<str> (i.e. a pair, e.g. 'delim"|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut fo 'delim":<str> is delim ~ <str>

Examples:

Wirite a string to the console. Note that in the first statement, no newline is added to
the output, as opposed to the second and third statements.

> jo.write('Gauden Dach ")
Gauden Dach !

> jo.write('Gauden Dach !', '\n")
Gauden Dach !

> jo.writeline('Gauden Dach !")
Gauden Dach !

Wirite strings to the console:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef, 'dat’, 'hier’,
> 'baben’, ‘anne’, 'Kist', 'nix’, 'anneres', ‘as ', 'Platt.")
Betto'n16.JohrhunnertgeefdathierbabenanneKistnixann eresasPlatt.

Use a white space as a separator:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef', 'dat’, 'hier’,

> ‘'baben’, ‘anne’, 'Kust', 'nix', 'anneres’, ‘as ", 'Platt.’,

> delim~"")

Bet to'n 16. Johrhunnert geef dat hier baben anne K Ust nix anneres as

Platt.

Wirite a string o a new file called 'd:/newfile.txt' . First we have to creatfe the new

file with io.open and the 'w' (write) option.

186

7 Standard Libraries

> fth := io.open(‘d:/newfile.txt', 'w'):
file(7803A6F0)

Write some text to the file.

> jo.write(fh, 'Gouden Dach !"):
true

> jo.writeline(fh, \nBet', 'to\'n’, '16.', 'Johrhu
> 'hier", 'baben’, ‘anne’, 'Kust', 'nix’, ‘anner
> delim~""):

true

Finally, the file will be closed.

> io.close(fh):
true

nnert', 'geef’, 'dat’,
es', 'as', 'Platt.’,

agena >> 187

7.10 binio - Binary File Package

This package contains functions fo read data from and write data to binary files.

The binio package always uses file handles that are positive integers greater than 2.
(Note that the io package uses file handles of type userdata.) The positive integer is
returned by the binio.open function and must be used in all package functions that
require a file handle.

A typical example might look like this:

Open a file and return the file handle:

> fh := binio.open('c:/agena/lib/library.agn’):
3

Determine the size of the file in bytes:

> binio.length(fh):
46486

Close the file.

> binio.close(fh):
true

The binio functions:

binio.close (filehandle [, filehandle2, ...])

Closes the files identified by the given file handle(s) and returns true if successful,
and issues an error otherwise. The function also deletes the file handles and the
corresponding filenames from the binio.openfiles table if the file could be properly
closed.

See also: binio.open.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, it quits with this error.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, it quits with this error.

188 7 Standard Libraries

binio.lock (filehandle)
binio.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 293 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: binio.unlock .

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (a number).

If it cannot find the file, it creates it and leaves it open for further binio operations.

If the file already exists, it leaves it open and setfs the current file position to the
beginning of the file. (In subsequent write operations, the contents of the file will thus
e overwritten.) Use binio.toend to append to the file.

The file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus, if the file does not yet exist, the function retums fail.

The function also enters the newly opened file into the binio.openfiles table.
See also: binio.close, binio.lock, binio.unlock.

binio.readbytes (filehandle [, bytes])

In the first form, the function reads _Env.BufferSize bytes from the file denoted by
filehandle and returns them as a sequence of infegers. You may change the
value of _Env.BufferSize to any other positive infeger in order to read less or more
bytes.

In the second form, the function reads bytes bytes from the file denoted by
flehandle and returns them as a sequence of integers.

agena >> 189

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to the various binio.read* functions.

If the end of the file has been reached, null is returned. In case of an error, it quits
with this error.

The function is much faster when working on a larger numiber of bytes.
See also: binio.writebytes, strings.toBytes .

binio.readchar (filehandle)
binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filehandle from
the current file position and increments the file position thereafter so that the next
byte in the file can e read with a new call to binio.read* functions.

In the second form, at first the file position is changed by position bytes (a positive
or negative numiber or zero) relative to the current file position. After that the byte atf
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, null is returned. In case of an error, the function quits.

binio.readlong (filehandle)

The function reads a signed C value of type int32_t from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error. Note that the numiber to be read should
have lbeen writfen fo the file using the binio.writelong function.

See also: binio.writelong.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filehandle ~ from the
current file position and returns it. If there is an eror or nothing to be read, the
function quits with an error. Note that the number to be read should have been
written to the file using the binio.write number function.

See also: binio.writenumber.

binio.readshortstring (filehandle)

The function reads a string of up to 255 characters from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error.

190 7 Standard Libraries

Notfe that the string to be read should have been written to the file using the
binio.writeshortstring function, as binio.writeshortstring also stores the length of the
string to the file.

See also: binio.writeshortstring.

binio.readstring (filehandle)

The function reads a string of any length from the file denoted by filehandle ~ from
the current file position and returns it. If there is an eror or nothing to read, the
function quits with an error.

Notfe that the string to be read should have been written to the file using the
binio.writestring function, as binio.writestring also stores the length of the string fo the
file.

See also: binio.writestring.

binio.rewind (filehandle)

Sets the file position to the beginning of the file denoted by filehandle . The
function returns the new file position as a number in case of success, and quits with
an error otherwise.

See also: binio.toend, binio.seek .

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relafive to the current position. positon May be negative, zero, or positive.

The return is true if the file position could be changed successfully, or issues an error
otherwise.

See also: binio.rewind, binio.toend.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the file handle. The function
returns true if successful, and issues an eror otherwise (e.g. if the file was not
opened before or an error during flushing occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
e appended to the file without overwriting existing data. The funcftion returns the
file position as a number in case of success, and issues an error otherwise.,

See also: binio.rewind, binio.seek.

agena >> 191

binio.unlock (filehandle)
binio.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see binio.lock.

binio.writebytes (filehandle, s)

The function writes all integers in the sequence s to the file denoted by filehandle
at its current position. The function returns frue in case of success and fail if the
sequence is empty.

The integers in s should be integers number with O <= number < 256, otherwise
number % 256 will be stored to the file.

Internally, the bytes are stored as C unsigned char 's.
See also: binio.readbytes .

binio.writechar (filehandle, number)

The function writes the given Agena number to the file denoted by filehandle af its
current position. The function returns true in case of success and quits with an error
otherwise.

The number should be an integer with 0 <= number < 256, otherwise number % 256
will be stored to the file.

Internally, the byte is stored as a C unsigned char

binio.writelong (filehandle, number)

The function writes the given Agena number to the file denoted by filehandle aft its
current position. The number should be an infeger with _Env.MinLong < number <
_Env.MaxLong, otherwise the operations is not defined.

The function retumns true in case of success and quits with an error otherwise.

Internally, the number is stored as a signed C int32_t in Big Endian notation. Use
binio.readlong to read values written by writelong back info Agena as readlong
fransforms the value back into the proper Endian format used by your machine.

binio.writenumber (filehandle, number)

The function writes the given Agena number to the file denoted by filehandle aft its
current position. The function returns true in case of success and issuesd an error
otherwise. The number is always stored in Big Endian notation. The
binio.readnumber function makes proper conversion to Little Endian if Agena runs
on a Liffle Endian machine.

192 7 Standard Libraries

binio.writeshortstring (filehandle, string)

The function writes the given string to the file denoted by filehandle at its current
position. The string can be of length 0 fo 255.

The function returns true in case of success and issues an error otherwise. Internally,
writeshortstring first writes the length of the string as a C unsigned char and then the
string without a null character to the file. This information is then read by the
binio.readstring function to efficiently retumn the string.

See also: binio.readshortstring.

binio.writestring (filehandle, string)

The function writes the given string to the file denoted by filehandle at its current
position.

The function returns frue in case of success and quits with an error otherwise.
Internally, writestring first writes the length of the string as a C long int and then the
string without a null character to the file. This information is then read by the
binio.readstring function to efficiently return the string.

See also: binio.readstring .

agena >> 193

7.11 Operating System Facilities
This library is implemented through table os.

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

Key Meaning

‘acline’ 'on', 'off', or 'unknown'

‘installed’ true if a battery is present, and false otherwise

life’ battery life in percent

'status’ either low' (capacity < 33%), 'medium' (capacity > 32% and

<67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'‘charging', 'no battery', 'unknown'

‘charging true if battery is currently being charged, or false otherwise

flag’ the battery flag, a number

lifetime’ the remaining battery lifetime in seconds, a number (or
undefined if it could not be determined)

fulllifetime’ the battery lifetime in seconds when at full charge, a number

(or undefined if it could not be determined)

On OS/2 Warp 4 and higher, the functions returns the status of the battery as a table
with the following information:

Key Meaning

‘acline’ 'on’, 'off', 'unknown', or 'invalid'

life’ battery life in percent, or 'undefined' if not available
‘status’ either 'high’, 'low', ‘critical’, ‘charging’, 'unknown', or ‘'invalid
flags'’ OS/2 power flags

power - true if power management is switched on, or false if not.
management

On other operating systems, the function returns fail.

os.alldirs (str)

Returns the names of all directories on the file system that are part of the folder str
with str - a string. The return is a table with all the path names.

0s.beep ()

os.beep (freq, dur)
In the first form, the functions sounds the loudspeaker with a short "beep”™ and
returns null.

194 7 Standard Libraries

The second form sounds the loudspeaker with frequency freq (a positive integer) for
dur seconds (a positive float) in Windows and OS/2. In UNIX and DQOS, the
loudspeaker is activated dur fimes, and the frequency is ignored (just pass any
number to freq). Returns null if a sound could be created successfully, or fail if
non-positive arguments were passed.

os.computername ()

Returns the name of the computer in Windows, DOS, Mac OS X, Haiku, and UNIX.
The retumn is a string. On other architectures, the function returns fail.

os.chdir (str)

Changes into the directory given by string str on the file system. Returns true on
success, and fail, the error message from the operating system, and the C error
code otherwise.

os.curdir ()

Returns the current working directory on the file system as a string or fail if the path
could not be determined.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the
given string format .

If the time argument is present, this is the time fo be formatted (see the os.time
function for a description of this value). Otherwise, date formats the current time.

If format starts with ", then the date is formatted in Co-ordinated Universal Time.
After this optional character, if format is *t, then date returns a table with the
following fields: year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59),
sec (0--59), wday (Wweekday, Sunday is 1), yday (day of the year), and isdst (daylight
saving flag, a boolean).

If format is Nnot *t, then date retumns the date as a string, formatted according to the
same rules as the C function strftime

When called without arguments, date retuns a reasonable date and fime
representation that depends on the host system and on the current locale (that is,
os.date() IS equivalent 1O os.date('%c')).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to fime t2 . In POSIX, Windows, and
some other systems, this value is exactly t2 -t1 .

agena >> 195

os.drives ()

In Windows and OS/2, the function returns all the logical drives available at the local
computer. The return is a sequence of drive letters. In other systems, the return is fail.

os.drivestat (driveletter)

In Windows, the function returns information of the given logical drive (a single letter
strinQ) in a table where its keys have the following meaning:

Key Meaning

label the drive label

filesystem'’ the file system (e.g. NTFS, FAT32, ...)

‘'drivetype’ the type of the drve, i.e. Removable', Fixed, 'Remote’,
'CD-ROM', or 'RAMDISK'

freesize’ the number of free space in bytes

‘totalsize’ the total number of physical bytes

In other systems, the return is fail.

Example:
> os.drivestat('c’): # get information on drive C: \
[filesystem ~ NTFS, label ~ drive_c, drivetype ~ Fi xed, freesize ~

75547742208, totalsize ~ 85898014720]

os.endian ()

Determines the endianness of your system. Returns O for Little Endian, 1 for Big
Endian, and fail if the endianness could not be determined.

os.execute (Jcommand])

This function is equivalent to the C function system . It passes command to be
executed by an operafing system shell. It retuns a status code, which is
system-dependent. If commandis absent, then it returns non-zero if a shell is available
and zero otherwise.

See also: io.popen.

os.exists (filename)

Checks whether the given file or directory (filename is Of type string) exists and the
user has at least read permissions for it. It returns true or false.

os.exit ([code])

Calls the C function exit , with an optional code , to terminate the host programme.
The default value for code is the success code.

196 7 Standard Libraries

os.fattrib (fn, mode)

Sets or deletes file permission flags given by the mode string to the file denoted by
the filename n .

The mode argument must consist of at least three characters and have the following
form:

Character 1 Character 2 Character 3, etc.

'u' - user '+' - add permission T - read permission
'g' - group - - remove permission | 'w' - write permission
‘o' - other X' - execute permission
'a’ - user, group, and

other

The first character in mode denotes the owner of the file, the second character
indicates whether to set or delete a permission, and the following characters
indicate which permissions to set or remove.

In Windows and OS/2 the following permission flags are additionally supported:

Character 3, etc.
'a’ - archive flag

's' - system flag
'h' - hidden flag
T -readonly flag

The function returns true on success, and fail otherwise.

Examples:

> chmod(file.txt', ‘a-wx"); # deletes write and e xecute permissions

See also: os.fstat.

os.fcopy (infile, outfile)

Copies the file and its permissions denoted by the filename infile fo the file called
outfile . If outfile already exists, it is overwritten without warning. The function
infernally uses _Env.BufferSize for the number of bytes to be copied af the same
fime, which you may change to any other positive integer.

The function returns true on success, and faqil otherwise. It also returns fail if the file
could be copied, but the file permissions could not be set.

agena >> 197

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and Mac OS X,
Haiku, and UNIX machines. In OS/2, the function returns the amount of free virtual
RAM.

If no argument is given, the refum is in bytes. If unit is the string 'koytes' , the retumn is
in kBytes; if unit is 'mbytes’ , the retumn is in Mbytes; if unit is 'gbytes' , the return is in
GBytes. On other architectures, the function returns fail.

See also: used.

os.fstat (fn)

Returns information on the file, link (UNIX only), or directory given by the string fn in @
table.

The table includes the following information:

Key Meaning

‘mode’ 'FILE' if fn is a regular file, 'LINK' if fn is a symbolic link (UNIX
only), 'DIR' if fn is a directory, '"CHARSPECFILE' if fn iS character
special file (a device like a terminal), 'BLOCKSPECFILE' if fn is Q
block special file (a device like a disk), or 'OTHER' otherwise

length’ the size of the file in bytes

‘date’ last modification date in the form yyyy, mm, dd, hh, mm, ss

perms’ file attributes coded in an integer (C type mode 1)

‘bits' fle aftributes as a string similar to that in UNIX and DOS, e.g.
~W-TW-F--; === Of '---mmmmmm- .-drhas' where the bits to the

left of the colon are set in the UNIX and DOS versions of Agena,
while in Windows and OS/2, the bits to the right of the colon are
set.

The lefters indicate:

™ - read permission granted (UNIX & DOS)

w' - write permission granted (UNIX & DOS)

X' - execute permission granted (UNIX & DOS)
d - indicates directory (OS/2 only)

T - readonly file (OS/2 and Windows)

'h' - hidden file (OS/2 and Windows)

'a’ - archived file (OS/2 and Windows)

s' - system file (OS/2 and Windows)

198 7 Standard Libraries

‘'owner' Access permissions to the file or directory are retumned with the
'group’ owner, group (UNIX only), and other (UNIX only) keys which each
‘other’ reference tables with information on read , write , And execute
permissions. These tables have the following form: [read' ~
<boolean>, ‘write' ~ <boolean>, 'execute’ ~ <boolean>],

where <boolean> is either true or false.

In OS/2 and Windows, the file affrioutes ‘'hidden' , ‘'readonly’
‘archived’ , and 'system' are also refurned in the subtable with
key '‘owner'.

See also: os.fattrib.

0s.getenv (varname)

Returns the value of the process environment variable varname , or null if the variable
is not defined.

0S.iISANSI ()

Returns frue on Agena editions compiled with the LUA_ANSI (strict ANSI C) option,
and false otherwise.

0s.isDOS ()

Returns frue if Agena is run in DOS, and false otherwise. It also retumns false if Agena
is run from within a Windows shell.

os.isHaiku ()

Returns true if Agena is run in Haiku, and false otherwise.

os.isLinux ()

Returns true if Agena is run in Linux, and false otherwise.

os.isMac ()

With no options, retumns true if Agena is run on a Mac, and false otherwise.

With the option 'ppc’ |, the function determines whether Agena is run on a PowerPC
CPU and returns true or false.

With the option 'x86' or 'intel , the function determines whether Agena is run on
an Infel CPU and retumns true or false.

agena >> 199

0s.isOS2 ()
Returns true if Agena is run in OS/2, and false otherwise.

os.isSolaris ([option])

With no options, returns true if Agena is run in Solaris (including Nexenta), and false
otherwise.

With the option 'sparc’ Or 'sun4u’ , the function determines whether Agena is run
on Sun Sparc Solaris and returns frue or false.

With the option 'x86' or 'intel , the function determines whether Agena is run on
Sun x86 Solaris and returns true or false.

0s.iISUNIX ()

Returns true if Agena is run in a UNIX environment (i.e. Solaris, Linux, and Nexentq),
and false otherwise.

0s.isWin ()
Returns true if Agena is run in Windows, and false otherwise.

os.list (d [, options])

Lists the contents of a directory d (given as a string) as a table. If d is void, the current
working directory is evaluated.

d may include the ? and * jokers known from UNIX, OS/2, or Windows to select a
subset of files, e.g. os.list(**.c') to select all files with suffix .c . Jokers can only be
used to select files, but not o parse multiple subdirectories.

If no opfion is given, files, links, and directories are returned. If the optional argument
files' is given, files are returned. If the optional argument ‘dirs' is given,
directories are returned. If the optional argument 'links' is given, links are returned
(UNIX only). Multiple options can be given.

