Free Component Library (FCL):
Reference guide.

Reference guide for FCL units.
Document version 2.1
August 2007

Michaél Van Canneyt

Contents

0.1 OVerviewo e e e 20
1 Reference for unit "base64’ 21
1.1 Usedunits oo oo e e e e e e 21
L2 Overview e e 21
1.3 Constants, types and variables o 21
13,1 Types . . . o o o e e 21

1.4 EBase64DecodingException oo 22
141 Description i e e e 22

1.5 TBase64DecodingStream e e e e 22
151 Description oo it e e 22

1.5.2 Methodoverview 22

1.5.3 Property OVerview e e e e 22

1.5.4 TBase64DecodingStream.Create 22

1.5.5 TBase64DecodingStream.Reset 23

1.5.6 TBase64DecodingStream.Read 23

1.5.7 TBase64DecodingStream.Write 23

1.5.8 TBase64DecodingStream.Seek 24

1.5.9 TBase64DecodingStream.EOF 24
1.5.10 TBase64DecodingStream.Mode 24

1.6 TBase64EncodingStream e e 24
1.6.1 Description i i e e e e e 24

1.6.2 Methodoverview L 25

1.6.3 TBase64EncodingStream.Create 25

1.6.4 TBase64EncodingStream.Destroy 25

1.6.5 TBase64EncodingStream.Read 25

1.6.6 TBase64EncodingStream.Write 25

1.6.7 TBase64EncodingStream.Seek, 26

2 Reference for unit ’bufstream’ 27
2.1 Usedunits oL e e e e e 27
22 OVEIVIBW . . . o oo e e e 27

CONTENTS

2.3 Constants, types and variables L Lo 27
2.3.1 Constants e e 27

24 TBufStream 27
241 Description e e 27

242 Methodoverview L e 28

2.4.3 Property OVEIVIEW v v v i e e e e e e e e e e 28

244 TBufStream.Create 28

2.4.5 TBufStream.Destroy 28

24.6 TBufStream.Buffer o oo 28

2477 TBufStream.Capacity o o e 29

24.8 TBufStream.BufferPoso oo 29

2.4.9 TBufStream.BufferSize 29

2.5 TReadBufStream 30
2.5.1 Description e e e e e e 30

2.5.2 Methodoverviewo 30

2.5.3 TReadBufStream.Seek 30

2.54 TReadBufStream.Read 0. 30

2.5.5 TReadBufStream.Write 30

2.6 TWriteBufStream 31
2.6.1 Description e e 31

2.6.2 Methodoverview L 31

2.6.3 TWriteBufStream.Destroy 31

2.6.4 TWriteBufStream.Seek o oo 31

2.6.5 TWriteBufStream.Read 32

2.6.6 TWriteBufStream.Write 32

3 Reference for unit ’CacheCls’ 33
3.1 Usedunits oL e e 33
32 OVEIVIEW . . . o oo it e e e e 33
3.3 Constants, types and variables oo 33
33.1 Resource strings 33

332 TYPES . v i e e e e e 33

34 ECacheError e 34
34.1 Descriptiono 34

3.5 TCache e e 34
35.1 Descriptionl 34

352 Methodoverview L e 35

3.5.3 Property OVerviewo e e e 35

354 TCache.Create i i ittt 35

3.5.5 TCacheDestroy 35

CONTENTS

35.6 TCache Add 35
357 TCache AddNew e 36
35.8 TCacheFindSlot 36
359 TCachelndexOf 36
3.5.10 TCacheRemove 37
35.11 TCacheData i e 37
3.5.12 TCache MRUSIot e 37
3.5.13 TCache.LRUSIot e 38
3.5.14 TCacheSlotCount 38
3.5.15 TCacheSlots o e 38
3.5.16 TCache.OnlsDataEqual 38
3.5.17 TCache.OnFreeSlot. 39

4 Reference for unit ’contnrs’ 40
4.1 Usedunits oo vt e e e e e e 40
42 OVeIVIBW ot e 40
4.3 Constants, types and variables L e 40
431 ConStantso a e e e e e 40

432 TYPES . o i e e e e 41

4.4 Procedures and functionso oL 43
44.1 RSHash 43

4.5 EDuplicate 43
4.5.1 DesCriptionot i e e 43

4.6 EKeyNotFound e 43
4.6.1 Description e e e e e 43

4.7 TClassList 43
471 DesCription v vt e e e e e e 43

4772 Methodoverview 43

473 Property OVeIVIEW v v v v v i i e e e e e e e e e e 44
474 TClassListAdd 44
475 TClassListExtract 44
477.6 TClassListRemove 44
4777 TClassListIndexOf L 45
478 TClassList.First. 45
479 TClassListLast 45
4.7.10 TClassListInsert e 45
4.7.11 TClassListItems 46

4.8 TComponentList e 46
4.8.1 DesCriptiont i 46

4.82 Methodoverviewo e e e 46

CONTENTS

4.8.3 Property OVeIVIEW v v i e e e e e e e e e e 46
4.84 TComponentList.Destroy. 46
4.8.5 TComponentListAdd 47
4.8.6 TComponentList.Extract 47
4.8.7 TComponentList.Remove 47
4.8.8 TComponentList.IndexOf 47
4.8.9 TComponentListFirst 48
4.8.10 TComponentListLast 48
4.8.11 TComponentList.Insert 48
4.8.12 TComponentList.Items 49
4.9 TFPCustomHashTable 49
4.9.1 Descriptiono 49
492 Methodoverview L 49
493 Property OVeIVIEW v v v v e e e e e e e e e e e e 49
494 TFPCustomHashTable.Create 50
49.5 TFPCustomHashTable.CreateWith 50
49.6 TFPCustomHashTable.Destroy 50
4.9.7 TFPCustomHashTable.ChangeTableSize 50
49.8 TFPCustomHashTable.Clear 51
499 TFPCustomHashTable.Delete 51
4.9.10 TFPCustomHashTable.Find 51
4.9.11 TFPCustomHashTable.ISEmpty 51
4.9.12 TFPCustomHashTable.HashFunction 52
4.9.13 TFPCustomHashTable.Count 52
4.9.14 TFPCustomHashTable.HashTableSize 52
4.9.15 TFPCustomHashTable.HashTable 52
4.9.16 TFPCustomHashTable.VoidSlots 53
4.9.17 TFPCustomHashTable.LoadFactor 53
4.9.18 TFPCustomHashTable.AVGChainLen 53
4.9.19 TFPCustomHashTable.MaxChainLength 53
4.9.20 TFPCustomHashTable.NumberOfCollisions 54
4.9.21 TFPCustomHashTable.Density 54
4.10 TFPDataHashTable e 54
4.10.1 Description i e e e e e e e e 54
4.10.2 Method overview 54
4.10.3 Property OVerVIEW v v it i i e e e e e 55
4.10.4 TFPDataHashTable.Add 55
4.10.5 TFPDataHashTableItems 55
4.11 TFPHashList e 55
4.11.1 Description v v v vt e e e 55

CONTENTS

4.11.2 Methodoverview 56
4.11.3 Property OVeIVIEW v v v v e e e e e e e e e e e e e e e 56
4.11.4 TFPHashList.Create 56
4.11.5 TFPHashList.Destroy vt e e 56
4.11.6 TFPHashListAdd 57
4.11.7 TFPHashList.Clear 57
4.11.8 TFPHashListNameOflndex 57
4.11.9 TFPHashList.HashOflndex 57
4.11.10 TFPHashList.Delete 58
4.11.11 TFPHashList.Error 58
411.12TFPHashList.Expand 58
4.11.13 TFPHashList.Extract 58
4.11.14 TFPHashList.IndexOf 59
4.11.15TFPHashList.Find 59
4.11.16 TFPHashList.FindIndexOf 59
4.11.17 TFPHashList.FindWithHash 59
4.11.18 TFPHashList.Rename 60
4.11.19 TFPHashListRemove 60
41120 TFPHashList.Pack 60
4.11.21 TFPHashList.ShowStatistics 60
4.11.22 TFPHashList.ForEachCall 61
4.11.23 TFPHashList.Capacity o v v v i it e e e e e e o 61
4.11.24 TFPHashList.Count 61
4.11.25 TFPHashListItems 61
41126 TFPHashList.List 62
4.11.27TFPHashList.Strs o 62
4.12 TFPHashObject e 62
4.12.1 DesCription v v v v i e e e e 62
4.12.2 Method overview 62
4.12.3 Property OVEIVIEW . . . o . v v v v v e e e e e e e e e e e e e e 62
4.12.4 TFPHashObject.CreateNotOwned 63
4.12.5 TFPHashObject.Create i i i 63
4.12.6 TFPHashObject.ChangeOwner 63
4.12.7 TFPHashObject.ChangeOwnerAndName 63
4.12.8 TFPHashObject.Rename 64
4.12.9 TFPHashObject.Name 64
4.12.10 TFPHashObject.Hash 64
4.13 TFPHashObjectList e e e e e e e 65
4.13.1 Methodoverview e 65
4.13.2 Property OVerVIEW v v v v v v i i e e e e 65

CONTENTS

4.13.3 TFPHashObjectList.Create v 65
4.13.4 TFPHashObjectList.Destroy 65
4.13.5 TFPHashObjectList.Clear 66
4.13.6 TFPHashObjectList Add 66
4.13.7 TFPHashObjectList.NameOfIndex 66
4.13.8 TFPHashObjectList.HashOfIndex 67
4.13.9 TFPHashObjectList.Delete 67
4.13.10 TFPHashObjectList.Expand 67
4.13.11 TFPHashObjectList.Extract 67
4.13.12 TFPHashObjectList.Remove 68
4.13.13 TFPHashObjectList.IndexOf 68
4.13.14 TFPHashObjectList.Find 68
4.13.15 TFPHashObjectList.FindIndexOf 68
4.13.16 TFPHashObjectList.FindWithHash 69
4.13.17 TFPHashObjectList.Rename 69
4.13.18 TFPHashObjectList.FindInstanceOf 69
4.13.19 TFPHashObjectList.Pack 69
4.13.20 TFPHashObjectList.ShowStatistics 70
4.13.21 TFPHashObjectList.ForEachCall 70
4.13.22 TFPHashObjectList.Capacity 70
4.13.23 TFPHashObjectList.Count 70
4.13.24 TFPHashObjectList.OwnsObjects oo v 71
4.13.25 TFPHashObjectList.Items 71
4.13.26 TFPHashObjectList.List 71
4.14 TFPObjectHashTable 71
4.14.1 Description o . e e e e e e e e e 71
4.142 Methodoverview 72
4.14.3 Property OVerVIEW o o v v v i i e e e 72
4.14.4 TFPObjectHashTable.Create 72
4.14.5 TFPObjectHashTable.CreateWith 72
4.14.6 TFPObjectHashTable.Add 73
4.14.7 TFPObjectHashTable.Items 73
4.14.8 TFPObjectHashTable.OwnsObjects 73
4.15 TFPObjectList. 73
4.15.1 DesCription v v v v e e e e e 73
4152 Methodoverview 74
4.15.3 Property OVerview e 74
4.15.4 TFPObjectList.Create v i vttt 74
4.15.5 TFPObjectList.Destroy oo 74
4.15.6 TFPObjectList.Clear 75

CONTENTS

4.15.7 TFPObjectList Add 75
4.15.8 TFPObjectList.Delete i 75
4.15.9 TFPObjectList.Exchange 76
4.15.10 TFPObjectList.Expand 76
4.15.11 TFPObjectList.Extract vt e e 76
4.15.12 TFPObjectList.Remove e 76
4.15.13 TFPObjectList.IndexOf 77
4.15.14 TFPObjectList.FindInstanceOf 77
4.15.15 TFPObjectList.Insert e 77
4.15.16 TFPObjectList.First e 78
4.15.17TFPObjectList.Last o 78
4.15.18 TFPObjectListMove oo 78
4.15.19 TFPObjectList. ASSign o v ittt e e e e 78
4.15.20 TFPObjectList.Pack 79
41521 TFPObjectList.Sort o e 79
4.15.22 TFPObjectList.ForEachCall 79
4.15.23 TFPObjectList.Capacity vt it e e 80
4.15.24 TFPObjectList.Count v v i et e e e 80
4.15.25 TFPObjectList.OwnsObjects v it 80
41526 TFPObjectList.Items 80
4.15.27TFPObjectList.List 81
4.16 TFPStringHashTable 81
4.16.1 DesCription v v vttt e e e e 81
4.16.2 Methodoverview 81
4.16.3 Property OVerviewo e 81
4.16.4 TFPStringHashTable. Add 81
4.16.5 TFPStringHashTableItems 81
4.17 THTCustomNode e e e e 82
4.17.1 Description e e e 82
4.17.2 Methodoverview 82
4.17.3 Property OVeIVIEW v v v it e e e e 82
4.17.4 THTCustomNode.CreateWith 82
4.17.5 THTCustomNode.HasKey 82
4.17.6 THTCustomNode.Key, 83
4.18 THTDataNode ittt ettt 83
4.18.1 DesCription v v v e e 83
4.18.2 Property Overview e 83
4.18.3 THTDataNode.Data 83
4.19 THTODbjectNode i et e e 83
4.19.1 Descriptiono 83

CONTENTS

4.19.2 Property OVEIVIEW v v v v v e e e e e e e e e e e 83
4.19.3 THTObjectNode.Data i 84
420 THTOwnedObjectNode o i et 84
4.20.1 Description oL e e e e e e e e 84
4.20.2 Methodoverview Lo 84
4.20.3 THTOwnedObjectNode.Destroy oo v i oo oo 84
421 THTStringNode 84
421.1 DesCription v v v v vt e e e e 84
4.21.2 Property OVEIVIEW v v v v v i i e e e e e e e e e 84
4.21.3 THTStringNode.Data 85
4.22 TObjectLiSt o e e 85
4.22.1 DesCription v v v i e e e e e e 85
4222 Methodoverview L. 85
4.22.3 Property OVeIVIEW v v v v e e e e e e e e e e e e e 85
4.22.4 TObjectList.create e 85
4225 TObjectListAdd 86
4.22.6 TObjectListExtract. e 86
42277 TObjectListRemove e 86
4.22.8 TObjectListIndexOf L 87
4.22.9 TObjectList.FindInstanceOf 87
4.22.10 TObjectListInsert 87
42211 TObjectList.First e e 87
4.22.12TObjectList.Last e 88
4.22.13 TObjectList.OwnsObjects it 88
4.22.14 TObjectList.Items o e 88
423 TObJeCtQUEUE v v v v i e e e e e e e e e e e e e e e 88
4.23.1 Methodoverview e 88
4.23.2 TObjectQueue.Push 89
4.23.3 TObjectQueue.Pop 89
4.23.4 TObjectQueue.Peek 89
4.24 TObjectStack 89
4.24.1 Descriptiono 89
4242 Method OVEIVIEW v vt e e e e e 89
4.24.3 TObjectStack.Push 90
4244 TObjectStack.Pop L 90
4.24.5 TObjectStack.Peek L 90
4.25 TOrderedList e 90
4.25.1 Description e e e e e e e e 90
4252 Methodoverview 91
4.25.3 TOrderedList.Create 91

CONTENTS

4.25.4 TOrderedList.Destroy v i 91
4.25.5 TOrderedList.Count 91
4.25.6 TOrderedList.AtLeast 92
4257 TOrderedList.Push 92
4258 TOrderedList.Pop. 92
4259 TOrderedList.Peek 92
426 TQUEUE o i e e e e e e e e e 93
4.26.1 Description 93
427 TStack oo e 93
4.27.1 Description i e e e e e e e e e 93

5 Reference for unit ’dbugintf’ 94
5.1 Writingadebugserver e e e 94
52 OVEIVIEW . . . o o vt i e e 94
5.3 Constants, types and variables 0oL 0oL 94
5.3.1 Resource strings e e e 94
532 Constants e e e 95
533 TYPES « o v o 95

5.4 Procedures and functions 95
5.4.1 GetDebuggingEnabled L. 95
542 TInitDebugClient. e 95
543 SendBoolean 96
544 SendDateTime e 96
545 SendDebug 96
54.6 SendDebugEx 96
54.7 SendDebugFmt 97
54.8 SendDebugFmtEx 0oL 97
549 SendInteger 97
5.4.10 SendMethodEnter o 98
54.11 SendMethodExit 98
5.4.12 SendPointer 98
5.4.13 SendSeparator Lo e 99
5.4.14 SetDebuggingEnabled 99
5.4.15 StartDebugServer 99

6 Reference for unit ’"dbugmsg’ 100
6.1 Usedunits 100
6.2 OVEIVIEW oot e e e 100
6.3 Constants, types and variables 0 oL 0oL 100
6.3.1 Constants e e e 100
6.3.2 TYPES . . o o 101

CONTENTS

6.4 Proceduresand functions oL 101
6.4.1 DebugMessageName 101
6.4.2 ReadDebugMessageFromStream 101
6.4.3 WriteDebugMessageToStream 102

7 Reference for unit ’eventlog’ 103

7.1 Usedunits oo vt e e e e e 103

T2 OVeIVIEW . . . oot o i e e 103

7.3 Constants, types and variables o e 103
7.3.1 Resource strin@so e e e 103
732 Types . . o o e 104

7.4 ELogError e 105
741 Descriptiont i e e e e e e e 105

7.5 TEventLog e 105
7.5.1 Description e 105
7.5.2 Methodoverview L e 105
7.5.3 Property OVerview oo i e e e e e e e e 105
7.54 TEventLog.Destroy 105
7.5.5 TEventLog.EventTypeToString 106
7.5.6 TEventLog.RegisterMessageFile 106
7.5.7 TEventLogLog e 107
7.5.8 TEventLog.Warning 107
7.5.9 TEventLog.Error 107
7.5.10 TEventLog.Debug 108
7.5.11 TEventLog.Info. e 108
7.5.12 TEventLog.Identification, 108
7.5.13 TEventLog.LogType 108
7.5.14 TEventLog.Active 109
7.5.15 TEventLog.DefaultEventType 109
7.5.16 TEventLog.FileName 109
7.5.17 TEventLog.TimeStampFormat 110
7.5.18 TEventLog.CustomLogType 110
7.5.19 TEventLog.EventIDOffset 110
7.5.20 TEventLog.OnGetCustomCategory 111
7.5.21 TEventLog.OnGetCustomEventID 111
7.5.22 TEventLog.OnGetCustomEvent 111