If d is ' , then the current working directory is examined. If d is *..' , then the
directory one level higher is searched.

os.listcore (d)
os.listcore (d [, options])

In the first form, returns a table with all the files, links and directories in the given path
d. If d is void, the current working directory is evaluated.

In the second form, by giving at least one of the opftions files: , ‘dirs' , Or
links' , file, directory name, or link names are returned, respectively. These three

200 7 Standard Libraries

options can be mixed.

os.login ()

Returns the login name of the current user as a string. The return is a string. In DOS,
the function returns fail.

os.memstate ([unit])

(Windows, UNIX, Mac OS X, Haiku, and OS§/2 only.) Returns a table with information
on current memory usage. With no arguments, the return is the respective number
of bytes (integers). If unit is the string 'kbytes', the retumn is in kBytes, if unit is 'mbytes’,
the return is in MBytes.

The resulfing table will contain the following values, an X' indicates which values are
returned on your system.

UNIX/

Key Description Windows Haiku 0S/2 Mac

freephysical free physical RAM X X X

‘totalphysical installed physical RAM X X X X

freevirtual’ free virtual memory X X

'totalvirtual’ total virtual memory X

'resident’ occupied resident pages X

active' active memory X

'inactive’ inactive memory X

speculative unknown meaning, see X
vm_stat.c source code.

wireddown' memory that cannot be X
paged out

'reactivated' memory reactivated X

On Mac, the function returns Mach virtual memory statistics. Type man vm_stat in G
shell to get more information on the meaning of the above mentioned
Mac-specific values.

On other architectures, the function returns fail.

0s.mkdir (str)

Creates a directory given by string str on the file system. Returns true on success,
and fail, the error message from the operating system, and the C eror code
otherwise.

The function is available on OS/2, DOS, UNIX, Haiku, Mac OS X, and Windows based
systems only.

agena >> 201

0s.mousebuttons ()

In Windows, returns the numlber of buttons of the attached mouse. If a mouse is not
connected to your system, O is returned. On all other platforms, the function returns
fail.

os.move (oldname, newname)

Renames or moves a file or directory named oldname 1O newname. The function
retuns true on success. If this function fails, it returns fail, the error message from the
operating system, and the C error code otherwise.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns true on success, and fail, the error message from the operating
system, and the C error code otherwise.

os.rmdir (dirname)

Deletes a directory denoted by the string dirname on the file system. Returns true on
success, and fail, the error message from the operating system, and the C eror
code otherwise.

os.screensize ()

In Windows, returns the current horizontal and vertical resolution of the display as a
pair of width:height. On all other platforms, the function issues fail.

os.setlocale (locale [, category])

Sets the current locale of the programme. locale is A string specifying a locale;
category IS an opfional string describing which category to change: ‘all'
‘collate’ , 'ctype' , 'monetary’ , 'numeric'’ , Of 'time' ; the default category is ‘all

The function returns the name of the new locale, or null if the request cannot be
honoured.

When called with null as the first argument, this function only returns the name of the
current locale for the given category.

os.system ()

Returns information on the platform on which Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT 4.0, '2000', etfc.) as a string, the Build Number (awBuildNumber) as a
number, the platform ID (dwPlafformid) as a numiber, the major version

202 7 Standard Libraries

(QwMajorVersion), the minor version (dwMinorVersion), and the product type
(WwProductType) in this order.

In UNIX, Mac OS X, Haiku, OS/2, and DOS, it returns a table of strings with the name
of the operating system (e.g. 'SunOS)), the release, the version, and the machine, in
this order. Note that Mac OS X is recognised as 'Darwin'.

If the function could not determine the platform propertly, it returns fail.

os.time ([table])

Returns the current time when called without arguments, or a time representing the
date and time specified by the given table. This table must have fields year , month,
and day, and may have fields hour , min, sec, and isdst (for a description of these
fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX,
Windows, and some other systems, this numiber counts the number of seconds
since some given start fime (the "epoch'). In other systems, the meaning is not
specified, and the number returned by time can be used only as an argument to
date and difftime.

os.tmpname ()

Retuns a string with a file name that can be used for a temporary file. The file must
be explicitly opened before its use and explicitly removed when no longer needed.

os.wait (X)

Waits for x seconds and returns null. x may e an integer or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on OS/2, DOS, UNIX, Mac OS X, Haiku, and Windows based systems only.
On other architectures, the function returns fail.

agena >> 203

7.12 The Debug Library

This library provides the functionality of the debug interface to Agena programmes.
You should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
femptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g.. that variables local to a function cannot be accessed from outside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code.

All functions in this liorary are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commmands for debug.debug are not lexically nested within any function,
and so have no direct access o local variables.

debug.getfenv (obj)
Returns the environment of object obj .

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethook function).

debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function , which means the
function running af level function of the call stack of the given thread: level O is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on.
If function is a number larger than the number of active functions, then getinfo
returns null.

The returned table may contain all the fields retfurned by lua_getinfo, with the string
what describing which fields fo fill in. The default for what is to get all information
available, except the table of valid lines. If present, the opfion ' adds a field

204 7 Standard Libraries

named func with the function itself. If present, the option '’ adds a field named
activelines with the table of valid lines. If present, the option 'g¢ adds a field
named globals with a table of variables that have been globally assigned.

For instance, the expression debug.getinfo(1, 'n').name returns a name of the
current function, if a reasonable name can be found, and debug.getinfo(print)
returns a table with all available information about the print function.

debug.getlocal ([thread,] level, local)

This function retumns the name and the value of the local variable with index local
of the function at level level of the stack. (The first parameter or local variable has
index 1, and so on, unfil the last active local variable.) The function returns null if
there is no local variable with the given index, and raises an error when called with
a level out of range. (You can call debug.getinfo o check whether the level is
valid.)

Variable names starfing with (" (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

debug.getmetatable (object)
Returns the metatable of the given object or null if it does not have a metatable.

debug.getregistry ()
Returns the regqistry table.

debug.getupvalue (f, up)

This function returns the name and the value of the upvalue with index up of the
function f . The function retumns null if there is no upvalue with the given index.

debug.setfenv (object, t)
Sefts the environment of the given object 10 the given table t . Refurns object .

debug.sethook ([thread,] hook, mask [, count])

Sefs the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

» '¢: The hook is called every time Agena calls a function;
* ' The hook is called every time Agena retumns from a function;
* 1 The hook is called every time Agena enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

agena >> 205

When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has
tiggered its call: ‘call’ , 'return' (or 'tail return’), 'line' , and ‘count . For line
events, the hook also gets the new line number as its second parameter. Inside a
hook, you can call getinfo with level 2 to get more information about the running
function (level O is the getinfo function, and level 1 is the hook function), unless the
event is 'tail return' . In this case, Agena is only simulatfing the return, and a call
to geftinfo will return invalid data.

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function at level level of the stack. The function retuns null if there is no local
variable with the given index, and raises an error when called with a level out of
range. (You can call getinfo to check whether the level is valid.) Otherwise, if returns
the name of the local variable.

debug.setmetatable (object, t)
Sets the metatable for the given object to the given table t (which can be null).

debug.setupvalue (f, up, value)

This function assigns the value value to the upvalue with index up of the function f .
The function returns null if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

debug.system (n)

Returns a table with the following system information: The size of various C types
(char, int, long, long long, float, double, int32 1), the endianness of your plafform,
the hardware and the operating system for which the Agena executable has been
compiled.

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the fraceback. This function is typically used with
xpcall to produce better error messages.

206 7 Standard Libraries

7.13 utils - Utilities
The utils package provides miscellaneous functions.

utils.arraysize (strarr)

Returns the maximum number of elements allocable to the stringarray” userdata
denoted by strarr

See also: utils.newarray .

utils.getarray (strarr, n)

Returns the (n+1)-th string from the “stringarray”™ userdata denoted by strarr . Note
that n starts from O.

See also: utils.newarray .

utils.getwholearray (strarr)

Returns a table including all strings that are stored in the “stringarray™ userdata
denoted by strarr , with the first string at table index 1 (and not O).

See also: utils.newarray .

utils.newarray (n)

Creates a “stringarray” userdata of exactly n stings, n > 0. The userdata stores (C
pointers to) strings of any size, including empty strings. The strings can be set into the
userdata by the utfils.setarray function and accessed through the utils.getarray
function.

utils.setarray (strarr, n, str)

Sets the string str info the “sfringaray™ userdata denoted by strarr at position n.
Note that n starts from O, so your first string must be stored to index O of the userdata.

See also: utils.newarray .

utils.singlesubs (str, strarr)

Substitutes individual characters in string str by corresponding replacements in the
“stringarray” userdata denoted by strarr . The refurn is a new string. Note that the
function fries to find a replacement for a single character in str by determining its
infeger ASCIl value n and then accessing index n in the userdata. If an entry is
found for index n, then the character is replaced, otherwise the character remains
unchanged.

See also: utils.newarray .

agena >> 207

Other functions in the utils library are:

utils.calendar ([x])

Converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

'year' (integer)

'month' (integer)

'day' (integer)

'hour' (integer)

'min' (integer)

'sec' (infeger)

‘wday' (integer, day of the week)
'yday' (infeger, day of the year)

'DST' (Boolean, is Daylight Saving Time)

If x is null or not specified, then the current system time is returned. If x is invalid, the
function issues fail.

utils.isLeapYear (x)

Returns true if the given year x (a number) is a leap year, and false otherwise.

utils.readcsv (filename [, options])

Reads a CSV file and returns its contents in a sequence. The delimiter of the fields in
a line by default is a semicolon.

If a line contains more than one field, then the respective fields are returned in a
sequence. If a line contains only one field, then it is returned without including it in a
sequence. If a line contains nothing, i.e. "\n', then an empty string is returned.

Strings containing numbers are converted to numbers.

Options can be passed as pairs:

Left pair element | Right pair element Example

delm A sting. Use this sting as the | delim =~
delimiter instead of a semicolon.

skipemptylines true or false: If frue, do not retum | skipemptylines ~ true
empty lines. Default is true.

skipspaces true or false: If frue, do not retum | skipspaces ~ true
lines including spaces only. Default
is false.

208 7 Standard Libraries

Left pair element | Right pair element Example
ignorespaces all spaces in a line are delefed | ignorespaces ~ true
before returning the fields. Default

is true.

The function is written in the Agena language and included in the lib/utils.agn
file.

See also: utils.writecsv.

utils.writecsv (o, filename [, delim [, keyoption]])

Creates a CSV file. The function writes all values or keys and value(s) of a table, sef,
or sequence o to a text file given by filename . EQch value or key ~ value pair is
written on a separate line.

By default only values are written, the keys are ignored.

If the opfional argument delim (a string) is given and if the value is a structure itself,
then all entries in this substructure are separated by the given delimiter; default is a
semicolon.

If the optional argument keyoption is given, then the key and the value(s) are also

prinfed and are separated by the given delimiter (third argument) which must be
passed, as well.

The function is written in the Agena language and included in the lib/utils.agn
file.

See also: utils.readcsv.

agena >> 209

7.14 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the readlib or with functions.

stats.median (t)

Returns the median of all numeric values in table t as a number.

stats.mean (t)

Returns the mean of all numeric values in table t as a number. The function is
implemented in Agena and included in the library.agn file.

stats.minmax (t [, 'sorted")

Returns a table with the minimum of all numeric values in table t as the first value,
and the maximum as the second value. If the option 'sorted' is passed than the
function assumes that all values in t are sorted in ascending order so that execution
is much faster.

minmax returns fail if a sequence or table of less than two elements has been
passed.

stats.gmean (1)

Returns the quadratic mean of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.sd (t)

Returns the standard deviation of all numeric values in table t as a number. The
function is implemented in Agena and included in the library.agn file.

stats.toVals (t)

Converts all string values in table t to Agena numbers. The function is implemented
in Agena and included in the library.agn file.

stats.var (t)

Returns the variance of all numeric values in t as a number. The function is
implemented in Agena and included in the library.agn file.

210 7 Standard Libraries

7.15 calc - Calculus Package

This package contains mathematical routines to perform basic calculus
numerically. Since the functions do not work symbolically, please beware of
round-off errors. As a plus package, it is not part of the standard distribution and
must be activated with the readlib or with functions.

A typical example might look like this:
> readlib ‘calc’

Define a function f:=x - sin(x):

> f:= << x -> sin(x) >>

Determine all its zeros over [-5, 5]

> calc.zero(f, -5, 5):
seq(-3.1415926535898, 0, 3.1415926535898)

Differentiate it at point O and also return an error estimate:

> calc.diff(f, 0):
0.99999999999963 1.8503717573394e-010

Compare it

> cos(0):

Integrate it over [O, x]:

> calc.gtrap(f, 0, Pi):
1.9999999938721

calc.Ci (x)

Computes the cosine integral and returns it as a number. x must be a number.

See also: cale.Si, cale.Chi, calec.Shi, calc.Ssi.

calc.Chi (x)

Computes the hyperbolic cosine integral and retums it as a number. x must be a
number.

See also: cale.Si, cale.Ci, calc.Shi, calc.Ssi.

agena >> 211

calc.dawson (x)

Computes Dawson's infegral for a number x. The return is a number.

See also: expx2.

calc.dilog (x)

Computes the dilogarithm function for a numiber x. The return is a number.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f at a point x. If eps is
not passed, the function uses an accuracy of the value stored to Eps. You may
pass another numeric value for eps if necessary.

The algorithm is based on Conte and de Boor's “Coefficients of Newton form of
polynomial of degree 3.

See also: calc.xpdiff.

calc.Ei (x)

Computes the exponiential intfegral for a positive number x. The return is a number,
and undefined if x < 0.

calc.fprod (f, a, b)

Computes the product of f (a), ..., f(b), with f a function, a and b numbers. If a > b,
then the result is 1.

calc.fresnelc (x)

X
Computes the Fresnel integral C(x) =j cos(5 t2) dt and retums it as a number.
0

calc.fresnels (x)

X
Computes the Fresnel infegral S(x) =§ sin(3 12) dt and returns it as a number.
0

calc.fseq (f, a, b [, step])

Creates a sequence seq(1~f (a), 2~f (a+step), ((b-a)* 1/step +1)~f (b)), with f a
function, a and b numiers. Thus, the function f is applied to all numbers between
and including a and b. The step size is 1 if step - @ number - is Not given.

The function uses the Kahan summation algorithm to prevent round-off errors.

212 7 Standard Libraries

See also: nseq, calc.fsum.

calc.fsum (f, a, b)

Computes the sum of f (a), ..., f (b), with f a function, a and b numbers. If a > b, then
the result is O.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accuracy of eps = Eps has been reached. You may pass another numeric value
for eps if necessary.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.intde, calc.intdei, calc.intdeo, calc.integral .

calc.intde (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using Double
Exponential (DE) Transformation, also known as Tanh-sinh quadratfure.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps
b

means: (absolute error) / (ff(x)|dx).

The return is 1) the approximation to the integral, or fail if evaluation failed, and 2)
an estimate err of the albsolute error, where

e err > 0: normal termination,

* en < 0: abnormal termination, i.e. an convergent ernor has been detected: 1)
f(x) or %n f(x) has discontinuous points or sharp peaks over [a, b] (you must divide
the interval [a, b] at these points). 2) The relative eror of f(x) is greater than eps. 3)
f(x) has an oscillatory factor and the frequency of the oscillation is very high.

This function is four times faster than calc.gtrap and also much more accurate. It
can be applied on any polynomial, exponential or frigonometric function,
logarithm, power function, and most special functions.

See also: calc.gtrap, calc.intdei, calc.intdeo, calc.integral.

calc.intdei (f, a, [, eps])

Integrates the non-oscillatory function f on the interval [a, «o], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

agena >> 213

f needs to be analytic over [a, x]. eps iS the relative error requested excluding
cancellation of significant digits, and by default is equal o 1e-15. Specifically, eps
b

means: (absolute eror) / ([f(x)|dx).

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intfde, calc.intdei, calc.integral .

calc.intdeo (f, a, [, omega [, eps])

Integrates the oscillatory function f on the interval [a, «], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, «]. omega is the oscillatory factor of f and by default
is 1. eps is the relative error requested excluding cancellation of significant digits,
b

and by default is equal to 1e-15. Specifically, eps means: (absolute error)/(jf[x)|dx).
a

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.intdeo, calc.integral.

calc.integral (f, a, b [, omega [, eps])

This function is a wrapper around calc.intde, calc.intdei, and calc.intdeo. If eps is
not given, it is Te-15 by default. If omega is not given, it is 1. The return is the integral
value and the error margin, both are numbers.

If b is not infinity, the function calls calc.intde and returns its results.

If b is infinity, the function first calls calc.intdei and returns its results, if intdei does not
evaluate to fail. Otherwise, calc.intdeo is called.

See also: calc.gtrap, calc.intde, calc.intdei, calc.intdeo.

calc.interp (tp)

Computes a Newton interpolating polynomial and retumns it as a univariate function.
The interpolation points are passed in a table tp , with each point being represented
as a pair Xy .