8 Reference for unit ’ezcgi’ 112

8.1 Usedunits L e e 112

82 OVEIVIEW i i e e 112

8.3 Constants, types and variables oL oo 112

CONTENTS

83.1 Constants e 112

84 ECGIEXCeption o v i it e e e e e e 112
8.4.1 Description 112

85 TEZcgi e 113
8.5.1 Description e e 113

8.5.2 Methodoverview e 113

8.5.3 Property overviewo 113

8.5.4 TEZcgi.Create it 113

8.5.5 TEZcgiDestroy e 113

85.6 TEZcgiRun. e 114

8.5.7 TEZcgi.WriteContent. it 114

8.5.8 TEZcgi.Putline. 114

8.5.9 TEZcgi.GetValue 115
8.5.10 TEZcgi.DoPost e 115
8.5.11 TEZcgi.DoGet e 115
8.5.12 TEZcgi.Values e 115
8.5.13 TEZcgiNames i 116
8.5.14 TEZcgi.Variables e 116
8.5.15 TEZcgi.VariableCount 117
8.5.16 TEZcgi.Name 117
8.5.17 TEZcgiEmail 117

9 Reference for unit *gettext’ 118
9.1 Usedunits e e 118
0.2 OVEIVIEW o vt e e e 118
9.3 Constants, types and variables Lo 118
9.3.1 Constants e e e 118

932 TYPES . . o i e e e 118

9.4 Procedures and functions Lo 119
9.4.1 GetLanguagelDs L 119

9.4.2 TranslateResourceStrings L. 120

9.4.3 TranslateUnitResourceStrings, 120

9.5 EMOFileError. e 120
9.5.1 Description e e 120

9.6 TMOFile e 120
9.6.1 Description e 120

9.6.2 Methodoverview L 121

9.6.3 TMOFile.Create i 121

9.64 TMOFileDestroy o i e 121

9.6.5 TMOFile.Translate e 121

11

CONTENTS

10 Reference for unit ’idea’ 122
10.1 Usedunitso oo o e e e e 122
10.2 OVeIVIEW . . . o oot s e e e 122
10.3 Constants, types and variables oL oo 122

103.1 Constants e e e e 122
1032 TYPES . v o o e o e e e e e e e 123
10.4 Procedures and functionso 123
10.4.1 Cipherldea 123
1042 DeKeyldea e 123
1043 EnKeyldea e 124
10.5 EIDEAEITOr o e 124
10.5.1 Description oo e 124
10.6 TIDEADeCryptStream o v v v vt e et e e e e e 124
10.6.1 Description o i e e e e 124
10.6.2 Methodoverview e 124
10.6.3 TIDEADeCryptStream.Read 124
10.6.4 TIDEADeCryptStream.Write 125
10.6.5 TIDEADeCryptStream.Seek 125
10.7 TIDEAEncryptStream o ot i it e e e e 125
10.7.1 Descriptiono i i e e 125
10.7.2 Methodoverview L e 126
10.7.3 TIDEAEncryptStream.Destroy v .. 126
10.7.4 TIDEAEncryptStream.Read 126
10.7.5 TIDEAEncryptStream.Write 126
10.7.6 TIDEAEncryptStream.Seek, 127
10.7.7 TIDEAEncryptStream.Flush 127
10.8 TIDEAStream o . o o o 127
10.8.1 Description oot e 127
10.8.2 Method overview e 127
10.8.3 Property OVErview o it e e e e e 127
10.8.4 TIDEAStream.Create v v v v vttt 128
10.8.5 TIDEAStream.Key 128

11 Reference for unit ’inicol’ 129
I1.1 Usedunits o e 129
11.2 Overviewo o e e 129
11.3 Constants, types and variables 129

11.3.1 Constants o v vt e e 129
11.4 EIniCol e 130
11.4.1 Descriptiono vt vt e e e e 130

12

CONTENTS

11.5 TIniCollection o e e 130
11.5.1 Description o v i i et e e e e e 130
11.52 Methodoverview 130
11.5.3 Property OVerview 130
11.5.4 TIniCollection.Load 130
11.5.5 TIniCollection.Save i 131
11.5.6 TIniCollection.SaveTolni 131
11.5.7 TIniCollection.SaveToFile 131
11.5.8 TIniCollection.LoadFromlIni 132
11.5.9 TIniCollection.LoadFromFile 132
11.5.10 TIniCollection.Prefix 132
11.5.11 TIniCollection.SectionPrefix 133
11.5.12 TIniCollection.FileName 133
11.5.13 TIniCollection.GlobalSection 133

11.6 TIniCollectionltem i 133
11.6.1 Description oot e 133
11.6.2 Methodoverview e 134
11.6.3 Property OVEIrvView v v v v it e e e e e e e 134
11.6.4 TIniCollectionltem.SaveTolni 134
11.6.5 TIniCollectionltem.LoadFromIni 134
11.6.6 TIniCollectionltem.SaveToFile 134
11.6.7 TIniCollectionltem.LoadFromFile 135
11.6.8 TIniCollectionltem.SectionName 135

11.7 TNamedIniCollection i 135
11.7.1 Methodoverview 135
11.7.2 Property OVEIrVIEW v v v v v i i e e e e e e e 135
11.7.3 TNamedIniCollection.IndexOfUserData 136
11.7.4 TNamedIniCollection.IndexOfName 136
11.7.5 TNamedIniCollection.FindByName 136
11.7.6 TNamedIniCollection.FindByUserData 136
11.7.7 TNamedIniCollection.NamedItems 136

11.8 TNamedIniCollectionltem 136
11.8.1 Property overview 136
11.8.2 TNamedIniCollectionltem.UserData 136
11.8.3 TNamedIniCollectionltem.Name 136

12 Reference for unit ’iostream’ 137

12,1 Usedunits L o e e e 137

12.2 OVeIVIEW . . . o v o i s e e e e 137

12.3 Constants, types and variables oL 0oL 137

13

CONTENTS

12.3.1 TYPES . o o o v o e 137

12.4 EIOStreamError L 138
12.4.1 Description o v v v e e e e 138

12.5 TIOStream o ot o e e e e e 138
12.5.1 Description o e e e e 138
1252 Methodoverview L 138
12.5.3 TIOStream.Create vt v v vt e e e 138
12.5.4 TIOStream.Read 138
12.5.5 TIOStream.Write e 139
12.5.6 TIOStream.SetSizeo e 139
12.5.7 TIOStream.Seek 139

13 Reference for unit *Pipes’ 140
13.1 Usedunits L oo 140
132 OVerview o o e e e e 140
13.3 Constants, types and variables o o 140
13.3.1 Constants e e e 140

13.4 Procedures and functions Lo 141
13.4.1 CreatePipeHandles 141
13.4.2 CreatePipeStreams e 141

13.5 ENoReadPipe e 141
13.5.1 Description o v vt e e e 141

13.6 ENoWritePipe 141
13.6.1 Description e e e 141

13.7 EPipeCreation 0 0 e e e e e e e e 141
13.7.1 Description o v v vt e e e 141

13.8 EPipeError 142
13.8.1 Description e e 142

13.9 EPipeSeek e e e 142
13.9.1 Description o o vt e e e e 142
13.10TInputPipeStream e e 142
13.10.1 Description 0L e e e e e 142
13.10.2Method overview oL e 142
13.10.3 Property OVeIrview v it i e e e e 142
13.10.4 TInputPipeStream.Write, 142
13.10.5 TInputPipeStream.Seek 142
13.10.6 TInputPipeStream.Read 143
13.10.7 TInputPipeStream.NumBytesAvailable 143
13.11TOutputPipeStream e 143
13111 Description oL e e e e 143

14

CONTENTS

13.11.2Method overview L 144
13.11.3 TOutputPipeStream.Seek 144
13.11.4 TOutputPipeStream.Read 144

14 Reference for unit ’pooledmm’ 145
14.1 Usedunits 0o 145
142 OVErVIEW o o e e e e e e 145
14.3 Constants, types and variables L o o o 145
14.3.1 TYPES . o o o v o e e e e e e e e 145

14.4 TNonFreePooledMemManager i 146
14.4.1 Description v it e 146
1442 Methodoverview L 146
14.4.3 Property OVEIVIEW v v v v v it e e e e e e e 146
14.4.4 TNonFreePooledMemManager.Clear 146
14.4.5 TNonFreePooledMemManager.Create 146
14.4.6 TNonFreePooledMemManager.Destroy 147
14.4.7 TNonFreePooledMemManager.Newltem 147
14.4.8 TNonFreePooledMemManager.Enumerateltems 147
14.4.9 TNonFreePooledMemManager.ItemSize 147