Example:

> f := calc.interp([0:0, 1:3, 2:1, 3:3]);

214 7 Standard Libraries

Call f at point 10:

> f(10):
885

The function is implemented in Agena and included in the lib/calc.agn file.

calc.maximum (f, a, b, [step [, eps]])

Returns all possible maximum locations of the univariate function f on the interval
[a, b]. The function divides the interval [a, b] into smaller intervals [a, a+step],
[a+step , a+2*step |, ..., [b-step , b], with step =0.1 if step is not given. It then looks
for possible maximum locations x in these smaller intervals and checks whether the
first derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps, with eps=Eps as a default. If a
possible extreme location x matches the condition f(x) = 0 with this accuracy, it
is included in the first sequence that the procedure retums. If the test fails and eps
<= Eps, then an accuracy of 1e-5 is used for a second fest. If it succeeds, x is
included into both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.minimum.

calc.minimum (f, a, b, [step [, eps]])

Returns all possible minimum locations of the univariate function f on the interval [a,
b]. The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step ,
a+2*step |, ..., [o-step , b], with step =0.1 if step is not given. It then looks for possible
minimum locations x in these smaller intervals and checks whether the first
derivative of f at x is O.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps, with eps=Eps as a default. If a
possible extreme location x matches the condition f(x) = 0 with this accuracy, it
is included in the first sequence that the procedure retums. If the test fails and eps
<= Eps, then an accuracy of 1e-5 is used for a second fest. If it succeeds, x is
included info both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.maximum.

agena >> 215

calc.polygen (c mC niy,. C 2,C 1)

Creates a polynomial p(X) = ¢, *X™" + ¢, *X™ + .. + ¢,*X + ¢, from the coefficients
Cns Cn1s .. C2o € ANA refums it as a new function p 1= << x-> p(x) >>, where x and
the return p(x) represent numbers.

calc.Psi (x)

Computes the Psi (digamma) function (the logarithmic derivative of the gamma
function) for a numiber x. The return is a number.

calc.Shi (x)

Computes the hyperbolic sine infegral and returns it as a number. x must be a
number.

See also: cale.Ci, cale.Chi, calc.Si, calc.Ssi.

calc.Si (x)

Computes the sine integral and returns it as a number. x must be a number.

See also: cale.Ci, cale.Chi, calc.Shi, calc.Ssi.

calc.Ssi (x)

Computes the shifted sine infegral and returns it as a number. x must be a number.

See also: cale.Ci, cale.Chi, calc.Shi, calc.Si.

calc.xpdiff (f, x, [eps, [delta]])

Like calc.diff, but uses Richardson's extrapolation method. f is the function to be
iterated at point x (Q number). eps and delta Are accuracy values (numbers, as
well). The return of the procedure are the derivative of f at x - a number - and the
eror.

xpdiff produces better results with powers and trigonometric functions than calc.diff.

calc.zero (f, a, b, [step [, eps]])

Returns all rootfs of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] info smaller intervals [a, a+step |, [a+step ,
a+2*step |, ..., [b-step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.

The accuracy of the regula falsi method is determined by eps, with eps =Eps as a
default. f must be differentiable on [a, b].

216 7 Standard Libraries

The function is implemented in Agena and included in the lib/calc.agn file.

agena >> 217

/.16 linalg - Linear Algebra P ackage

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distrioution and must be activated with the readlib or with
functions.

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been created with the above mentioned
constructors.

The package includes a metatable linalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subfraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the abs operator and to apply unary minus 1o a vector.

The tfable linalg.mmt defines metamethods for matrix addition, subtraction and
mulfiplication with a scalar. It is assigned via the lib/linalg.agn file, as well.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

A sample session:

> with 'linalg’

linalg v0.3.1 as of August 01, 2009 for Agena 0.21+

LUdecomp, add, backsubs, checkmatrix, checksquare, checkvector, coldim,
column, crossprod, det, diagonal, dim, dotprod, hil bert, identity, inverse,
isAntisymmetric, isDiagonal, isldentity, isMatrix, isSquare, isSymmetric,
isVector, matrix, mmap, mmul, rowdim, scalarmul, su b, transpose, vector,

vmap, vzip, zero

Define two vectors in two fashions: In the simple form, just pass all components
explicitly:

> a :=vector(l, 2, 3):
[1,2,3]

In a more elaborate form, indicate the dimension of the vector to be created and
only pass the vector components that are not zero in a table:

> b := vector(3, [1~2]):
[2,0,0]

218

7 Standard Libraries

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Addition:

>a+b:
[3,2,3]

Subtraction:
>a-b:
[-1,2,3]

Scalar multiplication:

>2*a:
[2,4,6]

> crossprod(a, b):
[0,6,-4]

Find the vector x which satisfies the matrix equation A x = b. In this example, we will

1 2 -4
solve the equation 21 3 |*x=
-3 1 6

row vectors.

> backsubs(A, b):
[2,-2,1]

The linalg operators and functions are:

sl+_ s2

-6
5 |. The linalg.matrix constructor expects
-2

Adds two vectors or matrices s1, s2. The return is a new vector or matrix. This
operation is done by applying the __add metamethod.

sl-_s2

Subtracts two vectors or matrices s1, s2. The refurn is a new vector or matrix. This
operation is done by applying the __sub metamethod.

agena >> 219

k*_s

multiplies a number k with each element in vector or matrix s. The return is a new
vector or matrix. This operation is done by applying the __mul metamethod.

abs (v)

Determines the length of vector v. This operation is done by applying the _ abs
metamethod o v.

gsadd (v)

Raises all elements in vector v to the power of 2. The return is the sum of these
powers, i.e. a number. This operation is done by applying the __gsadd metamethod
fov.

linalg.add (v, w)
Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sub.

linalg.augment (...)

Joins two or more matrices or vectors together horizontally. Vectors are supposed to
e column vectors. The matrices and vectors must have the same number of rows.

The return is a new matrix.
See also: linalg.stack.

linalg.backsubs (A, b)

Solves the set of linear equations A*x = b, where A is a matrix, and b the right-hand
side vector. The return is the solution vector x.

linalg.coldim (A [, ...])
Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a fime-consuming check whether Ais a
matrix is skipped.

linalg.checkmatrix (A [, B, ...] [, true])

Issues an error if af least one of its arguments is not a matrix. If the last argument is
frue, then the matrix dimensions are refurned as a pair, else the function returns
nothing.

Contrary to linalg.checkvector, the dimensions will not be checked if you pass
more than one matix.

220 7 Standard Libraries

linalg.checksquare (A)

Issues an error if A is not a square maitrix. It returns nothing. See linalg.isSquare for
information on how this check is being done.

linalg.checkvector (v [, w, ...])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.
See linalg.isVector for information on how the check is being done.

linalg.coldim (A [, ...])
Determines the column dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether Ais a
maitrix, is skipped.

A more direct way of determining the column dimension is right(A.dim)

See also: linalg.rowdim.

linalg.column (A)

Returns the n-th column of the matrix or row vector A as a new vector.

linalg.crossprod (v, w)

Computes the cross-product of two vectors v, w of dimension 3. The return is a
vector,

linalg.det (A)
Computes the determinant of the square matrix A, The retun is a numiber.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1] ., the second element in v is
assigned A[2][2] , etc. Thus the result is a dim(v) x dim(v)-martrix.

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a mattrix, the result is a pair
with the left-hand side representing the number of rows and the right-hand side
representing the numiber of columns. If A is a vector, the size of the vector is
determined.

agena >> 221

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v, w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.hilbert (n [, X])

Creates a generalised n x n Hilbert matrix H, with H[i][j] := 1/(i+j-x). If x is not
specified, then x is 1.

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1T and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isAntisymmetric (A)

Checks whether the matrix A is an antisysnmetric matrix. If so, it returns frue and false
otherwise.

linalg.isDiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns true and false
ofherwise.

linalg.isldentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns frue and false
otherwise.

linalg.isMatrix (A)

Returns true if A is a matrix, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.isSquare (A)

Returns true if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.isSymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns true and false
otherwise.

linalg.isVector (A)

Returns true if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’,

222 7 Standard Libraries

linalg.LUdecomp (A, n)

Computes the LU decomposition of the square matrix A of dimension n. The return is
the resulting matrix, the permutation vector as a sequence, and a number where
this number is either 1 for an even number of row interchanges done during the
computation, or -1 if the number of row inferchanges was odd.

linalg.matrix (obj1, obj2, ..., objn)

Creates a matrix from the given structures obj . The structures are considered o be
row vectors. Valid structures are vectors created with linalg.vector, tables, or
sequences.

The return is a table of the user-defined type 'matrix’ and a metatable linalg.mmt
assigned to the matrix. The table key 'dim' contains a pair with the dimensions of
the matrix: the left-hand side specifies the numiber of rows, the right-hnand side the
number of columns.

linalg.mmap (f, A [, ...])

This function maps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmap for further
information.

linalg.mzip (f, A, B[, ...])
This function zips together two matrices A, B by applying the function f to each of its

respective components. The result is a new matrix m where each element m[i, j] is
determined by m(i, j] := f(A[i, j]. B[, j]). If the f has more than two arguments, then
the third to last argument must be given right after B.

A and B must have the same dimension.

See also: linalg.vzip, linalg.mmap, linalg.mzip.

linalg.rowdim (A [, ...])

Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is left(A.dim)

See also: linalg.coldim.

linalg.scalarmul (v, n)

Performs a scalar multiplication by multiplying each element in vector v with the
number n. The result is a new vector.

agena >> 223

linalg.stack (...)

Joins two or more matrices or vectors together vertically. Vectors are supposed to
be row vectors. The matrices and vectors must have the same number of columns.

The return is a new matrix.

See also: linalg.augment.

linalg.swapcol (A, p, q)

Swaps column p in matrix A with column q. p, ¢ must be positive integers. The result is
a new matrix.

See also: linalg.swaprow.

linalg.swaprow (A, p, q)

Swaps row p in matrix A with row q. p, g must be positive integers. The result is a new
mafrix.

See also: linalg.swapcol.

linalg.sub (v, w)

Subtracts vector w from vector v. The result is a new vector.
See also: linalg.add.

linalg.transpose (A)

Computes the franspose of a m x n-matrix A and thus returns an n x m-mairix.

linalg.vector (a1, a2, ...)
linalg.vector ([al, a2, ...])
linalg.vector (seq(al, a2, ...))
linalg.vector (n, [al, a2, ...])
linalg.vector (n, [])

Creates a vector with numeric components a1, a2, etc. The function also accepts a
table or sequence of elements a1, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ay might be single
values or key~value paqirs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

224 7 Standard Libraries

The result is a table of the user-defined type ‘vector and the linalg.vmt metatable
assigned to allow basic vector operations with the operators +, -, *, unary minus
and abs. The table key 'dim' contains the dimension of the vector created.

linalg.vmap (f, v [, ...])

This operator maps a function f to all the components in vector v .and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the functfion and the vector are
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x"2 >>, vector(l, 2, 3)):
[1,4,9]

> vmap(<< (x, y) -> x >y >>, vector(1, 0, 1), 0): #0 fory
[true, false, true]

See also: linalg.vzip, linalg.mmap, linalg.mzip.

linalg.vzip (f, vi, v2 [, ...])

This function zips together two vectors by applying the function f to each of its
respective components. The result is a new vector v' where each element vik] is
determined by VK] := f(v1[K], v2[K]).

vl and v2 must have the same dimension. The third to last argument to f must be
given right after v2.

See also: linalg.vmap., linalg.vzip, linalg.mmap.

linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, enter: linalg.vector(n, [])

agena >> 225

7.17 clock - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds.

As a plus package, it is not part of the standard distribution and must be activated
with the readlib or with functions.

A time value is always defined using the clock.tm constructor. You may apply the
ordinary +, -, and * operators in order to add, subtract or multiply values.

By default, all time values are properly adjusted to a normalised representation if
the value of the environment variable _clockAdjust is not changed. If it _clockAdjust
is set to a value different from frue, then this normalisation is switched off.

All functions are implemented in Agena and included in the lib/clock.agn file.

A typical example might look like this:

> with ‘clock’
clock package v0.1 as of March 30, 2009

add, adjust, mul, sub, tm
Subtract 10 hours and fifteen minutes from 20 hours and 15 minutes:

>tm(20, 15, 0) - tm(10, 15, 0):
tm(10, 0, 0)

61 seconds are automatically converted to 1T minute and 1 second:

>tm(0, 61):
tm(0, 1, 1)

Turn off normalisation:

> clockAdjust := null

>tm(0, 61):
tm(0, 0, 61)

Turn on normalisation again:

> clockAdjust ;= true

The functions provided by the package are:

226 7 Standard Libraries

clock.add (s1,s2 1, ...])

The function adds two or more values of type time. The return is a value of type
fime.

clock.adjust (s)

The function adjusts the representation of time values in a time object s by applying
the rules described in the description of clock.time.

clock.mul (x1, x2)

multiplies the numeric value x1 with the time value x2 (of type time). mul converts x2
to seconds, and then multiplies x2 with x1. The arguments may be in reverse order.

The return is a value of type time.

clock.sub (s1,s2 [, ...])

The function subtracts two or more values of type time. The retumn is a value of type
fime.

clock.tm (min)
clock.tm (min, sec)
clock.tm (hrs, min, sec)

This function is used to define time values, where hrs , min, sec are numbers.

In the first form, minutes are defined. The return is a value of type time of the form
tm(0, min, O).

In the second form, both minutes and seconds are defined. The return is a value of
type time of the form tm(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type time of the form tm(hrs, min, sec). (hrs may be set to 0.)

By default, if min > 59 and / or if sec > 59, proper adjustments are made before
the time value is returned. If min > 59 the call to time returns tm(hrs + 1, min - 60,
sec). If sec > 59 the call to time returns tm(hrs, min + 1, sec - 60). The default is set
by the global variable clockAdjust ~ which is assigned true aft initialisation of the
package if it has not already been set false before the clock package has been
loaded.

If _clockAdjust is set false then no adjustments are made to the arguments. You
can use clock.adjust to apply the adjustments described above.

agena >> 227

7.18 ads - Agena Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the readlib or with functions.

Agena is a database for storing and accessing strings and currently supports three
‘base” types:

1. Sorted "databases” with a key and one or more values,
2. sorted "lists which store keys only,
3. unsorted "sequences’ to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
fo the last record stored, so you always get a valid record.

Sequences do not have indexes, soO searching in sequences is rather slow.
However, all values can be read intfo the Agena environment very fast and stored
fo a seft (using ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast /O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type int32_t , sO keys and values can be of almost unlimited size) and
they are not extended to a fixed standard length. To fasten /O operations, the
length of each key (and value) is also stored within the base file.

,,

'Section Description

gheoder various information on the data file, including the maximum
: number of possible records, the actual number of records, and
the type of the base (database, list, or sequence).

gindex only with databases and lists: area containing all file positions of
the actual records. The index section is always sorted. Sequences
do not contain an index section.

records key-value pairs with databases, and keys with lists or sequences.

A sample session:

First activate the package:

> with ‘ads";

228 7 Standard Libraries

Creafte a new database (file ctestagb) including all administration data like
number of records, etc.:

> createbase('c:/test.agb’);

Open the database for processing. The variable fth is the file handle which
references 1o the database file (c:test.agh) and is used in all ads functions.

> fh := openbase('c:/test.agb’);
Put an entry info the database with key "Duck”™ and value "Donald .

> writebase(fh, 'Duck’, 'Donald");

Check what is stored for "Duck .

> readbase(fh, 'Duck’):
Donald

Show information on the database:

> attrib(fh):

keylength ~ 31 # Maximum length fo r key

type ~0 # database type, 0 for relational database

stamp ~ AGENA DATA SYSTEM # name of database

indexstart ~ 256 # begin of index se ction in file

commentpos ~ 0 # position of a des cription, O because none
was given.

version ~ 300 # base version, her e 3.00

maxsize ~ 20000 # maximum number of possible records. Agena

automatically ext

ends the database, if

this number is ex ceeded.
indexend ~ 80255 # end of index sect ion
creation ~ 2008/01/18-19:00:50 # number of creatio n
columns ~ 2 # number of columns
size ~1 # number of actual entries

Close the database. After that you cannot read or enter any entries. Use the open
function if you want to have access again.

> closebase(fh);
On all types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the "base” file. The table includes the following
keys:

Key Description Type
'‘columns' The number of columns in the base. number

'‘commentpos’ |The position of a comment in the base. If no number
comment is present, its value is 0.

agena >> 229
Key Description Type
'creation' The date of creation of the base. The return is a|string
formatted string including date and fime.
indexstart’ the first byte in the base file of the index section. number
indexend' the last byte in the base file of the index section. number
'keysize' the maximum length of the record key. number
'maxsize’ fotal number of data sets allowed. number
'size' the actual number of valid data sets (see ads.sizeof number
as a shortcut).
'stamp’ The base stamp at the beginning of the file. string
Ttype' Indicator for database (0), list (1), or sequence (2). number
'version' The base version. number

If the file is not open, attrib returns false.

See also: ads.free, ads.size of.

ads.clean (filehandle)

Physically deletes all enfries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrunk to the new reduced size.

If there are no invalid records, false is returned. If all records could be deleted
successfully, true is returned. If the file is not open, the result is fail. If a file truncation
error occurred, clean quits with an error. The function issues an error if the file
contfains a sequence.

ads.closebase (filehandle [, filehandle2, ...])

Closes the base(s) identified by the given file handle(s) and returns true if successful,
and false otherwise. false will be returned if at least one base could not e closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

ads.comment (filehandle)
ads.comment (filehandle, comment)

ads.comment (filehandle, ")

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or null if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, retuns frue. The comment is always written o the

230 7 Standard Libraries

end of the file. If it could not successfully add or update a comment, the function
qQuiits with an error.

In the third form, by passing an empty string, the existing comment is entirely
deleted from the database or list.

If filehandle points to a sequence, an error is issued, and Nno comment is written.
fail is returneq, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
[commentpos!].

ads.createbase (filename
[, number_of _records [, type [, number_of colum ns

[, length_of key [, description]]]]])

Creates and initialises the index section of the new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

Arguments / Options:

flename The path and full name of the base file.

number of records |The maximum number of records in the base. Default is
20000. If you pass O, fail is returned and the base is not
created.

type By default, the type is 'database’. If you pass the string 'list',
then a list is created. The string 'seq’ creates a sequence. If
the type passed is not known, fail is returned and no base
is created.

number_of columns [The number of columns in a database. Default: 2 (key
and value). If the base is not a database, this option is
ignored. If the number of columns is non-positive, fail is
returned and no base is created.

length_of key The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \O
character.

description A string with a description of the contents of the base. A
maximum of 75 characters are allowed (including the \0
character). If the string is too long, it is fruncated. Default:
75 spaces.

ads.createseq (filename)

Creates a sequence with the given filename (a string). The function is written in the
Agena language and can be used after running readlib 'ads'.

agena >> 231

ads.desc (filehandle)
ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header.

In the second form, ads.desc sets or overwrites the description section of a
dafabase or list. Pass the description as a string. If the string is longer than 75
characters, fail is returned and there are no changes to the base file. If the file is
not open, fail is returned, as well. If it was successful, the return is true.

ads.expand (filehandle [, n])

Increases the maximum numiber of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended - so the greater n, the faster shifting will be, which is significant for
large files.

The function returns fail if the file is not open, and frue otherwise. It issues an error if
the file contains a sequence.

ads.free (filehandle)

Defermines the numlber of free data sets and retuns them as an infeger. |If
the base has not open, it returns fail. See also: ads.attrib.

ads.getall (filehandle)

Converts a sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the sequence. If the file is not open,
fail is returned.

See also: ads.getkeys, ads.getvalues.

ads.getkeys (filehandle)

Gefts all valid keys in a database or list and returns them in a table. Argument: file
handle (infeger). If the file is not open, fail is retumed. If the base is empty, null is
returned. The function issues an error if the file contains a sequence.

See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

By default gefs all valid entries in the second column in a database and returns
them in a table. If the opfional argument column is given, the entries in this column
are returned. Argument: file handle (infeger). If the file is not open or if the column
does not exist, fail is returned. If the base is empty, null is returned. With lists, the
return is always null.

232 7 Standard Libraries

See also: ads.geft, ads.getkeys.

ads.index (filehandle, key)

Searches for the given key (a string) in the base pointed to by filehandle and returns
its file position as a number. If their are no entries in the set, the function returns null.
If the file is not open, fail is returned.

ads.indices (filehandle)

Returns the file positions of all valid detests as a table.

If the file is not open, indices returns fail. If there are no entries in the base, the retun
is an empty table, otherwise a table with the indices is returned. The function issues
an error if the file contains a sequence.

See also ads.retrieve, ads.invalids, ads.peek, ads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, invalids returns fail. If no invalid entries are found, the retum is
an empty table. See also ads.retrieve. Note that the function also works with lists.

However, since lists never contain invalid records, an empty table will always be
returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle)

lterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding value are refurned. With lists,
only the next key is returned.

The very first key can be accessed with an empty string. If there are no more keys
left, the function returns null. If the database is empty, null is returned as well. If the
file is not open, the function returns fail.

Example:

> s, t ;= ads.iterate(th, ");

> s, t ;.= ads.iterate(th, s);

agena >> 233

ads.lock (filehandle)
ads.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 293 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: ads.unlock.

ads.openbase (filename [, anything])

Opens the base with name filename and returns a file handle (@ number). If it
cannot find the file, or the base has not the correct version number, the function
retuns fail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base is
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(infegers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peek (filehandle, position)

Returns both the length of an entry (including the terminating \O character) and the
entfry itself af the given file position as two values (an integer and a string). The
function is save, so if you fry to access an invalid file position, the function will exit
returning fail. It issues an error if the file contains a sequence.

See also ads.index, ads.retrieve.

234 7 Standard Libraries

ads.rawsearch (filehandle, key [, column])

With databases, the function searches all entries in the given column for the
substring key and returns all respective keys and the matching entries in a table. If
column is omitted, the second column is searched. The value for column must be
greater than 0, so you can also search for keys.

With lists and sequences, the function always returns null. If the base is empty, null is
returned.

If the file is not open or the column does not exist, the function returns fail.

See also ads.read, ads.getvalues.

ads.readbase (filehandle, key)

With databases, the function retumns the entry (a string) fo the given key (also a
string). With lists and sequences, the function retumns true if it finds the key, and false
ofherwise.

If the file is not open, read returns fail. If the base is empty, null is returned. The
function uses binary search.

See also ads.rawsearch.

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database; with lists,
the key is deleted. Physically, only the key to the record is deleted, the key or
key-value pair still resides in the record section but cannot be found any longer.

The function returns true if it could delete the data set, and false if the set to be
deleted was not found. If the file is not open, delete returns fail. The function issues
an error if the file contains a sequence.

If you want to physically delete all invalid records, use ads.clean.

ads.retrieve (filehandle, position)

Gets a key and ifs value from a database or list (indicated by ifs first argument, the
fle handle) at the given file position (an integer, the second argument). Two values
are returned: the respective key and its value. With lists, only the key is returned.

The function is save, so if you try 1o access an invalid file position, the function will
exit and return fail.

agena >> 235

If the file is not open, retrieve returns fail. The function issues an error if the file
contains a sequence.

See also ads.indices, ads.invalids.

ads.sizeof (filehandle)

Returns the number of valid records (an integer) in the base pointed to be
flehandle. If the base pointed to by the numeric filehandle is not open, the
function returns fail.

ads.sync (filehandle)

Flushes all unwritten content to the base file. The function retumns true if successful,
and fail otherwise (e.Q. if the file was not opened before or an error during flushing
occurred).

ads.unlock (filehandle)
ads.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle ~ so that it can be read or
overwritten by other applications again. For more information, see ads.lock.

ads.writebase (filehandle, key [, valuel, value2, .)

With databases, the function writes the key (a string) and the values (strings) to the
database file pointed to by filehandle (an integer). If value is omitted, an empty
string is writfen as the value.

With lists, the function writes only the key (a string) fo the database file. If you pass
values, they are ignored. If the key already exists, nothing is written or done and true
is returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section is deleted and the new index position is inserted instead (in this case
there is no reshifting). This does not remove the actual key-value pair in the record
section. The function always writes the new key-value pair to the end of the file. (The
file position after the write operation has completed is always 0.)

If the maximum numiber of possible records is exceeded, the base is automatically
expanded by 10 records. You do not need to do this manually.

write returns the true if successful. If the file is not open, write returns fail.

236 7 Standard Libraries

7.19 gdi - Graphic Device Interfface package

As a plus package, this graphics interface is not part of the standard distribution
and must be activated with the readlib or with functions.

The gdi package provides functions to plot graphics either 1o a window or a PNG,
GIF, JPEG, FIG, or PostScript file. It is available for the Solaris, Linux, Mac OS X for Intel
CPUs, and Windows editions of Agena.

The gdi package provides procedures to plot basic geometric objects such as
points, lines, circles, ellipses, rectangles, etc.

It also provides means to easily plot graphs of univariate functions and geometric
objects where the user does not need pay attention for proper axis ranges,
mapping to the intfernal coordinate systems, etc.

7.19.1 Opening a File or Window

Operation starts by opening a device - window or file - with the gdi.open function.
The function retumns a device handle for later reference. Aimost all functions
provided by the package request this device handle.

> readlib(‘gdi");

> d := gdi.open(640, 480);

7.19.2 Plotfting Functions

Plot a point to the window at x=200 and y=100:

> gdi.point(d, 200, 100);

Plot a line between two points [200, 150] and [300, 200]:
> gdi.line(d, 200, 150, 300, 200);

Draw a circle and a filled circle. Besides giving the device number, pass a centre (x
and y co-ordinates) and a radius.

> gdi.circle(d, 320, 240, 50);

> gdi.circlefilled(d, 400, 240, 50);

agena >> 237

7.19.3 Colours, Part 1
All functions accept a colour option passed as an additional - the last - argument.

The colour must be given as an integer that must be determined by a call to the
gdi.ink function. gdi.ink requires the device number, and three RGB colour values in
the range [0 .. 1]. Each colour should be determined only once.

There are 26 predefined colours with numbers O to 25, automatically set at each
invocation of a new device (call to the gdi.open function). Thus, these 26 basic
colours do not need to be set with gdi.ink.

> cyan := gdi.ink(d, .1, .5, .5);

> gdi.rectanglefilled(d, 200, 200, 400, 400, cyan);

To set a default colour for all subsequent drawings, use gdi.useink.

7.19.4 Closing a File or Window

To finally close the window, use gdi.close.

> gdi.close(d);

7.19.5 Supported File Types

To create image files, simply pass the name of the file as the third argument to
gdi.open. Agena determines the type of the image file from its suffix.

If a file name ends in .png , it creates a PNG file. If a file name ends in .gif , it
creates a GIF file. If a file name ends in .jpg , it creates a JPEG file. Likewise, the
suffix .fig creates a FIG, and .ps generates a PostScript file.

7.19.6 Plofting Graphs of univariate Functions

The gdi.plotfn function plofs graphs of functions in one real fo a window or file. It
accepts various options for colour, line thickness, line style, sizing, axis type, efc. The
function takes care for opening a device, plotting the graph and axes, so that the
user does not need to draw them manually. The function requires a function and
the left and right border on the x-axis.

> with 'gdi"

> plotfn(<< x -> x*sin(x) >>, -10, 10);

For further details and examples see gdi.plotn. For available plot options, see
gdi.options.

238 7 Standard Libraries

7.19.7 Plofting geometric Objects easily

Like gdi.plotfn, the gdi function plot outputs geometric objects in a standard
coordinate system where the point [0, 0] is in the centre. It accepts options for
user-defined colours, window sizes, axis types, etc. The function opens a device
automatically, plots all the objects that are stored in a PLOT data structure,
optionally draws axes, uses a user-given colour, efc.

The function requires the PLOT structure as the first argument, and any options as
additional arguments. Contrary to gdi.plotfn, it does not accept left, right, lower or
upper borders, for it determines the borders automatically.

The following geometric objects can be drawn with gdi.plot:

arcs ellipses rectangles
filled arcs filled ellipses filled rectangles
circles lines friangles

filled circles points filled triangles

A PLOT data structure is a sequence with the user-defined type 'PLOT'. It contains the
name of the object, its affributes and colour. A line stretching from [0, 0] to [1, 1]in
gray colour (RGB values 0.5, 0.5, 0.5) for example is represented as follows:

LINE(O, O, 1, 1, [0.5, 0.5, 0.5])

PLOT structures can be created with the gdi.structure function that opftionally
accepts the minimum number of entries (for speed).

> with 'gdi’;
> s := structure();

Any geometric objects is inserted info the structure with its respective gdi function.
The line LINEO, O, 1, 1, [0.5, 0.5, 0.5]) for example is added with the gdi.setline
function:

> setline(s, 0, 0, 1, 1, [0.5, 0.5, 0.5]);

A PLOT structure can include any number of objects:

> setcircle(s, 0, 0, 0.5, [1, O, Q]);

Finally, the plot statement puts them onto the screen:

> plot(s);

agena >> 239

The following table shows the various functions to create objects:

Object | Function Object | Function Object Function

arc setarc ellipse setellipse rectangle setrectangle

filed setarcfilled filed setellipse- filed setrectangle-
. filled filled

arc ellipse rectangle

circle setcircle line setline triangle settriangle

i setcircle- i setpoint i settriangle-
fll!ed filled point f|IIIed filed
circle friangle

7.19.8 Colours, Part 2

The following colour names (of type string) are built in and are accepted by the plot
and plotfn functions only, so that you must not define colours with gdi.useink or
gdi.ink when plofting sets of points or graphs of functions:

‘aguamarine’, ‘'black’, ‘blue', ‘'bordeaux’, ‘'brown’, ‘coral’, 'cyan’,
'darkblue’, ‘'darkcyan', ‘darkgrey'/'gold’, ‘'green’, ‘grey’, 'khaki',
'lightgrey','magenta’, 'maroon’, 'navy', ‘orange’, 'pink’, 'plum’, 'red’,
'sienna’, 'skyblue', ‘'tan’, ‘turquoise', 'violet', 'wheat', 'white’,
‘yvellow', 'yellow?2'

7.19.9 GDI Functions

gdi.arc (d, x, y, r1, r2, al, a2 [, colour])

Draws an arc around the centre [x, y] with x radius r1, y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], in device d. A colour (an
integer), may be given optionally.

gdi.arcfilled (d, x, y, r1, r2, al, a2 [, colour])

Draws a filled arc around the centre [x, y] with x radius r1, y radius r2, and the
starting and ending angles a1, a2, given in degrees [0 .. 360], in device d. The arc is
filled with either the default colour, or the one given by colour (an integer).

gdi.autoflush (d, state)

Setfs the auto flush mode for device d fo either frue or false (second argument). If
state is tfrue (the default), then after each graphical operation the output is flushed
SO that it is immediately displayed.

This may decrease performance significantly with a large number of graphical
operations - Sun Sparcs seem 1o be the only exceptions -, so it is advised to

1. setf state 1o false right after opening device d before calling any other function
that plots something,

2. call gdi.flush after the graphical operations have been completed,

3. setstate to true thereafter.

240 7 Standard Libraries

gdi.background (d, c)

Sets the background colour in device d. ¢ must be a number determined by
gdi.ink. Note that in Windows, the image is also cleared so that the background is
properly displayed, whereas in UNIX, the image is noft reset.

gdi.circle (d, x, vy, r [, colour])

Draws a circle around the centre [x, y] with radius r, in device d. A colour (an
integer), may be given optionally.

gdi.circlefilled (d, x, vy, r [, colour])

Draws a filled circle around the centre [x, y] with radius r, in device d. The circle is
filled with either the default colour, or the one given by colour (an integer).
gdi.clearpalette (d)

Removes all inks in device d.

gdi.close (d)

Closes the window or file referred to by device id d. If d points to a file, all image
contents is saved to it.

gdi.dash (d, s)

Sefts the line dash in device id d. The sequence s includes a vector of dash lengths
(black, white, black, ...). If s is the empty sequence, a solid line is restored.

gdi.ellipse (d, x, y, rl1, r2 [, colour])

Draws an ellipse around the centre [x, y] with x radius r1, and y radius r2 , in device
d. A colour (an integer), may be given optionally.

gdi.ellipsefilled (d, x, vy, r1, r2 [, colour])

Draws a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, in
device d. The ellipse is filled with either the default colour, or the one given by
colour (an integer).

gdi.flush (d)

Writes all buffered contents to the window or file referred to by device id d.
See also: gdi.autoflush.

gdi.fontsize (d, s)

Sefts the font size s for text written by gdi.text, for device d.

See also: gdi.text.

agena >> 241

gdi.hasoption (s, 0)

lterates a table, set, or sequence of pairs s and returns true if at least one of the
left-hand sides of a pairin s is equal 10 o.

See also: gdi.options.

gdi.initpalette (d)

Allocates basic colours in device d.

gdi.ink (d, r, g, b)

Returns a palette colour value - an integer - for the colour given by its RGB values r
(red), g (green), and b (blue), for device d. r, g, and b must be numbers x with 0 <=
x <= 1. The palette colour value can be given as an optional argument in Most of
the gdi functions, or be used in the gdi.useink function. Subsequent calls with the
same arguments return different palette values.

gdi.lastaccessed ()

Returns the id (@ number) of the last accessed device.

gdi.line (d, x1, y1, x2, y2 [, colour])

Draws a line from the first point [x1, y1] 0 the second point [x2, y2] in device d. A
colour (an integer), may be given optionally.

gdi.mouse (d [, offset])

Returns three numbers: the current horizontal and vertical positions of the mouse
relafive to the screen, and its button state button state. The button state is coded
as a positive infeger.

By applying a bitmask to the button state, you can query whether the left or the right
mouse button has been pressed:

» putton_state && 0xOT00 = 0x0100: left button has been pressed,
* putton_state && 0x0400 = 0x0400: right butfon has been pressed.

gdi.open (width, height)
gdi.open (width, height, filename)

In the first form, opens a window with the given width and height and returns a
device number (an integer) for later reference needed by all other gdi functions.

In the second form, creates the image file with name filename , the given width
and height and returns a device number (an integer) for later reference needed by
all other gdi functions.

242

7 Standard Libraries

The type of the image file format is determined by the suffix in filename

Suffix Resulting image file format Example

fig FIG format '/export/home/misc/fern.fig'
.gif GIF format 'c:/images/fractal.gif

Jrg JPEG format 'c:/images/fractal.jpg’
png PNG format 'c:/images/circle.png'

s PostScript format (DIN A4 size) ‘output.ps’

gdi.options (...)

Checks the given plotting options for correctness and returns them in a new table,
along with the defaults for options that have not been passed to this function.
The function currently only works with the gdi.plot and gdi.plotfn functions.

Valid options (all key~value pairs) are:

Option (key) Meaning (value) Example
'none’ - dO NOT print axes
'normal' - print axes with labels and fick
marks

‘axes’ 'boxed' - print axes at top and bottom, | ‘axes'normal’
and at the left and the right side
frame' - print axes at the bottom and at
the left side

axescolour’ defines the colour of the axes (a colour ‘axescolout':'cyan
string, see Chapter 7.19.6)

‘bgcolour sets the background colour (a colour | '‘bgcolour':'yellow
string, see Chapter 7.19.6) '

‘colour sets the cologr (a string, see Chapter colournavy’
7.19.6) for the line to be plotted.