14.5 TPooledMemManager v v v v i it it e 148
14.5.1 Description v i i i e e e e e e 148
1452 Methodoverview e 148
14.5.3 Property OVerview oo e 148
14.5.4 TPooledMemManager.Clear 148
14.5.5 TPooledMemManager.Create 148
14.5.6 TPooledMemManager.Destroy 148
14.5.7 TPooledMemManager.MinimumFreeCount 149
14.5.8 TPooledMemManager.MaximumFreeCountRatio 149
14.5.9 TPooledMemManager.Count, 149
14.5.10 TPooledMemManager.FreeCount 150
14.5.11 TPooledMemManager.AllocatedCount 150
14.5.12 TPooledMemManager.FreedCount 150

15 Reference for unit *process’ 151
15.1 Usedunits o e e 151
15.2 Overview o o e e 151
15.3 Constants, types and variables oL oo 151
153.1 Types . . . o o o e e 151

154 EProcess o v v v v it e e e 153
15.4.1 Description v i i e e e e e e e e 153

155 TProcess . . . v v v v v e e e e 153

CONTENTS

15.5.1 Description e e e e 153
15.52 Methodoverview L 154
15.5.3 Property OVerviewo e e e 154
15.5.4 TProcess.Create o v v i i it e 155
15.5.5 TProcess.Destroy e 155
15.5.6 TProcess.Execute 155
15.5.7 TProcess.Closelnput 156
15.5.8 TProcess.CloseOutput it 156
15.5.9 TProcess.CloseStderr 156
15.5.10 TProcess.Resume 156
15.5.11 TProcess.Suspend 157
15.5.12 TProcess.Terminate i 157
15.5.13 TProcess.WaitOnExit 157
15.5.14 TProcess.WindowRect 158
15.5.15TProcess.Handle, 158
15.5.16 TProcess.ProcessHandle 158
15.5.17 TProcess.ThreadHandle 158
15.5.18 TProcess.ProcessID 159
15.5.19 TProcess.ThreadID 159
15520 TProcess.Input L 159
15.5.21 TProcess.Output o v vt e e 160
15.522TProcess.Stderr o e 160
15.5.23 TProcess.ExitStatus 160
15.5.24 TProcess.InheritHandles 161
15.5.25 TProcess.Active o L 161
15.5.26 TProcess.ApplicationName, 161
15.5.27 TProcess.CommandLine 161
15.5.28 TProcess.ConsoleTitle 162
15.5.29 TProcess.CurrentDirectory 162
15.5.30 TProcess.Desktop o o i e e 162
15.5.31 TProcess.Environment 163
15.5.32 TProcess.Options v it it e 163
15.5.33 TProcess.Priority 164
15.5.34 TProcess.StartupOptions v v v v v v vt e e 164
15.5.35 TProcess.Running 165
15.5.36 TProcess.ShowWindow, 165
15.5.37 TProcess.WindowColumns 166
15.5.38 TProcess.WindowHeight 166
15.5.39 TProcess.WindowLeft 166
15.5.40 TProcess.WindowRows 167

CONTENTS

15.5.41 TProcess.WindowTop 167
15.5.42 TProcess.WindowWidth 167
15.5.43 TProcess.FillAttribute 168

16 Reference for unit ’streamcoll’ 169
16.1 Usedunits oo e 169
16.2 OVEIVIEW o o i e e e e 169
16.3 Procedures and functions Lo oL 169
16.3.1 ColReadBoolean 169
16.3.2 ColReadCurrency o v v v ittt e e 170
16.3.3 ColReadDateTime 170
16.3.4 ColReadFloat 170
16.3.5 ColReadInteger e 170
16.3.6 ColReadString e 171
16.3.7 ColWriteBoolean 171
16.3.8 ColWriteCurrency o v v v v v it e e e e e e e 171
16.3.9 ColWriteDateTime 171
16.3.10 ColWriteFloat 172
16.3.11 ColWritelnteger 172
16.3.12 ColWriteString o e 172

16.4 EStreamColl e 172
16.4.1 Description o v v it e e e 172
16.5 TStweamCollection e 172
16.5.1 Description 0. e e e 172
1652 Methodoverview L 173
16.5.3 Property OVerviewo e e e 173
16.5.4 TStreamCollection.LoadFromStream 173
16.5.5 TStreamCollection.SaveToStream 173
16.5.6 TStreamCollection.Streaming 173
16.6 TStreamCollectionltem 174
16.6.1 Description e 174

17 Reference for unit ’streamex’ 175
17.1 Usedunitso 175
17.2 OVerview o e e 175
17.3 TBidirBinaryObjectReader 175
17.3.1 Description o v vt e e e 175
17.3.2 Property OVerview i i i e e 175
17.3.3 TBidirBinaryObjectReader.Position 175
17.4 TBidirBinaryObjectWriter v i et e e e 176
17.4.1 Description o v v vt e e e e e 176

CONTENTS

17.4.2 Property OVEIrVIEW v v v v it e e e e 176
17.4.3 TBidirBinaryObjectWriter.Position 176
17.5 TDelphiReader 176
17.5.1 Description e e e e 176
1752 Methodoverview L e 176
17.5.3 Property OVEIrVIEW v v v v v i e e e e e e e e e 176
17.5.4 TDelphiReader.GetDriver 177
17.5.5 TDelphiReader.ReadStr 177
17.5.6 TDelphiReaderRead 177
17.5.7 TDelphiReader.Position 177
17.6 TDelphiWriter e 177
17.6.1 Description oo i e e 177
17.6.2 Methodoverview L. e 178
17.6.3 Property OVEIrVIEW o v v vt i e e e e e e e e e 178
17.6.4 TDelphiWriter.GetDriver i 178
17.6.5 TDelphiWriter.FlushBuffer. 178
17.6.6 TDelphiWriter.Write 178
17.6.7 TDelphiWriter.WriteStr e 178
17.6.8 TDelphiWriter.WriteValue 179
17.6.9 TDelphiWriter.Position 179

18 Reference for unit ’StreamIO’ 180
18.1 Usedunits o o 180
182 Overview e 180
18.3 Procedures and functions L e 180
18.3.1 AssignStream e 180
1832 GetStream e e e 181

19 Reference for unit *zstream’ 182
19.1 Usedunits o 182
19.2 Overview e e 182
19.3 Constants, types and variables 182
1931 TYPes . . o v v v 182
19.4 ECompressionError 183
19.4.1 Description oo e e e 183
19.5 EDecompressionError. e e 183
19.5.1 Description v v v it e e e 183
19.6 EZIbError 183
19.6.1 Description e e e 183
19.7 TCompressionStream o v v v v it e e e e e e e e e e 183
19.7.1 Description o v v v e e 183

CONTENTS

19.7.2 Methodoverview L e 183
19.7.3 Property OVEIrVIEW o v v vt e e e e e e e e 184
19.7.4 TCompressionStream.Create 184
19.7.5 TCompressionStream.Destroy 184
19.7.6 TCompressionStream.Read 184
19.7.7 TCompressionStream.Write 185
19.7.8 TCompressionStream.Seek, 185
19.7.9 TCompressionStream.CompressionRate 185
19.7.10 TCompressionStream.OnProgress 185
19.8 TCustomZlibStream e 186
19.8.1 Description o oot e e e 186
19.8.2 Methodoverview 186
19.8.3 TCustomZlibStream.Create 186
19.9 TDecompressionStream v v v v v v v e e e e e e e e e e e 186
19.9.1 Description oot e e 186
19.9.2 Methodoverview 186
19.9.3 Property OVErview o ..o e e e e e 186
19.9.4 TDecompressionStream.Createo v v ... 187
19.9.5 TDecompressionStream.Destroy 187
19.9.6 TDecompressionStream.Read 187
19.9.7 TDecompressionStream.Write 187
19.9.8 TDecompressionStream.Seek, 188
19.9.9 TDecompressionStream.OnProgress 188
19.10TGZFileStream i 188
19.10.1 Description o oo e e e e 188
19.10.2Method overviewo oL e 188
19.10.3 TGZFileStream.Create v v v v v it i e e 189
19.10.4 TGZFileStream.Destroy 189
19.10.5 TGZFileStream.Read 189
19.10.6 TGZFileStream.Write 190
19.10.7 TGZFileStream.Seek 190

19

CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures as they are declared
in the units that come standard with the FCL (Free Component Library).

Throughout this document, we will refer to functions, types and variables with typewriter font.
Functions and procedures gave their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.

0.1 Overview

The Free Component Library is a series of units that implemenent various classes and non-visual
components for use with Free Pascal. They are building blocks for non-visual and visual programs,
such as designed in Lazarus.

The TDataset descendents have been implemented in a way that makes them compatible to the
Delphi implementation of these units. There are other units that have counterparts in Delphi, but
most of them are unique to Free Pascal.

20

Chapter 1

Reference for unit ’base64’

1.1 Used units

Table 1.1: Used units by unit "base64’

Name Page
Classes 7?
sysutils ??