. . i i ‘colourfn”:

colourfn sefs a colouring function o s

file" indicates the name of the file (a string) to file'~image.png
be created

Jabels if set TQ false, no labels are printed Jabels"false
(default is true)

|abelsize" seTs the font glze (@ posm\{e numiber) for Jabelsize"6
axis labels (gdi.plotfn function only)
sets the dash style (a positive numiber) for

linestyle’ the graph to be plotted (gdi.plotfn | ‘linestyle’:10

function only)

'maxtickmarks'

sets the maximum number of tickmarks
on both axes, by default is (around) 20.

'maxtickmarks':5

‘mouse’

prints the current position of the mouse to
the console. Click the right mouse button
to finish. Default is false.

‘mouse’:true

agena >> 243

Option (key) Meaning (value) Example

res' resQIuT|on of the window or image file |, res":(1024:768)
(pair of numbers)

'square’ in G. pIoT,.uses the somg scale for the square"true
y-axis as given for the x-axis
sets the thickness (a positive number) of

‘thickness' the line to be plotted (gdi.plotfn function | 'thickness':2
only)

title sets the fitle (a string) for the plot | title: _
(gdii.plotfn function only) ‘Graph of sin(x)
sets the colour (a string, see Chapter titlecolourred

titlecolour’ 7.19.6) of the fitle (gdiplotin function | .o o our-re
only)

titlesize' sets IThe fop’r size (a pqsmve number) of titlesize 15
the fitle (gdi.plotfn function only)

wscale' seTg the s’repl size for the fick marks on the wscale0.5
horizontal axis

yscale se’rsl the s’rgp size for the fick marks on the yscale0.5
vertical axis

See also: gdi.setoptions.

gdi.point (d, x, y [, colour])

Plots a point with co-ordinates [x, y] in device d. A colour

opftionally.

gdi.plotfn (f, a, b [[¢, d], options])
gdi.plotfn (ft, a, b [[¢, d], options])

Plots graphs of one or more functions.

In the first form, the graph of the function f is plotted.

(an integer), may be given

In the second form, by passing a table n of functions, the graphs of the functions
are plotted in one device - 1o a file or window.

If the file opftion is missing, the graphs are plotted to the a window (UNIX and

Windows, only). If the file

the file you pass to this option.

option is given, the file type is determined by the suffix of

a and b (both numbers with a < b) must be given explicitly and specify the horizontal

range. If ¢ and d are missing, the verical range is determined automatically.

You may specify one or more options for proper layout of the graphs. See
gdi.options for more details.

244 7 Standard Libraries

If a table of function is passed, you may specify an individual colour, line style, and
the thickness for each graph. Just pass a table of seftings at the right-hand side of
the respective option. See the examples below.

See gdi.autoflush if you experience performance problems while plofting.
Examples:

Plot the graph of the sine function on the horizontal range a fo b. The vertical range
is computed automatically.

> with(‘'gdi’):

> plotfn(<< x -> sin(x) >>, -10, 10);

Plot the graph of the sine function on the horizontal range a 1o b and the vertical
range c fo d.

> plotfn(<< x -> sin(x) >>, -10, 10, -2, 2);

Specify a colour other than black:

> plotfn(<< x -> sin(x) >>, -10, 10, colour~'red");

Give a specific thickness for the line:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness~3);

Combine the options - their order does not matter:

> plotfn(<< x -> sin(x) >>, -10, 10, thickness~3, ¢ olour~'red";
Plot two and more functions:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10);
Give options, t00:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10, colour~'navy");

Specify individual colours. The graph of the sine function shall be red, the cosine
function shall by cyan:

> plotfn([<< x -> sin(x) >>, << X -> cos(x) >>], -1 0, 10,
> colour~[red', 'cyan’);

Choose another colour for the axes and another axes style:

> plotfn([<< x -> sin(x) >>, << x -> c0os(x) >>], -1 0, 10,
> colour~['red’, 'cyan’], axescolour~'grey’, axe s~'boxed);

agena >> 245

Do not draw axes:

> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10,
> colour~[red’, 'cyan’], axes~'none");

If you want to set default options that will always be used by plotfn and that do not
need to be specified with each call to plotfn, use gdi.setoptions:

> gdi.setoptions(colour~'red’, axescolour~'grey");
> plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -1 0, 10)

gdi.rectangle (d, x1, y1, x2, y2 [, colour])

Draws a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] in
device d. A colour (an infeger), may be given optionally for the lines.

gdi.rectanglefilled (d, x1, y1, x2, y2 [, colour])

Draws a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] in device d. The rectangle is filled with either the default colour, or the one given
by colour (an integer).

gdi.reset (d)

Clears the entire window or image file contents of device d.

gdi.resetpalette (d)

Clears the colour palette by removing all inks and reallocates basic colours, in
device d.

gdi.setarc (s, x, Y, r1, r2, al, a2 [, colour])

Inserts an arc around the cenfre [x, y] with x radius r1, y radius r2 , and the starting
and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black’
red , etc., or a table with three RGB numeric values in therange 0 .. 1.

gdi.setarcfilled (s, x, y, r1, r2, al, a2 [, colour)

Inserts a filled arc around the centre [x, y] with x radius r1, y radius r2, and the
starting and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black’
red” , etc., or a table with three RGB numeric values in the range O .. 1.

gdi.setcircle (s, x, y, r [, colour])

Inserts a circle around the centre [x, y] with radius r, 1o PLOT structure s. The optional
colour aArgument may be either a string denoting a colour like 'black' , 'red" , etc.,
or a table with three RGB numeric values in the range O .. 1.

246 7 Standard Libraries

gdi.setcirclefilled (s, x, y, r [, colour])

Inserts a filled circle around the centre [x, y] with radius r, to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black’
red , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setellipse (s, x, vy, r1, r2 [, colour])

Inserts an ellipse around the centre [x, y] with x radius r1, and y radius r2, to PLOT
structure s. The optional colour argument may be either a string denoting a colour
like 'black’ , 'red" , etc., or a table with three RGB numeric values in the range O ..
1.

gdi.setellipsefilled (s, x, y, r1, r2 [, colour])

Inserts a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, to
PLOT structure s. The optional colour argument may be either a string denoting a
colour like 'black’ , 'red” , etc., or a table with three RGB numeric values in the
range 0 .. 1.

gdi.setinfo (s, ...)

Inserts information on the minimum and maximum values (x- and y values) of all the
geometric objects included in the PLOT data structure s into its INFO substructure.
The INFO object always is the last element in s.

gdi.setinfo expects the x and y values in the following form:
'xdim':xmin:xmax, 'ydim':ymin:ymax ,

where 'xdim' , 'ydim' are the respective strings and xmin, xmax, ymin, and ymax
represent numbpers.

The information is useful so that gdi.plot can automatically determine the proper
plotting ranges for s.

Example:

> gdi.setinfo(s, xdim~0:10, ydim~-5:5);

gdi.setline (s, x1, y1, x2, y2 [, colour])

Inserts a line drawn from point (x1, y1) o point (x2, y2) with the optional colour into
the PLOT structure s. x1, y1, x2, y2 should be numbers. colour may be either a string
denoting a colour like 'black' , 'red , etc., or a table with three RGB numeric
values intherange 0 .. 1.

agena >> 247

gdi.setoptions (...)
Checks the given plotting options (all key~value pairs) for correctness and sets
them as the respective defaults for subsequent calls to the gdi.plotfn function.

For a list of valid plotting opftions, see gdi.options.

Internally, the function assigns the given options to the global environment variable
_Env.GdiDefaultOptions which is checked by gdi.plotfn.

gdi.setpoint (s, x, y [, colour])

Inserts a point with co-ordinates [x, y] o PLOT structure s. The optional colour
argument may be either a string denoting a colour like 'black’ , 'red” , etc., or a
table with three RGB numeric values in the range O .. 1.

gdi.setrectangle (s, x1, y1, x2, y2 [, colour])

Inserts a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] tO
PLOT structure s. The optional colour argument may be either a string denoting a

colour like 'black’ , 'red" , efc., or a table with three RGB numeric values in the
range 0 .. 1.
gdi.setrectanglefilled (s, x1, y1, x2, y2 [, colour)

Inserts a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] to PLOT structure s. The optional colour argument may be either a string
denoting a colour like 'black' , 'red” , etc., or a table with three RGB numeric
valuesintherange 0 .. 1.

gdi.settriangle (s, x1, y1, x2, y2, x3, y3 [, colou)]

Inserts a triangle with the corners [x1, y1], [x2, y2], and [x3, y3] to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black'
red , etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.settrianglefilled (s, x1, y1, x2, y2, x3, y3 |, colour])

Inserts a filled triangle with the corners [x1, y1], [x2, y2], and [x3, y3] to PLOT structure
s. The optional colour argument may be either a string denoting a colour like
'black' , 'red' , etfc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.structure ([n])

Creates a PLOT data structure with n pre-allocated entries. Of course, the structure
may contain less or more entries. If n is not given, no pre-allocation is done which
may slow down inserting new objects info s later in a session. The retumn is the PLOT
data structure (a sequence of user type 'PLOT).

See also: gdi.setinfo.

248 7 Standard Libraries

gdi.system (d, x, y, XS, yS)

Sets the user's co-ordinate system in device d, where x, y, xs, and ys are numbers.
The pixel [x, y] determines the origin. The horizontal unit is given in xs pixels, the
vertical unit in ys pixels. The function returns nothing.

> d := open(640, 480);

> gdi.system(d, 320, 240, 320, 240);
> gdi.line(d, -1, 0, 1, 0);

> gdi.line(d, 0, -1, 0, 1);

gdi.text (d, x, y, str [, colour])
Prints the sting str af [x, y], in device d. A colour (an integer), may be given
optionally for the lefters.

See also: gdi.fontsize .

gdi.thickness (d, t)

Sets the default thickness for all lines to t pixels, in device d.

gdi.triangle (d, x1, y1, x2, y2, x3, y3 [, colour])

Draws a triangle with the corners [x1, y1], [x2, y2], and [x3, y3] in device d. A colour
(an integer), may be given optionally for the lines.

gdi.trianglefilled (d, x1, y1, x2, y2, x3, y3 [, co lour])

Draws a filled friangle with the corners [x1, y1], [x2, y2], and [x3, y3] in device d. The
friangle is filed with either the default colour, or the one given by colour (an
integer).

gdi.useink (d, c)

Sets the default colour ¢ (@ number) for all subsequent drawings, in device d. ¢ must
be a number determined by gdi.ink.

agena >> 249

7.20 mapm - Arbitrary Precision Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the readlib or with functions.

In OS/2, Haiku, and DOS, the package is built into the binary executable and does
not need o be activated with readlib.

The package provides functions to conduct arbitrary precision mathematics with
real numbers. It uses Mike's Arbitrary Precision Math Library, written by Michael C.

RiNg.

Standard operators like +, -, *, /, %, <, =, >, and unary minus are supported.

All function names in this library begin with the letter x.

By default, the precision is set to 17 digits, but you can change this any time with
the mapm.xdigits function, e.Q.:

> mapm.xdigits(100);

The mathematical functions are:

Function Meaning Function Meaning
mapm.xabs absolute value mapm.xfactorial | factorial
MAapM.Xarccos | arc cosine mapm.xidiv infeger division
mapm. inverse hyperbolic mapm.xin natural logarithm
xarccosh cosine
mapm.xadd addition mapm.xiog10 common logarithm
mapm.xarcsin | inverse sine mapm.xmul multiplication
mapm.xarcsinh | inverse hyperbolic MAapM.Xpow power

sine
mapm.xarctan | inverse fangent mapm.xsign sign
mapm. 4 quadrant inverse mapm.xsin sine
xarctan2(x, y) tangent
mapm. hyperbolic inverse | mMapm.xsincos sine and cosine
xarctanh tfangent
mapm.xcbrt cubic root mapm.xsinh hyperbolic sine
MAapM.Xcos cosine mapm.xsqrt square root
mapm.xcosh hyperbolic cosine mapm.xsub subtraction
mapm.xdiv division mapm.xtan tangent
mapm.xexp exponential function | mapm.xtanh hyperbolic tangent

Most of the mapm functions accept a second argument - a non-negative integer -
giving the individual precision.

250

7 Standard Libraries

The package provides the following metamethods:

Operator | Name Description

- __add addition

- __sub’ subtraction

* __mul multiplication

/ __div division

% __mod' modulus

~ __pow' power

- __unm’ unary mMinus

< _It less-than

= _eq equals

n/a o garbage collection
n/a _tostring’ conversion to a string, e.9. for the pretty printer

Ofther functions are:

Function Meaning Function Meaning

mapm.xceil ceil function mapm. exponent
xexponent

mapm.xfloor floor function mapm.xinv reciprocal

mapm.xiseven | test for even number | mapm.xisint check for an integral

mapm.xisodd | test for odd number | mapm.xmod modulus

mapm.xround | rounds downwards to | mapm.xneg negatfes a number

the nearest infeger

comparison, returns
-Tifx<y, Oifx =,
and 1 ifx >y

mapm.
xcompare(x, y)

mapm.xnumber

converts an Agena
number or a string
representing a
number to an
arbitrary precision
number

mapm.xdigits sets the number of mapm. converts an arbitrary
digits used in all sub- | xtoNumber precision number to
seqguent calcula- an Agena number
fions. With no argu-
ment, returns the
current setting

mapm.xdigitsin | significant digits mapm.xtoString | converts an arbitrary

precision number to
a sfring

agena >> 251

7.21 fractals - Library to Create Fractals

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the readlib or with functions.
Since it needs gdi graphics functions, it is of no use in OS/2 and DOS.

The library creates fractals and includes three types of functions:

1. escape-time iteration functions like fractals.mandel,
2. auxiliary mathematical functions lie fractals.flip,
3. fractals.draw to draw fractals using escape-time iteration functions.

See Chapter 7.21.4 for some examples.

7.21.1 Escape-time lteration Functions

fractals.amarkmandel (X, v, iter, radius)

This function computes the escape-time fractal created by Mark Peterson of the
formula:

z2:=22*c% +c

It returns the number of iterations a point [x, y] needs to escape radius . The
maximum numiber of iterations conducted is given by iter

See also: fractals.markmandel .

fractals.albea (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * fractals.beaq(z), where
lombda is the point 110.4 and z =xly, and iter is the maximum numiber of
iteration. Its return is the number of iterations the function needs 1o escape radius .
The function is written in the Agena language.

See also: fractals.lbea.

fractals.alcos (x, vy, iter, radius)

This function calculates the Julia set of the formula lombda * cos(z), where lambda
is the point 110.4 and z =xly, and iter is the maximum number of iteration. Its
retumn is the numioer of iterations the function needs to escape radius . The function
is written in the Agena language.

252 7 Standard Libraries

fractals.alcosxx (X, y, iter, radius)

This function calculates the Julia set of the formula lambda * fractals.cosxx(z), where
lombda is the point 110.4 and z =xly, and iter is the maximum numiber of
iteration. Its return is the number of iterations the function needs 1o escape radius .
The function is written in the Agena language.

The function implements FRACTINT's buggy cos function ftill v16, and creates
beautiful fractals.

fractals.alsin (x, vy, iter, radius)

This function calculates the Julia set of the formula lambda * sin(z), where lambda is
the point 110.4 and z =xly, and iter is the maximum numiber of iteration. Its return
is the numier of iterations the function needs to escape radius . The function is
writfen in the Agena language.

fractals.anewton (x, v, iter, radius)

This function implements Newton's formula for finding the roofs of z° - 1, with z = xly,
and returns the number of iterations it takes for an orbit to be captured by a rooft.
The iteration formula itself is

z:=z-(2-1)/(3*2)

The function stops if |z>-1| < radius or the maximum number of iterations iter s
reached. The function is written in the Agena language.

See also: fractals.newton.

fractals.lbea (x, v, iter, radius)

This function calculates the Julia set of the formula lambda * fractals.bea(z), where
lambda is the point 110.4 and z =xly, and iter is the maximum number of
iteration. Its retumn is the numiber of iterations the function needs to escape radius .
The function is implemented in C.

See also: fractals. albeaq.

fractals.mandel (x, vy, iter, radius)

This function computes the Mandelbrot set of the formula

z:=72+cC

agena >> 253

using complex arithmetic. It returns the number of iterations a point [x, y] needs to
escape radius . The maximum number of iterafions conducted is given by iter
The function is implemented in C.

fractals.mandelbrot (x, v, iter, radius)

Like fractals.mandel, but written in Agena and using complex arithmetic.

fractals.mandelbrotfast (X, y, iter, radius)

Like fractals.mandel, but written in Agena and using real arithmetic.

fractals.mandelbrottrig (x, v, iter, radius)

Like fractals.mandel, but wriften in Agena and using real arithmetic and
frigonometric functions.

fractals.markmandel (X, y, iter, radius)

Like fractals.amarkmandel , but implemented in C.

fractals.newton (X, v, iter, radius)

Like fractals.anewton, but implemented in C.

7.21.2 Auxiliary Mathematical Functions

fractals.bea (z)

Takes the complex number z = xly and returns the complex number
sin(x)*sinh(y)+1*cos(x)*cosh(y). This function may be mathematically meaningless,
but it creates beautiful fractals.

fractals.cosxx (z)

Takes the complex number z = xly and retuns the complex number
cos(x)*cosh(y)+I*sin(x)*sinh(y). It represents FRACTINT's buggy cos function fill v16.
This function may be mathematically meaningless, but it creates beautiful fractals.

fractals.flip (z)

Takes the complex number z and returns the complex number imag(z)!real(z).

254

7 Standard Libraries

7.21.3 The Drawing Function fractals.draw

The function takes an escape-time iterator, various other parameters, and creates
either image files or windows of fractals. By default a window is opened (see file
option on how to create image files).

fractals.draw (iterator, x_center, y_center, x_widt

Draws a fractal given by one of the escape-time iterator functions iterator

h [, options])

with

image centre [x_center , y_center] and of the total length on the x-axis x_width .

x_center andy center Are numMbers whereas x_width is a positive numiber.