1.2 Overview

base64 implements base64 encoding (as used for instance in MIME encoding) based on streams. it
implements 2 streams which encode or decode anything written or read from it. The source or the des-
tination of the encoded data is another stream. 2 classes are implemented for this: TBase64EncodingStream
(24) for encoding, and TBase64DecodingStream (22) for decoding.

The streams are designed as plug-in streams, which can be placed between other streams, to provide
base64 encoding and decoding on-the-fly...

1.3 Constants, types and variables

1.3.1 Types

TBase64DecodingMode = (bdmStrict, bdmMIME)

Table 1.2: Enumeration values for type TBase64DecodingMode

Value Explanation
bdmMIME MIME encoding
bdmStrict Strict encoding

TBaseb6b4DecodingMode determines the decoding algorithm used by TBase64DecodingStream
(22). There are 2 modes:

21

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

bdmStrict Strict mode, which follows RFC3548 and rejects any characters outside of base64 alpha-
bet. In this mode only up to two ’=’ characters are accepted at the end. It requires the input to
have a Size being a multiple of 4, otherwise an EBase64DecodingException (22) exception is
raised.

bdmMime MIME mode, which follows RFC2045 and ignores any characters outside of base64
alphabet. In this mode any ’=’ is seen as the end of string, it handles apparently truncated input
streams gracefully.

1.4 EBase64DecodingException

1.4.1 Description

EBase64DecodeException is raised when the stream contains errors against the encoding for-
mat. Whether or not this exception is raised depends on the mode in which the stream is decoded.

1.5 TBase64DecodingStream

1.5.1 Description

TBase64DecodingStream can be used to read data from a stream (the source stream) that con-
tains Base64 encoded data. The data is read and decoded on-the-fly.

The decoding stream is read-only, and provides a limited forward-seek capability.

1.5.2 Method overview
Page Property Description

22 Create Create a new instance of the TBase64DecodingStream class
23 Read Read and decrypt data from the source stream

23 Reset Reset the stream

24 Seek Set stream position.

23 Write Write data to the stream

1.5.3 Property overview

Page Property Access Description
24 EOF r
24 Mode w Decoding mode

1.5.4 TBase64DecodingStream.Create

Synopsis: Create a new instance of the TBase64DecodingStream class

Declaration: constructor Create (AInputStream: TStream)
constructor Create (AInputStream: TStream;AMode: TBase64DecodingMode)

Visibility: public

Description: Create creates a new instance of the TBase64DecodingStream class. It stores the source
stream AInput St ream for reading the data from.

The optional AMode parameter determines the mode in which the decoding will be done. If omitted,
bdmMIME is used.

22

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

See also: TBase64EncodingStream.Create (25), TBase64DecodingMode (21)

1.5.5 TBase64DecodingStream.Reset
Synopsis: Reset the stream

Declaration: procedure Reset
Visibility: public
Description: Reset resets the data as if it was again on the start of the decoding stream.
Errors: None.

See also: TBase64DecodingStream.EOF (24), TBase64DecodingStream.Read (23)

1.5.6 TBase64DecodingStream.Read

Synopsis: Read and decrypt data from the source stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read reads encrypted data from the source stream and stores this data in Buf fer. At most Count
bytes will be stored in the buffer, but more bytes will be read from the source stream: the encoding
algorithm multiplies the number of bytes.

The function returns the number of bytes stored in the buffer.
Errors: If an error occurs during the read from the source stream, an exception may occur.

See also: TBase64DecodingStream. Write (23), TBase64DecodingStream.Seek (24), #rtl.classes. TStream.Read
(??)

1.5.7 TBase64DecodingStream.Write
Synopsis: Write data to the stream

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write always raises an ESt reamError exception, because the decoding stream is read-only. To
write to an encrypted stream, use a TBase64EncodingStream (24) instance.

Errors:

See also: TBase64DecodingStream.Read (23), TBase64DecodingStream.Seek (24), TBase64EncodingStream. Write
(25), #rtl.classes. TStream.Write (2?)

23

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

1.5.8 TBase64DecodingStream.Seek

Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seek sets the position of the stream. In the TBase64DecodingStrean class, the seek oper-
ation is forward only, it does not support backward seeks. The forward seek is emulated by reading
and discarding data till the desired position is reached.

For an explanation of the parameters, see TStream.Seek (2?)
Errors: In case of an unsupported operation, an ESt reamError exception is raised.

See also: TBase64DecodingStream.Read (23), TBase64DecodingStream. Write (23), TBase64EncodingStream.Seek
(26), #rtl.classes. TStream.Seek (??)

1.5.9 TBase64DecodingStream.EOF
Synopsis:
Declaration: Property EOF : Boolean
Visibility: public
Access: Read

Description:

1.5.10 TBase64DecodingStream.Mode
Synopsis: Decoding mode
Declaration: Property Mode : TBase64DecodingMode
Visibility: public
Access: Read,Write

Description: Mode is the mode in which the stream is read. It can be set when creating the stream or at any time
afterwards.

See also: TBase64DecodingStream (22)

1.6 TBase64EncodingStream

1.6.1 Description

TBaseb64EncodingStream can be used to encode data using the base64 algorithm. At creation
time, a destination stream is specified. Any data written to the TBase64EncodingStream in-
stance will be base64 encoded, and subsequently written to the destination stream.

The TBase64EncodingStream stream is a write-only stream. Obviously it is also not seekable.
It is meant to be included in a chain of streams.

24

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

1.6.2 Method overview
Page Property Description

25 Create Create a new instance of the TBase64EncodingStreamn class.
25 Destroy Remove a TBase64EncodingStream instannce from memory
25 Read Read data from the stream

26 Seek Position the stream

25 Write Write data to the stream.

1.6.3 TBase64EncodingStream.Create

Synopsis: Create a new instance of the TBase64EncodingStream class.
Declaration: constructor Create (AOutputStream: TStream)
Visibility: public

Description: Create instantiates a new TBase64EncodingStream class. The AOutput St ream stream is
stored and used to write the encoded data to.

See also: TBase64EncodingStream.Destroy (25), TBase64DecodingStream.Create (22)

1.6.4 TBase64EncodingStream.Destroy

Synopsis: Remove a TBase 64EncodingSt ream instannce from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes any remaining output and then removes the TBase64EncodingStream in-
stance from memory by calling the inherited destructor.

Errors: An exception may be raised if the destination stream no longer exists or is closed.

See also: TBase64EncodingStream.Create (25)

1.6.5 TBase64EncodingStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read always raises an exception, because the encoding stream is write-only.

See also: TBase64EncodingStream. Write (25), TBase64EncodingStream.Seek (26), TBase64DecodingStream.Read
(23), #rtl.classes.TStream.Read (2?)

1.6.6 TBase64EncodingStream.Write

Synopsis: Write data to the stream.
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override

Visibility: public

25

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

Description: Write encodes Count bytes from Buffer using the Base64 mechanism, and then writes the
encoded data to the destination stream. It returns the number of bytes from Buffer that were
actually written. Note that this is not the number of bytes written to the destination stream: the
base64 mechanism writes more bytes to the destination stream.

Errors: If there is an error writing to the destination stream, an error may occur.

See also: TBase64EncodingStream.Seek (26), TBase64EncodingStream.Read (25), TBase64DecodingStream. Write
(23), #rtl.classes. T'Stream. Write (2?)

1.6.7 TBase64EncodingStream.Seek
Synopsis: Position the stream

Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: seek always raises an ESt reamError exception unless the arguments it received it don’t change
the current file pointer position. The encryption stream is not seekable.

Errors: An EStreamError error is raised.

See also: TBase64EncodingStream.Read (25), TBase64EncodingStream. Write (25), #rtl.classes. TStream.Seek
??)

26

Chapter 2

Reference for unit ’bufstream’

2.1 Used units

Table 2.1: Used units by unit "bufstream’

Name Page
Classes ??
sysutils ??

2.2 Overview

BufStream implements two one-way buffered streams: the streams store all data from (or for) the
source stream in a memory buffer, and only flush the buffer when it’s full (or refill it when it’s empty).
The buffer size can be specified at creation time. 2 streams are implemented: TReadBufStream (30)
which is for reading only, and TWriteBufStream (31) which is for writing only.

Buffered streams can help in speeding up read or write operations, especially when a lot of small
read/write operations are done: it avoids doing a lot of operating system calls.

2.3 Constants, types and variables

2.3.1 Constants
DefaultBufferCapacity : Integer = 16

If no buffer size is specified when the stream is created, then this size is used.

2.4 TBufStream
2.4.1 Description

TBufStream is the common ancestor for the TReadBufStream (30) and TWriteBufStream (31)
streams. It completely handles the buffer memory management and position management. An in-

27

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

stance of TBufStream should never be created directly. It also keeps the instance of the source
stream.

2.4.2 Method overview

Page Property Description
28 Create Create a new TBuf St ream instance.
28 Destroy Destroys the TBuf St ream instance

2.4.3 Property overview
Page Property Access Description

28 Buffer r The current buffer

29 BufferPos r Current buffer position.

29 BufferSize r Amount of data in the buffer
29 Capacity w Current buffer capacity

2.4.4 TBufStream.Create

Synopsis: Create a new TBuf St ream instance.