Options are:

Option Meaning Example

colour ~ f a colouring function f of the form f := | colour ~ << x ->
<< X -> 1, g b >>. Predefined |0, 0, 0.05*x >>

functions are: red, blue, violet, cyan,
cyannew.

colour ~ blue

file~'filename.suf'

creates a GIF, PNG, or JPEG file, if the
file suffix is .Qif, .png, or .jpg

fle ~ 'mandel.gif’

filename.map'

iter ~ n maximum number of iterations with n a | iter ~ 512
positive number; default is 128

lambda ~ p lombda value p, a complex number, | laombda ~ 110.4
for fractals.[a]l* functions like albea

map ~ FRACTINT colour map to be used to | map ~ 'basic.map'

draw the fractal.

The FRACTINT maps can be
downloaded separately from:
http://agena.sourceforge.net/
downloads.html#fractinfrnaps

Put these files intfo the share folder of
your Agena distribution, preserving the
subfolder fractint. A valid path may thus
be: /usr/fagena/share/fractint.

Alternatively, set the environment
variable _Env.FractintColorMaps to the
folder where your map files reside.

mouse ~ bool

display pointer co-ordinates on console
after image has been finished, if bool
= true. Default: bool = false. Click the
right mouse button to quit printing
co-ordinates.

mouse ~ true

agena >> 255

Option Meaning Example
radius ~ r iteration radius r, a positive number radius ~ 2

res ~ width:height | resolution of the window or image, with | res ~ 1024:768
width and height positive numibers.
Default is 640:480

update ~ n with - n a nonnegafive number:
determines the number of rows after an
image is being flushed to a file or
window during computation

Notes on the update option:

In Sun x86 Solaris and Linux, by default the image is updated each 10th row, in all
other operating systems, including Sun Sparc Solaris, the default is 1. This behaviour
in Sun x86 Solaris and Linux can be switched off by setting the global environment
variable _Env.FractOptimised to false or null.

In Sun x86 Solaris and Linux, update ~ 0 is the fastest, but when outputting to a
window, it does not plot anything while the fractal is being computed (of course, if
computation finishes, the fractal will be displayed).

Sparcs do not show any effect when changing the update rate, at least with
XVR-1200 VGAs. The same applies to Microsoft Windows XP and 7, as well as Mac
OS X 10.5.

7.21.4 Examples

> with ‘fractals’;
> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273, iter~255);

> draw(mandel, -1.0037855135, 0.2770816775, 0.08668 6273,
> file~'out.png’, iter~255, res~1024:768);

> draw(fractals.lbea, 0, 0, 4, radius~128, iter~255 , lambda~1.0!0.1);

There are further examples at the bottom of the fractals.agn file residing in the main
Agena library folder.

256 7 Standard Libraries

7.22 xbase - Library to Read and Write xBase Files
As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the readlib or with functions.

This package provides basic functions to read and write dBASE lll-complient files.

A typical session may look like this:

> with 'xbase’

> new('test.dbf', zahl=number);
> f := open(‘test.dbf', ‘write")

> writenumber(f, 1, 1, Pi);

> readvalue(f, 1, 1):
3.1415926535898

> close(f):
true

Limitations:
1. The xBase data types currently supported are: Numibers, Strings, and Logical.

2. Only files with extension .dbf are supported. Searching and sorting functions are
not available, and any .ndx or .idx index files will be ignored.

xbase.attrib (filehandle)

retuns a table with various information on the xBase file pointed to by filehandle

Table key Meaning
'C_odépage' Code page used.
fieldinfo’ A tfable of tables that describe the respective fields in

consecutive order: title, xBase native type, Agena type, total
numiber of bytes occupied by the field in the file. With
numbers, the number of decimals following the decimal point
(its scope) given.

fields’ Number of fields in the file.

filename’ Name of the xBase file (relative).

‘headerlength’ Length of the header in the xBase file.

'lastmodified’ UTC date of the last write access, coded as an integer.
‘records’ Number of records stored in the file.

‘recordlength’ Number of bytes occupied by each record.

See also: xbase.filepos.

agena >> 257

xbase.close (filehandle)

Closes a connection to the xBase file pointed to by filehandle . No more data can
e read or written to the xBase file until you open it again using xbase.open. The
function returns true if the file could e closed, and false otherwise.

xbase.field (filehandle, row [, 'set’])

Returns all values in the given field row (0 numiber) of the file denoted by filehandle
and by default returns them in a sequence. If the optional third argument 'set' s
given, the return will be a set of all the values in the field.

See also: xbase.readdbf, xbase.readvalue . xoase.record.

xbase.filepos (filehandle)
Returns the current file position in the file denoted by filehandle and returns it as a
number.

See also: xpase.attrib .

xbase.isVoid (filehandle, record, field)

Checks whether the value at record number record and field number field from
the file pointed to by filehandle has been deleted.

The function returns either true or false.

See also: xbase.readvalue, xbase.purge.

xbase.lock (filehandle)
xbase.lock (filehandle, size)

The function locks the file given by its handle filehandle ~ so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 2% bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: xbase.unlock.

258 7 Standard Libraries

xbase.new (filename, desc 1 [, codepage] [, desc 2, ..., desc «l)

creates a new xBase file with the file name filename

desc are k fields (columns) the xBase file will have. codepage indicates the code
page to be used (see below)'.

desc . must be a pair of the following form:
1. field name : data_type
where field_name is a sting and the name of the field to be added, and

data_type is one of the strings 'boolean' , 'number , Or 'string’ , i.e. the data
type of the values to be entered later,

Examples:
new('dbase.dbf', 'logical':'boolean’); or
new(‘dbase.dbf', logical=boolean); for short,

A Boolean (which in xBase has the synonym "Logical’) will always consist of one
character ', 'F for tfrue and false.

A number will have a standard length of 19 places with a default scale of 15
digits (scale: numbers following the decimal point). Numbers are stored in xBase
files as strings with ANSI C double precision. The scale may be in [0, 15].

A string will have the default length of 64 characters. The minimum length of a
string is 1, the maximum length of a string may be 254 characters. Longer strings
will be fruncated.

Examples:
new('dbase.dbf', 'value':'number":0); or
new('dbase.dbf', value=number:5); for short,

2. field name : data_type : length
where field name and data_type are the same as mentioned above, and
length is the maximum length of the item to be added. length must be a
positive integer. With numbers, length denotes the number of digits after the
decimal point to be stored.
You may leave off the quotes for data_type values.

codepage should be a pair of the form 'codepage’ :n, with n an infeger in [0, 259].

' Note that code pages are a Foxpro extension.

agena >> 259

Valid codepages are:

n Meaning Code page
Ox01 | DOS USA 437

0x02 | DOS Multilingual 850

Ox03 | Windows ANSI 1.252

Ox04 | Standard Macintosh

Ox64 | EE DOS 852

0x65 | Nordic DOS 865

Ox66 | Russian DOS 866

Ox67 | Icelandic DOS

0x68 | Kamenicky (Czech) DOS
0x69 | Mazovia (Polish) DOS
Oxéa | Greek DOS 437G
Ox6b | Turkish DOS

0x26 | Russian Macintosh

0Ox@7 | Eastern European Macintosh
0x98 | Greek Macintosh

Oxc8 | Windows EE 1.250
Oxc9 | Russian Windows
Oxca | Turkish Windows
Oxcb | Greek Windows

If no code page has been passed, it is set to 0x00.
Example for Russian Macintosh:

new('dbase.dbf', text=string:255, codepage=0x96);
See also: xbase.open.

xbase.open (filename [, mode])

Opens an xBase file of the name filename for reading or writing, or both.
In the first form, the file is opened for reading only.

In the second form, if mode is either ‘write' |, 'append' , Or 'r+' , the file is opened for
reading while new data sets may be added at the end of the file.

If mode is read” or'r, the file is opened for reading only.
The retumn is a file handle to be used by all other xBase package functions.

See also: xbase.close, xbase.new, xbase.lock.

260 7 Standard Libraries

xbase.purge (filehandle, record, field)
Marks the specific field in the given record of the file denoted by its handle
flehandle Qs deleted. The retumn is frue if deletion succeeded, and false otherwise.

See also: xbase.isvVoid.

xbase.readdbf (filename)

Opens an xBase file denoted by its filename in read mode, returns all its records
and fields, and closes it.

If the xbase file contains more than one field, the data is returned as a sequence of
sequences, whereas if the file contains only one field, all values are returned in one
sequence.

See also: xbase.readvalue, xbase.field, xbase.field.

xbase.readvalue (filehandle, record, field)

Reads a value at record number record and field number field from the file
pointed to by filehandle

Supported values are of xBase type Logical, Number, and String. If a number could
not be read from the file, the function retumns 0.

See also: xbase.field, xbase.record, xbase.isvVoid .

xbase.record (filehandle, line)

Retuns all values in the given record line (a0 number) of the file denoted by
flehandle and returns them in a sequence.

See also: xbase.readdbf, xbase.readvalue . xbase.field.

xbase.sync (filehandle)

Writes any unwritten content to the xBase file pointed to by filehandle . The function
either returns true if flushing succeeded, or fail otherwise.

xbase.unlock (filehandle)
xbase.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see xbase.lock.

xbase.writeboolean (filehandle, record, field, valu e)

Wiites the Boolean value true or false (4th argument) to the file denoted by
filehandle to record number record and field number field . fail and null are not
supported.

agena >> 261

The return is true if writing succeeded, and false otherwise.

xbase.writenumber (filehandle, record, field, value)
Wirites the number value (4th argument) to the file denoted by filehandle o record
numiber record and field number field

The return is true if writing succeeded, and false otherwise. Note that the retun false
only indicates that an error may have occurred.

xbase.writestring (filehandle, record, field, value)

Writes the string value (4th argument) to the file denoted by filehandle o record
number record and field number field

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

262 7 Standard Libraries

agena >> 263

Chapter Eight

C API Functions

264 8 C API Functions

agena >> 265

8 C API Functions

As already noted in Chapter 1, Agena features amost the same C APl as Lua 5.1 so
you are able 1o easily integrate your C packages and functions written for Lua 5.1 in
Agena.

The following C APl functions have been changed to remove automatic
string-to-numibber conversion:

API function Lua source file
lua_isnumloer lapi.c
lua_isstring lapi.c

lual _checknumber lauxlib.c

lual checkinteger lauxlib.c

Table 18: Modified Lua C API functions

Except for the above mentioned functions, no other modifications have been
made to C API functions that are part of Lua 5.1.

For a description of the API functions taken from Lua, see its Lua 5.1 manual.
Agena features a macro agn_Complex which is a shortcut for complex double.
The following API functions have been removed:

* lua_dump

The following API functions have been added (see files lapi.c and lua.h):

agn_ccall
agn_Complex agn_ccall (lua_State *L, int nargs, int nresults); (Non-ANSI)
agn_Complex agn_ccall (lua_State *L, int nargs, int nresults,

lua_Number *real, lua_Number *imag); (ANSI)

There are two different versions of this APl function available. The first form supports
Non-ANSI versions of Agena, e.g. Solaris, O5/2, etc. The second form can e used in
the ANSI versions of Agena (compiled with the LUA ANSI option).

Non-ANSI version: Exactly like lua_call, but returns a complex value as its result, so a
subsequent conversion to a complex number via stack operation is avoided. If the
result of the function call is not a complex value, an error is issued. agn_ccall pops
the function and its arguments from the stack.

ANSI version: Like lua_call, but returns the real and imaginary parts of the complex
result through the parameters real and imag . If the result of the function call is not a

266 8 C API Functions

complex value, an error is issued. agn_ccall pops the function and its arguments
from the stack.

agn_checkcomplex
LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value atf index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

agn_checklstring

const char *agn_checklstring (lua_State *L, int idx , Size_t *len);

Works exactly like lual_checkistring but does not perform a conversion of numlbers
fo strings.

agn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value atf index idx is a number and returns this number. An error
is raised if the value at idx is not a number. This procedure is an alternative to
luaL_checknumber for it is around 14 % faster in execution while providing the same
functionality by avoiding different calls o internal Auxiliary Library functions.

agn_checkstring

const char *agn_checkstring (lua_State *L, int idx) ;

Works exactly like lual_checkstring but does not perform a conversion of numbers
fo strings. An error is raised if idx is not a string.

agn_complexgetimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx onto the stack.

agena >> 267

agn_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx onto the stack.

agn_copy

LUA_API void agn_copy (lua_State *L, int idx)

Returns a frue copy of the table, set, or sequence at stack index idx. The copy is put
on top of the stack, but the original structure is not removed.

agn_createcomplex

LUA_API void agn_createcomplex (lua_State *L, agn_C omplex c)

Pushes a value of type complex onto the stack with its complex value given by c.

agn_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

Pushes a pair onto the stack with the left operand determined by the value at index
idxleft , and the right operand by the value at index idxright . The leftf and right
values are not popped from the stack.

agn_creatertable

LUA_API void agn_creatertable (lua_State *L, int id X)

Creates an empty remember table for the function at stack index idx . It does not
change the stack.

agn_createseq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec pre-allocated places (nrec
may be zero).

268 8 C API Functions

agn_createset
void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space
pre-allocated for nrec items.

agn_deletertable

LUA_API void agn_deletertable (lua_State *L, int ob jindex)

Deletes the remember table of the procedure at stack index idx . If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

agn_fnext

int agn_fnext (lua_State *L, int indextable, indexf unction, int mode);

Pops a key from the stack, and pushes three or four values in the following order:
the key of a table given by indextable, its corresponding value (if mode = 1), the
function at stack number indexfunction, and the value from the table at the given
indextable. If there are no more elements in the table, then agn_fnext retumns O
(and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_call and the
iterator 1o work correctly.

A typical traversal looks like this:

/* table is in the stack at index 't', function is at stack index 'f' */
lua_pushnil(L); /* first key */
while (lua_fnext(L, t, f, 1) I=0) {

/*'key' is at index -4, 'value' at -3, function at -2, and 'value'
at-1*
lua_call(L, 1, 1); /* call the function with on e arg & one result */
lua_pop(L, 1); /* removes result of lua_cal l;
keeps 'key' for next iter ation */
}

While traversing a table, do not call lua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tolstring changes the value af the
given index; this confuses the next call to lua_next.

agena >> 269

agn_getbitwise

void agn_getbitwise (lua_State *L)

Retumns the current mode for bitwise arithmetic: O if the bitwise operators (&&, ||,
~ 7, ~~, and shift), infernally calculate with unsigned integers, and 1 if signed

infegers are used.

See also: agn_setbitwise.

agn_getemptyline
void agn_getemptyline (lua_State *L)

Returns the current setting for two input prompts always being separated by an
empty line and pushes a Boolean on the stack.

See also: agn_setemptyline.

agn_getenv

LUA_API void agn_getenv (lua_State *L, const char * field)
Returns an entfry from the global Env variable, a table containing various settings

and information needed in the Agena environment. The function is equivalent fo
the call_Env.field and pufs the result on top of the stack.

agn_geffunctiontype

LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function af stack index idx is a C function, O if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.
agn_getlibnamereset

void agn_getlibnamereset (lua_State *L)

Returns the current sefting for the restart statfement to also reset liboname and
pushes a Boolean on the stack.

See also: agn_setlongtable.

270 8 C API Functions

agn_getlongtable
void agn_getlongtable (lua_State *L)

Returns the current setting for key~value pairs in tables being output line by line
instead of just a single line and puts a Boolean on the stack.

See also: agn_setlongtable.

agn_getnoroundoffs

void agn_getnoroundoffs (lua_State *L)

Returns the current mode used by for/in loops with step sizes that are not integral: O
if the improved precision method to prevent round-off errors in iteration is not used,
and 1 if it is.

See also: agn_setnoroundoffs .

agn_getrtable
LUA_API int agn_getrtable (lua_State *L, int idx)

Pushes the remember table if the function at stack index idx onto the stack and
returns 1. If the function does not have a rememiber table, it pushes nothing and
returns O.

agn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns O if the remember table of the function at stack index idx cannot be
updated by the return statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an
rfable), 2 if the function at idx has no remember table atf all, and -1 if the value at
idx is not a function.

agn_getseqistring

const char *agn_getseqlstring (lua_State *L, int id X, int n, size_t *);

Gets the string at index n in the sequence at stack index idx . The length of the string
is stored fo I.

agena >> 271

agn_getinumber

lua_Number agn_getinumber (lua_State *L, int idx, i nt n);

Returns the value f[n] as a lua_ Number, where t is a table at the given valid index
idx. If f{n] is not a number, the retun is 0. The access is raw; that is, it does not invoke
metamethods.

agn_getistring
const char *agn_getistring (lua_State *L, int idx, int n);
Returns the value t[n] as a const char *, where tis a table at the given valid index

idx. If tf[n] is not a string, the return is NULL. The access is raw; that is, it does not
invoke metamethods.

agn_getutype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, sequence, set, or pair at stack
position idx as a string and pushes it onto the top of the stack. If no user-defined

type has been defined, the function returns 0 and pushes nothing onto the stack.

See also: agn_setutype.

agn_isfail
int agn_isfail (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to fail, O
otherwise (frue and false).

agn_isfalse

int agn_isfalse (lua_State *L, int idx);

Retuns 1 if the Boolean value at the given acceptable index results to false, O
ofherwise (tfrue and fail).