Declaration: constructor Create (ASource: TStream;ACapacity: Integer)
constructor Create (ASource: TStream)

Visibility: public
Description: Create creates a new TBufStream instance. A buffer of size ACapacity is allocated, and the
ASource source (or destination) stream is stored. If no capacity is specified, then DefaultBufferCa-
pacity (27) is used as the capacity.

An instance of TBuf St ream should never be instantiated directly. Instead, an instance of TRead-
BufStream (30) or TWriteBufStream (31) should be created.

Errors: If not enough memory is available for the buffer, then an exception may be raised.

See also: TBufStream.Destroy (28), TReadBufStream (30), TWriteBufStream (31)

2.4.5 TBufStream.Destroy

Synopsis: Destroys the TBuf St ream instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy destroys the instance of TBufStream. It flushes the buffer, deallocates it, and then
destroys the TBuf St ream instance.

See also: TBufStream.Create (28), TReadBufStream (30), TWriteBufStream (31)

2.4.6 TBufStream.Buffer
Synopsis: The current buffer

Declaration: Property Buffer : Pointer

28

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

Visibility: public
Access: Read
Description: Buf fer is a pointer to the actual buffer in use.

See also: TBufStream.Create (28), TBufStream.Capacity (29), TBufStream.BufferSize (29)

2.4.7 TBufStream.Capacity

Synopsis: Current buffer capacity
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the amount of memory the buffer occupies. To change the buffer size, the capacity
can be set. Note that the capacity cannot be set to a value that is less than the current buffer size, i.e.
the current amount of data in the buffer.

See also: TBufStream.Create (28), TBufStream.Buffer (28), TBufStream.BufferSize (29), TBufStream.BufferPos
(29)

2.4.8 TBufStream.BufferPos
Synopsis: Current buffer position.

Declaration: Property BufferPos : Integer
Visibility: public
Access: Read

Description: BufPos is the current stream position in the buffer. Depending on whether the stream is used for
reading or writing, data will be read from this position, or will be written at this position in the buffer.

See also: TBufStream.Create (28), TBufStream.Buffer (28), TBufStream.BufferSize (29), TBufStream.Capacity
(29

2.4.9 TBufStream.BufferSize

Synopsis: Amount of data in the buffer
Declaration: Property BufferSize : Integer
Visibility: public
Access: Read

Description: BufferSize is the actual amount of data in the buffer. This is always less than or equal to the
Capacity (29).

See also: TBufStream.Create (28), TBufStream.Buffer (28), TBufStream.BufferPos (29), TBufStream.Capacity
(29)

29

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

2.5 TReadBufStream

2.5.1 Description

TReadBufStream is a read-only buffered stream. It implements the needed methods to read data
from the buffer and fill the buffer with additional data when needed.

The stream provides limited forward-seek possibilities.

2.5.2 Method overview
Page Property Description

30 Read Reads data from the stream
30 Seek Set location in the buffer
30 Write Writes data to the stream

2.5.3 TReadBufStream.Seek
Synopsis: Set location in the buffer
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: seek sets the location in the buffer. Currently, only a forward seek is allowed. It is emulated by
reading and discarding data. For an explanation of the parameters, see TStream.Seek" (??)

The seek method needs enhancement to enable it to do a full-featured seek. This may be implemented
in a future release of Free Pascal.

Errors: In case an illegal seek operation is attempted, an exception is raised.

See also: TWriteBufStream.Seek (31), TReadBufStream.Read (30), TReadBufStream. Write (30)

2.5.4 TReadBufStream.Read
Synopsis: Reads data from the stream
Declaration: function Read(var ABuffer;ACount: LongInt) : Integer; Override
Visibility: public
Description: Read reads at most ACount bytes from the stream and places them in Buf fer. The number of

actually read bytes is returned.

TReadBufStream first reads whatever data is still available in the buffer, and then refills the buffer,
after which it continues to read data from the buffer. This is repeated untill ACount bytes are read,

or no more data is available.

See also: TReadBufStream.Seek (30), TReadBufStream.Read (30)

2.5.5 TReadBufStream.Write
Synopsis: Writes data to the stream

Declaration: function Write (const ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

30

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

Description: Write always raises an EStreamError exception, because the stream is read-only. A TWrite-
BufStream (31) write stream must be used to write data in a buffered way.

See also: TReadBufStream.Seek (30), TReadBufStream.Read (30)

2.6 TWriteBufStream

2.6.1 Description

TWriteBufStream is a write-only buffered stream. It implements the needed methods to write
data to the buffer and flush the buffer (i.e., write its contents to the source stream) when needed.

2.6.2 Method overview
Page Property Description

31 Destroy Remove the TWriteBufStream instance from memory
32 Read Read data from the stream

31 Seek Set stream position.

32 Write Write data to the stream

2.6.3 TWriteBufStream.Destroy

Synopsis: Remove the TWriteBufStream instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy flushes the buffer and then calls the inherited Destroy (28).
Errors: If an error occurs during flushing of the buffer, an exception may be raised.

See also: TBufStream.Create (28), TBufStream.Destroy (28)

2.6.4 TWriteBufStream.Seek

Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek always raises an ESt reamError exception, except when the seek operation would not alter
the current position.

A later implementation may perform a proper seek operation by flushing the buffer and doing a seek
on the source stream.

Errors:

See also: TWriteBufStream. Write (32), TWriteBufStream.Read (32), TReadBufStream.Seek (30)

31

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

2.6.5 TWriteBufStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

Description: Read always raises an ESt reamError exception since TWriteBufStream is write-only. To
read data in a buffered way, TReadBufStream (30) should be used.

See also: TWriteBufStream.Seek (31), TWriteBufStream. Write (32), TReadBufStream.Read (30)

2.6.6 TWriteBufStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

Description: Write writes at most ACount bytes from ABuffer to the stream. The data is written to the
internal buffer first. As soon as the internal buffer is full, it is flushed to the destination stream, and
the internal buffer is filled again. This process continues till all data is written (or an error occurs).

Errors: An exception may occur if the destination stream has problems writing.

See also: TWriteBufStream.Seek (31), TWriteBufStream.Read (32), TReadBufStream. Write (30)

32

Chapter 3

Reference for unit ’CacheCls’

3.1 Used units

Table 3.1: Used units by unit ’CacheCls’

Name Page
sysutils 7

3.2 Overview

The CacheCls unit implements a caching class: similar to a hash class, it can be used to cache data,
associated with string values (keys). The class is calles TCache

3.3 Constants, types and variables

3.3.1 Resource strings

SInvalidIndex = ’"Invalid index %i’

Message shown when an invalid index is passed.

3.3.2 Types

PCacheSlot = "TCacheSlot

Pointer to TCacheSlot (34) record.
PCacheSlotArray = “TCacheSlotArray
Pointer to TCacheSlotArray (34) array

TCacheSlot = record

33

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

Prev : PCacheSlot;
Next : PCacheSlot;

Data : Pointer;
Index : Integer;
end

TCacheSlot is internally used by the TCache (34) class. It represents 1 element in the linked list.
TCacheSlotArray = Array[0..MaxIntdivSizeOf (TCacheSlot)-1] of TCacheSlot

TCacheSlotArray is an array of TCacheSlot items. Do not use TCacheSlotArray di-
rectly, instead, use PCacheSlotArray (33) and allocate memory dynamically.

TOnFreeSlot = procedure (ACache: TCache;SlotIndex: Integer) of object
TOnFreeSlot is a callback prototype used when not enough slots are free, and a slot must be freed.

TOnIsDatakEqual = function (ACache: TCache;ADatal: Pointer;
AData2: Pointer) : Boolean of object

TOnIsDataEqual is a callback prototype; It is used by the TCache.Add (35) call to determine
whether the item to be added is a new item or not. The function returns True if the 2 data pointers
ADatal and AData2 should be considered equal, or False when they are not.

For most purposes, comparing the pointers will be enough, but if the pointers are ansistrings, then
the contents should be compared.

3.4 ECacheError

3.4.1 Description

Exception class used in the cachecls unit.

3.5 TCache

3.5.1 Description

TCache implements a cache class: it is a list-like class, but which uses a counting mechanism,
and keeps a Most-Recent-Used list; this list represents the cache’. The list is internally kept as a
doubly-linked list.

The Data (37) property offers indexed access to the array of items. When accessing the array through
this property, the MRUSIot (37) property is updated.

34

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

3.5.2 Method overview
Page Property Description

35 Add Add a data element to the list.

36 AddNew Add a new item to the list.

35 Create Create a new cache class.

35 Destroy Free the TCache class from memory

36 FindSlot Find data pointer in the list
36 IndexOf Return index of a data pointer in the list.
37 Remove Remove a data item from the list.

3.5.3 Property overview

Page Property Access Description

37 Data ™w Indexed access to data items

38 LRUSIot r Last used item

37 MRUSIot w Most recent item slot.

39 OnFreeSlot w Event called when a slot is freed
38 OnlsDataEqual rw Event to compare 2 items.

38 SlotCount ™w Number of slots in the list

38 Slots r Indexed array to the slots

3.5.4 TCache.Create

Synopsis: Create a new cache class.
Declaration: constructor Create (ASlotCount: Integer)
Visibility: public

Description: Create instantiates a new instance of TCache. It allocates room for AS1otCount entries in the
list. The number of slots can be increased later.

See also: TCache.SlotCount (38)

3.5.5 TCache.Destroy

Synopsis: Free the TCache class from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up the array for the elements, and calls the inherited Destroy. The elements in
the array are not freed by this action.

See also: TCache.Create (35)

3.5.6 TCache.Add
Synopsis: Add a data element to the list.

Declaration: function Add(AData: Pointer) : Integer

Visibility: public

35

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

Description: Add checks whether ADat a is already in the list. If so, the item is added to the top of the MRU list.
If the item is not yet in the list, then the item is added to the list and placed at the top of the MRU list
using the AddNew (36) call.

The function returns the index at which the item was added.

If the maximum number of slots is reached, and a new item is being added, the least used item is
dropped from the list.

See also: TCache.AddNew (36), TCache.FindSlot (36), TCache.IndexOf (36), TCache.Data (37), TCache. MRUSlot
(37)

3.5.7 TCache.AddNew
Synopsis: Add a new item to the list.

Declaration: function AddNew (AData: Pointer) : Integer
Visibility: public

Description: AddNew adds a new item to the list: in difference with the Add (35) call, no checking is performed
to see whether the item is already in the list.

The function returns the index at which the item was added.

If the maximum number of slots is reached, and a new item is being added, the least used item is
dropped from the list.

See also: TCache.Add (35), TCache.FindSlot (36), TCache.IndexOf (36), TCache.Data (37), TCache. MRUSlot
(37)

3.5.8 TCache.FindSlot

Synopsis: Find data pointer in the list
Declaration: function FindSlot (AData: Pointer) : PCacheSlot
Visibility: public

Description: FindSlot checks all items in the list, and returns the slot which contains a data pointer that
matches the pointer AData.

If no item with data pointer that matches AData is found, Nil is returned.

For this function to work correctly, the OnlsDataEqual (38) event must be set.
Errors: If OnIsDataEqual is not set, an exception wil be raised.

See also: TCache.IndexOf (36), TCache.Add (35), TCache.OnlsDataEqual (38)

3.5.9 TCache.IndexOf

Synopsis: Return index of a data pointer in the list.
Declaration: function IndexOf (AData: Pointer) : Integer

Visibility: public

36

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

Description: IndexOF searches in the list for a slot with data pointer that matches ADat a and returns the index
of the slot.

If no item with data pointer that matches AData is found, -1 is returned.

For this function to work correctly, the OnIsDataEqual (38) event must be set.
Errors: If OnIsDataEqual is not set, an exception wil be raised.

See also: TCache.FindSlot (36), TCache.Add (35), TCache.OnlsDataEqual (38)

3.5.10 TCache.Remove

Synopsis: Remove a data item from the list.
Declaration: procedure Remove (AData: Pointer)
Visibility: public

Description: Remove searches the slot which matches AData and if it is found, sets the data pointer to Nil,
thus effectively removing the pointer from the list.

Errors: None.

See also: TCache.FindSlot (36)

3.5.11 TCache.Data

Synopsis: Indexed access to data items
Declaration: Property Data[SlotIndex: Integer]: Pointer
Visibility: public
Access: Read,Write

Description: Data offers index-based access to the data pointers in the cache. By accessing an item in the list
in this manner, the item is moved to the front of the MRU list, i.e. MRUSlot (37) will point to the
accessed item. The access is both read and write.

The index is zero-based and can maximally be SlotCount-1 (38). Providing an invalid index will
result in an exception.

See also: TCache.MRUSlIot (37)

3.5.12 TCache.MRUSIot

Synopsis: Most recent item slot.
Declaration: Property MRUSlot : PCacheSlot
Visibility: public
Access: Read,Write

Description: MRUS1ot points to the most recent used slot. The most recent used slot is updated when the list
is accessed through the Data (37) property, or when an item is added to the list with Add (35) or
AddNew (36)

See also: TCache.Add (35), TCache.AddNew (36), TCache.Data (37), TCache.LRUSIot (38)

37

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

3.5.13 TCache.LRUSIot

Synopsis: Last used item
Declaration: Property LRUSlot : PCacheSlot
Visibility: public
Access: Read
Description: LRUS 1ot points to the least recent used slot. It is the last item in the chain of slots.

See also: TCache.Add (35), TCache.AddNew (36), TCache.Data (37), TCache. MRUSIot (37)

3.5.14 TCache.SlotCount

Synopsis: Number of slots in the list
Declaration: Property SlotCount : Integer
Visibility: public
Access: Read,Write

Description: SlotCount is the number of slots in the list. Its initial value is set when the TCache instance is
created, but this can be changed at any time. If items are added to the list and the list is full, then

the number of slots is not increased, but the least used item is dropped from the list. In that case
OnFreeSlot (39) is called.

See also: TCache.Create (35), TCache.Data (37), TCache.Slots (38)

3.5.15 TCache.Slots
Synopsis: Indexed array to the slots

Declaration: Property Slots[SlotIndex: Integer]: PCacheSlot
Visibility: public
Access: Read

Description: S1lots provides index-based access to the TCacheSlot records in the list. Accessing the records
directly does not change their position in the MRU list.

The index is zero-based and can maximally be SlotCount-1 (38). Providing an invalid index will
result in an exception.

See also: TCache.Data (37), TCache.SlotCount (38)

3.5.16 TCache.OnisDataEqual

Synopsis: Event to compare 2 items.
Declaration: Property OnIsDataEqual : TOnIsDataEqual
Visibility: public

Access: Read,Write

38

CHAPTER 3. REFERENCE FOR UNIT "CACHECLS’

Description: OnIsDataEqual is used by FindSlot (36) and IndexOf (36) to compare items when looking for
a particular item. These functions are called by the Add (35) method. Failing to set this event will
result in an exception. The function should return True if the 2 data pointers should be considered
equal.

See also: TCache.FindSlot (36), TCache.IndexOf (36), TCache.Add (35)

3.5.17 TCache.OnFreeSlot

Synopsis: Event called when a slot is freed
Declaration: Property OnFreeSlot : TOnFreeSlot
Visibility: public
Access: Read,Write

Description: OnFreeSlot is called when an item needs to be freed, i.e. when a new item is added to a full list,
and the least recent used item needs to be dropped from the list.

The cache class instance and the index of the item to be removed are passed to the callback.

See also: TCache.Add (35), TCache.AddNew (36), TCache.SlotCount (38)

39

Chapter 4

Reference for unit ’contnrs’

4.1 Used units

Table 4.1: Used units by unit ’contnrs’

Name Page
Classes 2?
sysutils 7?

4.2 Overview
The contnrs implements various general-purpose classes:

Stacks Stack classes to push/pop pointers or objects

Object lists lists that manage objects instead of pointers, and which automatically dispose of the
objects.

Component lists lists that manage components instead of pointers, and which automatically dispose
the components.

Class lists lists that manage class pointers instead of pointers.
Stacks Stack classes to push/pop pointers or objects
Queues Classes to manage a FIFO list of pointers or objects

Hash lists General-purpose Hash lists.

4.3 Constants, types and variables

4.3.1 Constants
MaxHashListSize = Maxint div 16

40

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

MaxHashListSize is the maximum number of elements a hash list can contain.
MaxHashStrSize = Maxint

MaxHashStrSize is the maximum amount of data for the key string values. The key strings are
kept in a continuous memory area. This constant determines the maximum size of this memory area.

MaxHashTableSize = Maxint div 4
MaxHashTableSize is the maximum number of elements in the hash.
MaxItemsPerHash = 3

MaxItemsPerHash is the threshold above which the hash is expanded. If the number of elements
in a hash bucket becomes larger than this value, the hash size is increased.

4.3.2 Types

PHashItem = "THashItem
PHashItemis a pointer type, pointing to the THashltem (42) record.
PHashItemList = "“THashItemList

PHashItemList is a pointer to the THashltemList (42). It’s used in the TFPHashList (55) as a
pointer to the memory area containing the hash item records.

PHashTable = “THashTable

PHashTable is a pointer to the THashTable (42). It’s used in the TFPHashList (55) as a pointer to
the memory area containing the hash values.

TDatalteratorMethod = procedure (Item: Pointer;const Key: String;
var Continue: Boolean) of object

TDatalIteratorMethod is a callback prototype for the TDataHashTable.Iterate (40) method. It
is called for each data pointer in the hash list, passing the key (key) and data pointer (item) for
each item in the list. If Continue is set to false, the iteration stops.

THashFunction = function(const S: String;const TableSize: LongWord)
LongWord

THashFunction is the prototype for a hash calculation function. It should calculate a hash of
string S, where the hash table size is TableSize. The return value should be the hash value.

THashItem = record
HashValue : LongWord;
StrIndex : Integer;

NextIndex : Integer;
Data : Pointer;
end

41

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

THashItemis used internally in the hash list. It should never be used directly.
THashItemList = Array[0..MaxHashListSize-1] of THashItem

THashItemList is an array type, primarily used to be able to define the PHashltemList (41) type.
It’s used in the TFPHashList (55) class.