272 8 C API Functions

agn_issequiype

int *agn_issequtype (lua_State *L, int idx, const ¢ har *str);

Checks whether the type at stack index idx is a sequence and whether the
sequence has the user-defined type denoted by str . It retuns 1 if the above
condition is frue, and O otherwise.

agn_issetutype

int *agn_issetutype (lua_State *L, int idx, const ¢ har *str);

Checks whether the type at stack index idx is a set and whether this set has the
user-defined type denoted by str . It returns 1 if the above condition is true, and O
otherwise.

agn_istableutype

int *agn_istableutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a table and whether the table has the
user-defined type denoted by str . It returns 1 if the above condition is true, and O
otherwise.

agn_istrue

int agn_istrue (lua_State *L, int idx);

Retuns 1 if the Boolean value atf the given acceptable index results to true, O
otherwise (false and fail).

agn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const ¢ har *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a sequence, a
pair, set, or procedure, it returns 0.

agena >> 273

agn_ncall

lua_Number agn_ncall (lua_State *L, int nargs, int nresults);

Exactly like lua_call, but refurns a numeric result as an Agena number, so a
subsequent conversion to a numiber via stack operations is avoided. If the result of
the function call is not numeric, an error is issued. agn_ncall pops the function and
its arguments from the stack.

agn_nops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, or sequence entries of the structure at
stack index idx . If the value at idx is not a table, set, or sequence, it returns 0. With
tables, this procedure is an alternative to lua_objlen if you want to get the size of a
table since lua_objlen does not return correct results if there are holes in the table or
if the table is a dictionary.

agn_optcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);
If the value at index narg is a complex number, it retuns this number. If this

argument is absent or is null, the function returns complex z. Otherwise, raises an
eror.

agn_pairgeti
void agn_pairgeti (lua_State *L, int idx, int n);
Returns the left operand of a pair af stack index idx if nis 1, and the right operand if

n is 2, and puts it onto the top of the stack. You have 1o make sure that n is either 1
or 2.

agn_pairawget
void agn_pairrawget (lua_State *L, int idx);

Pushes onto the stack the left or the right hand value of a pairt, where t is the value
at the given valid index idx and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods. This function pops both k from the stack.

274 8 C API Functions

agn_pairawset
void agn_pairrawset (lua_State *L, int idx);

Does the equivalent to plk] := v, where p is a pair af the given valid index idx , v is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agn_poptop

void agn_poptop (lua_State *L);
Pops the top element from the stack. The function is more efficient than lua_popl(L,
1).

agn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_seqsize
size_t agn_segsize (lua_State *L, int idx);

Returns the numiber of items currently stored 1o the sequence at stack index idx .

agn_segstate

void agn_segstate (lua_State *L, int idx, size_t a[)

Returns the actual number of items and the maximum numiber of items assignable
to the sequence at index idx in a, a C array with two entries. The actual number of
items is stored to q[0], the maximum number of entries to a[1]. If a[1] is O, then the
numiber of possible entries is infinite.

agena >> 275

agn_setbitwise

void agn_setbitwise (lua_State *L, int value)

Setfs the mode for bitwise arithmetic. If value is greater than O, the bitwise functions
&&, ||, ~~, ~~. and shift) intemnally calculate with signed integers, otherwise

Agena calculates with unsigned integers.

See also: agn_getbitwise .

agn_setemptyline
void agn_setemptyline (lua_State *L, int value)

If value is greater than 0, then two input prompts are always separated by an
empty line. If set false, N0 empty line is inserted.

See also: agn_getempityline.

agn_setlibonamereset
void agn_setlibnamereset (lua_State *L, int value)

If value is greater than O, then the restart statement resets libname to its default. If
value is non-positive, then libname is not changed with a restart.

See also: agn_getlibonamereset.

agn_setlongtable

void agn_setlongtable (lua_State *L, int value)

If value is greater than O, then the print function outputs key~value pairs in tables
line-by-line. If value is non-positive, then the print function prints all pairs in a single

consecutive line.

See also: agn_getlongtable .

276 8 C API Functions

agn_setnoroundoffs

void agn_setnoroundoffs (lua_State *L, int value)

Sets the mode used by for/in loops with step sizes that are not integral: pass O for
value if the improved precision method 1o prevent roundoff errors in iteration shall

not used, and 1 if it shall be used.

See also: agn_getnoroundoffs .

agn_setreadlibbed

int agn_setreadlibbed (lua_State *L, const char *na me)

Inserts name into the global set package.readlibbed .

agn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

Setfs argument~return values to the function at stack index find . The argument list
reside at a table array at stack index kind , the return list are in another table at stack
index vind . See the description for the rset function for more information.
agn_setutype

void agn_setutype (lua_State *L, int idxobj, int id xtype);

Sets a user-defined type of a procedure, sequence, set, or pair. The object is at
stack index idxobj , the type (a string) is af position idxtype . The function leaves the
stack unchanged.

If null is atf idxtype , the function deletes the user-defined type.

Setting the type of a sequence, set, table, procedure, or pair also causes the pretfty
printer to display the string passed to the function instead of the usual output at the

console.

See also: agn_getutype.

agena >> 277

agn_size
int agn_size (lua_State *L, int idx);

Returns the numiber of items currently stored to the array and the hash part of the
table at stack index idx .

agn_ssize
int agn_ssize (lua_State *L, int idx);

Returns the number of items currently stored to the set at stack index idx .

agn_sstate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with two entries. The actual number
of items is stored to q[0], the current allocable size to q[1].

agn_tablestate

void agn_tablestate (lua_State *L, int idx, size_t a[], int mode)

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table atf index idx by storing the result in a,
a C array with five entries.

The number of key~value pairs currently stored in the array part is stored to q[0], the
numiber of pairs currently stored in the hash part 1o q[l1]. a[2] contains the
information whether the array part has holes (1) or not (0). The number of allocable
key~value pairs to the array part is stored to q[3], and the numiber of allocable
key~value pairs to the hash part is stored to a[4].

If mode is not 1, then the number of pairs actually assigned is not determined,

which may save time. In this case q[0] = q[1] = q[2] = 0.

agn_tocomplex

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

278 8 C API Functions

agn_tonumber

lua_Number agn_tonumber (lua_State *L, int idx)

Assumes that the value at stack index idx is a number and returns it as a
lua_Number. It does not check whether the value is a number. The strings or names
'undefined' and "infinity' are recognised properly.

The function does not change the stack.

agn_tonumberx

lua_Number agn_tonumberx (lua_State *L, int idx, in t *exception)

If the value at stack index idx is a numiber or a string containing a number, it returns
it as a lua Number. The strings or names ‘'undefined' and infinity’ are
recognised properly. If successful, exception is assigned to 0.

If the value could not be converted to a number, O is returned, and exception is
assigned to 1.

agn_tostring
const char *agn_tostring (lua_State *L, int idx)
Assumes that the value at stack index idx is an Agena string and returns it as a C

string of type const char *. It does not check whether the value is a string.

agn_usedbytes

LUAI_UMEM agn_usedbytes (lua_State *L)

Returns the numiber of bytes used by the interpreter.

lua_pushfail

void lua_pushfail (lua_State *L);

This macro pushes the boolean value fail onto the stack.

lua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the boolean value false onto the stack.

agena >> 279

lua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefined onto the stack.

lua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the boolean value true onto the stack.

lua_rawset2

void lua_rawset2 (lua_State *L, int idx);
Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

Conftrary to lua_rawset, only the value is deleted from the stack, the key is kepft, thus
you save one call fo lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

lua_rawsetilstring

void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of t[n] = string, where 1 is the table af the given valid index idx,
n is an integer, string the string to be inserfed and len the length of then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] = k, where 1t is the value at the given valid index idx and
k is the value just below the top of the stack.

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

280 8 C API Functions

lua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

Does the equivalent of fin] = num, where 1 is the value at the given valid index idx,
nis an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

Does the equivalent of t[n] = str, where t is the value at the given valid index idx, n is
an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringlint

void lua_rawsetstringlint (lua_State *L, int idx, ¢ onst char *str,
int len, int n);

Does the equivalent of t[str] = n, where 1 is the value at the given valid index idx, str
a string, len the length of str, and n an infeger.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstring number

void lua_rawsetstringnumber
(lua_State *L, int idx, const char *str, lua_Num ber n);

Does the equivalent of t[str] = n, where t is the value at the given valid index idx, str
a string, and n a Lua number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

agena >> 281

lua_sdelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the set at stack position
idx. The element at the stack top is popped thereafter.

lua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx and pushes it onto the
stack. You have to make sure that the index is valid, otherwise there may be
segmentation faults.

lua_seqggetinumber

lua_Number lua_seqgetinumber (lua_State *L, int idx , int n);

Returns the value 1[n] as a lua Number, where t is a sequence at the given valid
index idx. If t[n] is not a number, the return is HUGE_VAL The access is raw; that is, it
does not invoke metamethods.

lua_seqinsert
void lua_seqinsert (lua_State *L, int idx);

Inserts the element on top of the Lua stack into the sequence at stack index idx .
The element is inserted at the end of the sequence. The value added is popped
from the stack.

lua_segnext
int lua_seqgnext (lua_State *L, int index);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index. If there are no more elements in the sequence, then
lua_segnext returns O (and pushes nothing). To access the very first item in a
sequence, put null on the stack before (with lua_pushnil).

While traversing a sequence, do not call lua_tolstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_seqgnext.

282 8 C API Functions

lua_seqgrawget
void lua_seqrawget (lua_State *L, int index);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawgeti

void lua_seqrawgeti (lua_State *L, int index, size_ t n);

Pushes onto the stack the sequence value 1[n], where t is the sequence at the given
valid index index .

The function does not invoke any metamethods. Confrary to lua_rawgeti, it issues
an error if n is out of range.

lua_seqrawget?2

void lua_seqrawget? (lua_State *L, int index);

Pushes onto the stack the sequence value tk], where t is the sequence at the given
valid index index and k is the value at the top of the stack.

Conftrary to lua_segrawget, the function does not issue an error if an index does not
exist in the sequence. Instead, null is returned.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawset

void lua_seqrawset (lua_State *L, int index);

Does the equivalent to s[k] := v, where s is a sequence atf the given valid index
index , Vv is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

agena >> 283

lua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
int len);

Does the equivalent of s[n] = string , where s is the sequence at the given valid
index idx , n is an integer, string the string to be inserfed and len the length of then
string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqseti

void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to index n of the sequence at stack index idx .
If the value added is null, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted fo the left, so that their index positions
get changed, as well.

The function pops the value at the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.,

If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

lua_seqgsetinumber

void lua_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

Sets the given Agena number numto index n of the sequence at stack index idx .

lua_seqsetistring
void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

Sets the given string str to index n of the sequence at stack index idx .

284 8 C API Functions

lua_sinsert
void lua_sinsert (lua_State *L, int idx);

Inserts an item into a set. The set is af the given index idx , and the item is af the fop
of the stack.

This function pops the item from the stack.

lua_sinsertistring

void lua_sinsertlstring (lua_State *L, int idx, con st char *str, size tl);

Sefts the first | characters of the sting denoted by str into the set af the given index
idx .

lua_sinsertnumber

void lua_sinsertnumber (lua_State *L, int idx, lua_ Number n);

Sets the number denoted by n into the set at the given index idx .

lua_sinsertstring
void lua_sinsertstring (lua_State *L, int idx, cons t char *str);

Sefts the string denoted by str into the set at the given index idx .

lua_srawget

void lua_srawget (lua_State *L, int idx);

Checks whether the set af index idx contains the item at the top of the stack. The
function pops the key from the stack putting the Boolean value true or false in its

place.

The function does not invoke any metamethods.

agena >> 285

lua_srawset

void lua_srawset (lua_State *L, int idx);

Does the equivalent fo insert v into s . Where s is the set at the given valid index
idx , v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.

lua_toboolean
int lua_toboolean (lua_State *L, int idx)
Converts the value at the given acceptable index to an integer value (-1, O or 1).

If the value af idx is not a boolean or is false, the functions returns 0.
If the value af idx is fail, the function returns -1.
If the value af idx is true, the function returns 1.

The function also returns O when called with a non-valid index. (If you want to
accept only actual boolean values, use lua_isboolean to test the value's type.)

lua_usnext
int lua_usnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given idx . If there are no more elements in the set, then lua_usnext returns O (and
pushes nothing). To access the very first item in a set, put null on the stack before
(with lua_pushnil).

While traversing a setf, do not call lua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_usnext.

luaL_getudata

void *luaL_getudata (lua_State *L, int narg, const char *tname,
int *result);

Checks whether the function argument narg is a userdata of the type tname.
Contrary to lual_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and 0 otherwise.

286 8 C API Functions

agena >> 287

Appendices

288 Appendix

agena >> 289

Appendix A

A1l Operators

Unary operators are:

&& ~~,|| ,™ ,abs, arccos , arcsin , arctan , assigned , atendof , char , copy, cos, cosh,
entier , even, exp, filed , finite , first , float , Ingamma, gethigh , getlow , imag,
instr ,int , join ,last ,left ,In, lower , nargs , not, gsadd, real , replace , right , sadd,
sign , sin , sinh , size , sqrt , tan , tanh , trim , type , unassigned , unique , upper , typeof |,
- (unary minus).

Binary operators are:

in , intersect , minus, shift , split , subset , union , xor , xsubset , + (addition), -
(subtraction), * (multiplication), / (division), \ (infeger division), % (mModulus), »
(exponentiation), ** (infeger exponentiation), & (concatenation), = (equality), < (less
than), <= (less or equal), > (greater than) , >= (greater or equal), $ (substring), : (pair
constructor), ! (complex constructor), && (bitwise and), || (bitwise or), M (bitwise xor),
~~ (bitwise complement).

A2 Metamethods

The following metamethods were inherited from Lua 5.1:

Index to metatable Meaning

__index’ Procedure invoked when a value shall fo be read from
a table, set, sequence, or pair.

' gc Garbage collection (for userdata only).

__mode’ Sets weakness of a table.

__add Addition of two values.

__sub’ Subtraction of two values.

__mul Multiplication of two values.

—div’ Division of two values.

__mod' Modulus.

__pow' Exponentiation.

__unm’ Unary minus.

_eq Equality operation.

_t Less-than operation.

_le Less-than or equals operation.

__concat Concatenation.

_call See Lua 5.1 manual.

__tostring’ Method for pretty printing values at stdout.

Table 19: Metamethods taken from Lua

The' len' metamethod in Lua 5.1 to determine the size of an object was replaced
with the ' size' metamethod.

290

Appendix

The following methods are new in Agena:

Index to metatable

Meaning

" abs'

abs operator

' arctan' arctan operator

' Cos' COs operator

' eeq strict equality operator (==

' entier entier operator

' even' even operator

'exp' exp operator

' finite' finite operator

' _Ingammad' Ingamma operator

'in' in binary operator (for tables and sequences only)

'int' int operator

' intdiv' integer division

' ipow! exponentiation with an integer power

"on' In operator

' _gsadd' gsadd operator for table or sequence based
user-defined types

' sadd' sadd operator for table or sequence based
user-defined types

' sign' sign operafor

' size' size operator

'osin' sin operator

'osqgrt! sqrt operator

' tan'’ tan operator

' writeindex’ Procedure invoked when a value shall fo be written o
a table, set, sequence, or pair.

Table 20: Metamethods introduced with Agena
A3 System Variables

Agena lefs you configure the following seftings:

System variable

Meaning

homedir The path to the user's home directory
mainlibname The path to the main Agena directory
libname The paths to Agena libraries

_Env.BufferSize

The default buffer size for file operations for the
os.fcopy and binio.readlines functions. It is equal to
the C constant BUFSIZ in stdio.h.

_Env.GdiDefaultOptions

A table with all default plotting options for some
functions in the gdi package. This table is set by
gdi.setoptions.

_Env.MaxLong

The maximum integral value of the C type int32_t
on your platform; do not change this value.

agena >> 291

System variable Meaning

_Env.MinLong The minimum integral value of the C type int32_t on
your platform; do not change this value.

_Env.More The number of entries in tables and sets printed by

print and the end-colon functionality before issuing
the "press any key™ prompt. Default is 40.
_Env.PathSep The token that separates paths in libname; by
default is ';'. Do not change this value as it is used by
the with function.

_Env.Release A sequence containing the sting "AGENA", the
main interpreter version as a number, the subversion
as a number, and the patch level as a number, as

well,

_Env.WithProtected A set of names (passed as strings) that cannot by
overwritten by the with function.

_Env.WithVerbose If set to false, the with function wil not display

warmings, the initialisation string, and the short
names assigned. Default is true.

PROMPT Defines the prompt Agena displays at the console.
_RELEASE Release information on the installed Agena release,
returned as a string, e.g. 'AGENA >> 0.90.0'.

Table 21 System variables
All_Env* settings are reset by the restart statement to their original defaults, whereas

those settings the user defines with the kernel function will never be modified or
deleted by a restart.

Some of the default settings can be found at the bottom of the lib/library.agn
file.

See also:

* Chapter 7.1 for a description of the kernel functions for other settings.
* Appendix A5 for settings that contfrol how Agena outputs data at the console.

292 Appendix

A4 Command Line Usage

Agena can be used in the command line as follows:
agena [options] [script [arguments]]

This means that any option, an Agena script, and the arguments are all optional. If
you just enter

shell> agena
Agena is started in inferactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering inferactive mode:

A4.1 Using the -e Option

We may write a script with a text editor, e.g. one to print the sine of a number. This
script may look like the following two lines:

n :=nor Pi; #if nis not set from the shell, ju stassign Piton
writeline(sin(n));

This script prints the sine fo a user-given numeric argument which is passed by using
the -e option and a string containing a valid Agena statement. It uses a variable n
which you must assign via the -e option:

shell> agena -e "n := Pi/2" sin.agn
1

Note that you first have to enter the -e option along with the Agena statement, and
then the name of the scripf.