THashTable = Array[0..MaxHashTableSize-1] of Integer

THashTable defines an array of integers, used to hold hash values. It’s mainly used to define the
PHashTable (41) class.

THTCustomNodeClass = Class of THTCustomNode

THTCustomNodeClass is used by THTCustomHashTable (40) to decide which class should be
created for elements in the list.

THTNode = THTDataNode

THTNode is provided for backwards compatibility.
TIteratorMethod = TDatalteratorMethod
TIteratorMethod is used in an internal TFPHashTable (40) method.

TObjectIteratorMethod = procedure (Item: TObject;const Key: String;
var Continue: Boolean) of object

TObJjectIteratorMethod is the iterator callback prototype. It is used to iterate over all items in
the hash table, and is called with each key value (Key) and associated object (Item). If Continue

is set to false, the iteration stops.

TObjectListCallback = procedure (data: TObject;arg: pointer) of object
TObjectListCallback is used as the prototype for the TFPObjectList.ForEachCall (79) link
call when a method should be called. The Dat a argument will contain each of the objects in the list

in turn, and the Dat a argument will contain the data passed to the ForEachCall call.
TObjectListStaticCallback = procedure (data: TObject;arg: pointer)
TObjectListCallback is used as the prototype for the TFPObjectList.ForEachCall (79) link
call when a plain procedure should be called. The Data argument will contain each of the objects

in the list in turn, and the Dat a argument will contain the data passed to the ForEachCall call.

TStringIteratorMethod = procedure (Item: String;const Key: String;
var Continue: Boolean) of object

TStringIteratorMethod is the callback prototype for the Iterate (49) method. It is called for
each element in the hash table, with the string. If Cont inue is set to false, the iteration stops.

42

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.4 Procedures and functions

4.4.1 RSHash

Synopsis: Standard hash value calculating function.
Declaration: function RSHash (const S: String;const TableSize: LongWord) : LongWord
Visibility: default

Description: RSHash is the standard hash calculating function used in the TFPCustomHashTable (49) hash class.
It’s Robert Sedgwick’s "Algorithms in C" hash function.

Errors: None.

See also: TFPCustomHashTable (49)

4.5 EDuplicate

4.5.1 Description

Exception raised when a key is stored twice in a hash table.

4.6 EKeyNotFound

4.6.1 Description

Exception raised when a key is not found.

4.7 TClassList

4.7.1 Description

TClassList is a Tlist (??) descendent which stores class references instead of pointers. It intro-
duces no new behaviour other than ensuring all stored pointers are class pointers.

The OwnsObjects property as found in TComponentList and TObjectList is not imple-
mented as there are no actual instances.

4.7.2 Method overview
Page Property Description

44 Add Add a new class pointer to the list.
44 Extract Extract a class pointer from the list.
45 First Return first non-nil class pointer

45 IndexOf Search for a class pointer in the list.
45 Insert Insert a new class pointer in the list.
45 Last Return last non-Nil class pointer
44 Remove Remove a class pointer from the list.

43

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.7.3 Property overview

Page Property Access Description
46 Items w Index based access to class pointers.

4.7.4 TClassList.Add
Synopsis: Add a new class pointer to the list.

Declaration: function Add(AClass: TClass) : Integer
Visibility: public

Description: 2dd adds AClass to the list, and returns the position at which it was added. It simply overrides the
TList (??) bevahiour, and introduces no new functionality.

Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TClassList.Extract (44), #rtl.classes.tlist.add (??)

4.7.5 TClassList.Extract

Synopsis: Extract a class pointer from the list.
Declaration: function Extract (Item: TClass) : TClass
Visibility: public

Description: Extract extracts a class pointer Item from the list, if it is present in the list. It returns the
extracted class pointer, or Nil if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Remove (44), #rtl.classes. Tlist.Extract (2?)

4.7.6 TClassList.Remove

Synopsis: Remove a class pointer from the list.
Declaration: function Remove (AClass: TClass) : Integer
Visibility: public

Description: Remove removes a class pointer Item from the list, if it is present in the list. It returns the index of
the removed class pointer, or —1 if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Extract (44), #rtl.classes.Tlist.Remove (2?)

44

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.7.7 TClassList.IndexOf

Synopsis: Search for a class pointer in the list.
Declaration: function IndexOf (AClass: TClass) : Integer
Visibility: public

Description: IndexOf searches for AClass in the list, and returns it’s position if it was found, or -1 if it was
not found in the list.

Errors: None.

See also: #rtl.classes.tlist.indexof (??)

4.7.8 TClassList.First
Synopsis: Return first non-nil class pointer

Declaration: function First : TClass
Visibility: public

Description: First returns a reference to the first non-Ni1l class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.Last (45), TClassList.Pack (43)

4.7.9 TClassList.Last

Synopsis: Return last non-N11 class pointer
Declaration: function Last : TClass
Visibility: public

Description: Last returns a reference to the last non-Ni1 class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.First (45), TClassList.Pack (43)

4.7.10 TClassList.Insert

Synopsis: Insert a new class pointer in the list.
Declaration: procedure Insert (Index: Integer;AClass: TClass)
Visibility: public

Description: Insert inserts a class pointer in the list at position Index. It simply overrides the parent imple-
mentation so it only accepts class pointers. It introduces no new behaviour.

Errors: None.

See also: #rtl.classes. TList.Insert (??), TClassList.Add (44), TClassList.Remove (44)

45

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.7.11 TClassList.ltems

Synopsis: Index based access to class pointers.
Declaration: Property Items[Index: Integer]: TClass; default
Visibility: public
Access: Read,Write

Description: Items provides index-based access to the class pointers in the list. TClassList overrides the
default Tt ems implementation of TList so it returns class pointers instead of pointers.

See also: #rtl.classes. TList.Items (??), #rtl.classes. TList.Count (??)

4.8 TComponentList

4.8.1 Description

TComponentList is a TObjectList (85) descendent which has as the default array property TCom-
ponents (??) instead of objects. It overrides some methods so only components can be added.

In difference with TObjectList (85), TComponentList removes any TComponent from the list
if the TComponent instance was freed externally. It uses the FreeNotification mechanism
for this.

4.8.2 Method overview
Page Property Description

47 Add Add a component to the list.

46 Destroy Destroys the instance

47 Extract ~ Remove a component from the list without destroying it.
48 First First non-nil instance in the list.

47 IndexOf Search for an instance in the list

48 Insert Insert a new component in the list

48 Last Last non-nil instance in the list.

47 Remove Remove a component from the list, possibly destroying it.

4.8.3 Property overview

Page Property Access Description
49 Items ™w Index-based access to the elements in the list.

4.8.4 TComponentList.Destroy
Synopsis: Destroys the instance

Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy unhooks the free notification handler and then calls the inherited destroy to clean up the
TComponentList instance.

Errors: None.

See also: TObjectList (85), #rtl.classes. TComponent (??)

46

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.8.5 TComponentList.Add

Synopsis: Add a component to the list.
Declaration: function Add (AComponent: TComponent) : Integer
Visibility: public

Description: Add overrides the Add operation of it’s ancestors, so it only accepts TComponent instances. It
introduces no new behaviour.

The function returns the index at which the component was added.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TObectList.Add (40)

4.8.6 TComponentList.Extract

Synopsis: Remove a component from the list without destroying it.
Declaration: function Extract (Item: TComponent) : TComponent
Visibility: public

Description: Ext ract removes a component (Item) from the list, without destroying it. It overrides the imple-
mentation of TObjectList (85) so only TComponent descendents can be extracted. It introduces no
new behaviour.

Extract returns the instance that was extracted, or Ni1 if no instance was found.

See also: TComponentList.Remove (47), TObjectList.Extract (86)

4.8.7 TComponentList.Remove

Synopsis: Remove a component from the list, possibly destroying it.
Declaration: function Remove (AComponent: TComponent) : Integer
Visibility: public

Description: Remove removes i tem from the list, and if the list owns it’s items, it also destroys it. It returns the
index of the item that was removed, or -1 if no item was removed.

Remove simply overrides the implementation in TObjectList (85) so it only accepts TComponent
descendents. It introduces no new behaviour.

Errors: None.

See also: TComponentList.Extract (47), TObjectList.Remove (86)

4.8.8 TComponentList.IndexOf

Synopsis: Search for an instance in the list
Declaration: function IndexOf (AComponent: TComponent) : Integer

Visibility: public

47

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Description: IndexOf searches for an instance in the list and returns it’s position in the list. The position is
zero-based. If no instance is found, -1 is returned.

IndexOf just overrides the implementation of the parent class so it accepts only TComponent
instances. It introduces no new behaviour.

Errors: None.

See also: TObjectList.IndexOf (87)

4.8.9 TComponentList.First

Synopsis: First non-nil instance in the list.
Declaration: function First : TComponent
Visibility: public

Description: First overrides the implementation of it’s ancestors to return the first non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.Last (48), TObjectList.First (87)

4.8.10 TComponentList.