A4.2 Using the internal args Table

Everything you pass to the inferpreter from the command line is stored in the args
table.

The name of the script is always stored at index O, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. Any options are accessible
via negative keys. The name of the interpreter is always at the smallest index.

Consider the following script called 'args.agn':

fori, jin args do
writeline(i, j, delim~"\t")
od;

agena >> 293

If it is run, the output is:

shell> agena args.agn 0
-1 agena
0 args.agn

Just play around with this a little bit.

Let us use our new knowledge: The script In.agn' requires a string and a number
and calculates the natural logarithm of this number. The number entered at the
command line is entered into the args table as a string, so you first must convert it
info a “real” number.

argl := args[1];
arg2 := toNumber(args[2]);

try argl :: string;

try arg2 :: number;
writeline(argl, In(arg2));

Use it:

shell> agena In.agn "The natural logarithm of 1 is: "1
The natural logarithm of 1 is: 0

A4.3 Running a Script and then entering interacti ve Mode

The -i option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i option does not matter. The
following shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := '"AGENA> "
AGENA>

A4.4 Running Scripts in UNIX and Mac OS X

If you use Agena in UNIX and Mac OS X, then you can execute Agena scripts
directly by just entering the name of the script followed by any arguments (if
needed).

Just insert the following line af the head (i.e. line 1) of each script:

#l/usr/local/bin/agena

and set the appropriate rights for the script file (e.g. chmod a+x scriptname).

An example:

bash> ./sin.agn 1
0.8414709848079

294

Appendix

In all other operating systems, the first line is ignored by the interpreter, so you do not
have to delete the first line of the script in order to use scripts you have originally
written under UNIX or Mac.

A4.5 Command Line Switches

The available switches are:

Option Function

-b print compilation time of Agena binary with startup message

-e "stat" | execute string "stat" (double quotes needed)

-h help information

-i enter interactive mode affer executing “script” or other options

-| print licence information

-n do not run initialisation file "agena.ini’

-p path | sets <path> to libname, overiding the standard initialisation
procedure for this environment variable. The path does not need 1o be
put in quotes if it does not contain spaces.

-rname | readlib liorary <name>. The name of the library does not need to be
put in quotes.

-V show version information

stop handling options

execute stdin and stop handling options

A5 Define your own Printing Rules for Types

You can tell Agena how to outfput strings, tables, sets, sequences, pairs, and
complex values atf the console.

With each call to the internal printing routine, the interpreter uses the respective

_EnvPrint function or settings defined in the lib/library.agn

fle. You may change

these functions or settings according to your needs.

Table index Type Functionality

_EnvPrint.Table function | defines how to print a table, overiding the
built-in default

_EnvPrint.LongTable function | defines how to print a table if Env.LongTable
has been seft true

_EnvPrint.Set function | defines how to print a set, overiding the
built-in default

_EnvPrint.Sequence function | defines how to print a sequence, overriding
the built-in default

_EnvPrint.Pair function | defines how to print a pair, overriding the
built-in default

_EnvPrint. Complex function | defines how to print a complex value,
overriding the built-in default

agena >> 295
Table index Type Functionality
_EnvPrint.EmpyLine boolean | If set to true, a newline is printed at the

console dafter entering a statement (and
pressing the RETURN key) and before the
result appears on screen. Default:
unassigned, i.e. no newline.

_EnvPrint.EncloseStrings | string

if set, Agena outputs strings with the
prepending and appending string assigned
fo _EnvPrint.EnclosesStrings

_EnvPrint.Procedure function | defines how to print a procedure, overriding
the built-in default

_EnvPrint. boolean | When set to true, real and imaginary parts of

ZeroedCmplxVals complex values close 1o zero are rounded to

zero on output. (Note that internally, complex
values are not rounded.) Default is null.

Alternative _EnvPrint functions might look like the following one:

> EnvPrint.Set := proc(s) is
> write('set();

> f size s> 0 then

> foriinsdo

> write(i, ', 9;

> od;

> write(\b\b');

> fi;

> write()";

> end;

> EnvPrint.Complex := proc(s) is

> write('cmplx(, real(s), ', ', imag(s), ")");
> end;

>{1, 2}
set(1, 2)

> 1%2%|:
cmplx(1, 2)

A6 The Agena Initialisation File

You can customise your personal Agena environment via special initialisation files.

The initialisafion files may include code written in the Agena language and will
always be executed when Agena is started or restarted. They can include
definitions or redefinitions of predefined (environment) variables, and feature
self-written procedures or statements 10 be executed at start-up.

296 Appendix

Two kinds of initialisation files are supported:

1. a global initialisatfion file, and
2. apersondal initialisation file for the current user.

Agena first tries to read the global inifialisation file, and then the user's initialisation
file. If the inifialisation files do not exists, nothing happens and Agena starts without
errors.

The global initialisation file should reside in the lib folder of your Agena installation
and is always named agena.ini for all operating systems. You may find your Agena
installation in /usrfagena on UNIX platforms, and usuadlly in <drive:>/Program
Files/Agena Or <drive:>/Program Files(x86)/Agena on Windows systems.

In Solaris, Linux, Mac OS X and Haiku, the personal initialisation file resides in the
folder pointed to be the HoOMEenvironment variable. The personal Agena initialisation
fle on UNIX machines is called .agenainit (not agena.ini). Thus the path is
$HOME/.agenainit

In Windows, the system environment variable UserProfile points to the user's home
folder, and the personal initialisation file is called agena.ini , (NOt .agenainit), thus
the file path is %UserProfile%/agena.ini

On Windows platforms, the user's inifialisation file should be put intfo the user's
respective home folder:

Windows version | Path to user's home directory

NT 4.0 <drive:>\WINNT\Profiles\<username>

2000, XP, 2003 <drive:>\Documents and Settings\<username>
Vista and 7 <drive:>\Users\<username>

In OS2 and DOS, Agena ftries to find the users personal agena.ini file in the
directory pointed to by the environment variable HOME if it has been defined. If
HOME has not been defined, it searches in the folder pointed to by the environment
variable USER if the latter has been defined. Otherwise, the personal file is not read.

Agena is shipped with a file called agena.ini.sample that resides in the lib folder of
your installation. You can rename it to agena.ini Or .agenainit ~ and play with it - but
beware not to overwrite the initialisation which you may already have created.

Here is a sample file:

agena >>

297

HHH A
#

Agena initialisation file

#

HHH A

assign short names for the following library func
execute := 0s.execute;

TN N TR TR NI R TR TR TR TR NI TR N T N TN TN IR TN TR TR TR TR TR TR TR TR TRT TN TN TN TN TN TN IRTRTRTRTRTRT BT TRTOT]

BHHRHHH R
#
#
#

BHHRHHH R R

tions:

TN NN TR TR TR TR TR TR TR TR R TN TRIN T IR TN TN TR TR TR TRTRTRTRTRTRTUT NI NI I TN TN INTNINT]

HHHHHH R

Extend libname to include paths to additional lib

IR NN NIRRT NIRRT R TR NI TR N T N TN TN TN TN TR TR TR TR TR TR TR TR TR TN TN TN TN TN TN TN TN IR TR TRTRTRTRT BT TR TOT]

HHHHHH R

raries (but only if directories exist) #

TR RN TR R TR TR TN TR TR TR TR TN TR NI TN TN TN TN IR TR TR TRTRTRTRTRTRTUT NI TN TN TN TN INTNINT]

HHHHHH R

if 0s.isWin() or 0s.isOS2() or 0s.isDOS() then
addpaths := seq(
'd:/agena/phq’,
'd:/agena/pcomp'

)
elif os.isSolaris() then
addpaths := seq(
'lexport/home/proglang/agena/phq’,
‘lfexport/home/proglang/agena/pcomp’

elif os.isLinux() then
addpaths := seq(
'~lagena/phq’,
'~/agena/pcomp’

fi;
for i in addpaths do
if os.exists(i) and i in libname = null then
libname := libname & ;' & i
fi
od;
clear addpaths;

writeline("Have fun with Agena \n');

RN TR R TR TR TR TR TR TR NI T R IN TN TN TN IR TN IR TR TR TR TR TR TR TR TR TN TN TN TN TN TN TN IR TR TRTRTRTRT BT TN IO

HHHHHH R

TN NN TR TR TR TR TR TR TR TR TN TR IR T IR TN TN TR TR TR TRTRTRTRTRTRTUT NI NI TN TN TNINTNINT]

HHHHHH R

Set default plotting options for gdi.plotfn

T NN NN TR RN T R TR TR R TR O TR TN TN TN TN TR TN TR TR TN TR T R TR TR TR TR TN TN TN TN TN TN TN IR TR TRTRTRTRT NI TR TOT]

HHHHHH R

#

TN NN TR RN TR TR TR TR TR TR TN TR NI TN TN TN TN TR TR TR TRTRTRTRTRTRTUT NI NI TN TN INTNINT]

HHHHHH R

readlib ‘gdi’;
gdi.setoptions(colour~'red', axescolour~'grey");

HHHHHH R

298 Appendix

Appendix B

B1 MIT Licence

The Agena source files are distriouted under the MIT licence reproduced below. This
means that Agena is free software and can be used for both academic and
commercial purposes at absolutely no cost.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furished to do so, subject to the
following conditions:

The above copyright notfices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

B2 GNU GPL v2 Licence
The Solaris, Linux, Windows, OS/2, Mac OS X, and DOS binaries are distributed under
the GNU GPL v2 licence reproduced below:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

agena >> 299

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to most of the
Free Software Foundation's soffware and to any other program whose authors
commit to using if. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to your programs,
foo.

When we speak of free software, we are refering to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want if, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need 1o make restrictions that forbid anyone to deny you
these rights or to ask you fo surrender the rights. These restrictions franslate to cerain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission 1o copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistrioutors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made
it clear that any patent must be licensed for everyone's free use or not licensed at
all.

The precise terms and conditions for copying, distribution and modification follow.

300 Appendix

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a noftice
placed by the copyright holder saying it may be distribbuted under the terms of this
General Public License. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, franslation is included without limitafion in the term "modification”.)
Each licensee is addressed as "you".

Activities other than copying, distrioution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the
Program). Whether that is frue depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notfice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transfering a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distrioute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the datfe of any change.

) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, 1o be licensed as a
whole af no charge to all third parties under the terms of this License.

C) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
nofice and a nofice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

agena >> 301

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply 1o those sections when you distrioute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights 1o work
wriffen entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does noft bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software inferchange; or,

) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the maijor
components (compiler, kemnel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access 1o copy the source code

302 Appendix

from the same place counts as distrioution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License, since you have not signed fit.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distriouting or modifying the Program or works
based on it.

6. Each fime you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgement or allegation of patent infingement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. |If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is infended to apply and the section as a
whole is infended to apply in other circumstances.

It is not the purpose of this section fo induce you 1o infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous
contributions fo the wide range of software distriouted through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is wiling to distribute software through any other system and a
licensee cannot impose that choice.

agena >> 303

This secftion is infended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution
limitafion excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distrioution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS 15" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

304 Appendix

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, aftach the following nofices fo the program. It is safest to aftach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full nofice is found.

<one line fo give the program's name and a brief idea of what it does. >
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(af your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write fo the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is intferactive, make it output a short noftice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w',
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c¢' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than ‘show w' and ‘show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

agena >> 305

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.

B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library

* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Developed at SunPro, a Sun Microsystems, Inc. bu siness.

* Permission to use, copy, modify, and distribute this

* software is freely granted, provided that this n otice

B4 GNU Lesser General Public License

Agena uses the g2 graphic library which is distribbuted under the GNU LGPL v2.1
licence reproduced below:

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.

306 Appendix

This license, the Lesser General Public License, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide fo use it. You can use it too, but we suggest you first
think carefully about whether this license or the ordinary General Public License is
the befter strategy to use in any paricular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the freedom
fo distribute copies of free software (and charge for this service if you wish); that you
receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights. These restrictions franslate to
certain responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distrioute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that
they, too, receive or can get the source code. |If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2)
we offer you this license, which gives you legal permission to copy, distribute and/or
modify the library.

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author's reputation will not be aoffected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library must
e consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License, applies
fo certain designated libraries, and is quite different from the ordinary General
Public License. We use this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the

agena >> 307

original library. The ordinary General Public License therefore permits such linking
only if the entire combination fits its criteria of freedom. The Lesser General Public
License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to
protect the users freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same jolb as widely used non-free
libraries. In this case, there is little to gain by limiting the free library o free software
only, sO we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables
a greater number of people 1o use a large body of free software. For example,
permission to use the GNU C Library in non-free programs enables many more
people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users' freedom,
it does ensure that the user of a program that is linked with the Library has the
freedom and the wherewithal to run that program using a modified version of the
Liorary.

The precise terms and conditions for copying, distrioution and modification follow.
Pay close attention to the difference between a "work based on the library" and a
"'work that uses the library". The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it
may be distriouted under the terms of this Lesser General Public License (also called
"this License"). Each licensee is addressed as "you'".

A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software liorary or work which has been
distriouted under these terms. A "work based on the Library" means either the Library

308 Appendix

or any derivative work under copyright law: that is to say, a work containing the
Liorary or a portion of it, either verbatim or with modifications and/or translated
straightforwardly intfo another language. (Hereinafter, franslation is included without
limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what
the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright nofice and
disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with the
Liorary.

You may charge a fee for the physical act of fransferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

agena >> 309

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can e reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply 1o those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Liorary, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the infent of this section to claim rights or contest your rights 1o work
wriffen entirely by you; rather, the intent is to exercise the right to control the
distrioution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter all
the notices that refer to this License, so that they refer to the ordinary GNU General
Public License, version 2, instead of to this License. (If a newer version than version
2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License aqpplies to all subsequent copies and
derivative works made from that copy.

This opftion is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distrioute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access 1o copy the source code from
the same place satisfies the requirement to distiibute the source code, even

310 Appendix

though third parties are not compelled to copy the source along with the object
code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation, is not a derivative work of the
Liorary, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library
even though the source code is not. Whether this is true is especially significant if the
work can be linked without the Library, or if the work is itself a liorary. The threshold
for this to be frue is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object file is unrestricted, regardiess of whether it is legally a
derivative work. (Executables containing this object code plus portions of the
Liorary will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the Library
itself.

6. As an exception to the Sections above, you may also comibine or link a "work
that uses the Library" with the Library 1o produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply a
copy of this License. If the work during execution displays copyright nofices, you
must include the copyright nofice for the Library among them, as well as a
reference directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distriouted under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that

agena >> 311

uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application

to use the modified definitions.)

) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run fime a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form) with the
mMajor components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the
work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distriouted under the terms of the

312 Appendix

Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

Q. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distriouting the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works bbased on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distrioute, link with or modify the Library subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties
with this License.

11. If, as a consequence of a court judgement or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions are
imposed on you (Whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distrioute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a conseguence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distrioution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is infended to apply, and the section as
a whole is infended to apply in other circumstances.

It is not the purpose of this section fo induce you 1o infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the inteqrity of the free software distribution system which
is implemented by public license practices. Many people have made generous
contributions fo the wide range of software distriouted through that system in
reliance on consistent application of that system; it is up to the author/donor to

agena >> 313

decide if he or she is wiling to distribute software through any other system and a
licensee cannot impose that choice.

This secftion is infended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this License may add an explicit geographical distribution
limitafion excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the boday of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time 1o time. Such new versions will be similar in
spirit o the present version, but may differ in detail to address new problems or
concems.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate pars of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For sofftware which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

314 Appendix

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it fo be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistrioution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, aftach the following notices to the library. It is safest to
attach them to the start of each source file 1o most effectively convey the exclusion
of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

<one line fo give the library's name and a brief idea of what it does. >
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
liorary “Frob' (a library for tweaking knolbs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

agena >> 315

Ty Coon, President of Vice
That's all there is 10 it!

BS Other Copyright remarks

The Solaris, Linux, Mac OS X, and Windows binaries include code from the gd
package which has been published with the following copyright notices:

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold
Spring Harbor Laboratory. Funded under Grant P41-RR02188 by the National
Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by
Boutel.Com, Inc.

Portions relating 1o GD2 format copyright 1999, 2000, 2001, 2002
Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg
Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John
Ellson (ellson@lucent.com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson
(ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Pierre-Alain Joye (pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002,
Doug Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, Thomas G. Lane. This software is based in part on the work of the
Independent JPEG Group. See the file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan
Van den Brande.

Permission has been granted to copy, distribute and modify gd in any context
without fee, including a commercial application, provided that this nofice is present
in user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for the authors of gd, noft to interfere with your productive use of
gd. If you have questions, ask. "Derived works" includes all programs that utilize the
library. Credit must be given in user-accessible documentation.

316 Appendix

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose, with respect to this code and accompanying
documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas,
David Rowley, and Hutchison Avenue Software Corporation for their prior
contributions.

B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library)
Copyright (C) 1999 - 2007 Michael C. Ring

This software is Freeware.

Permission to use, copy, and distribute this software and its documentation for any
purpose with or without fee is hereby granted, provided that the above copyright
nofice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

Permission to modify the software is granted. Permission to distribute the modified
code is granted. Modifications are to be distributed by using the file license.txt' as a
template to modify the file header. 'license.ixt' is available in the official MAPM
distribution.

To distribute modified source code, insert the file 'license.txt' at the top of all
modified source code files and edit accordingly.

This software is provided "as is" without express or implied warranty.

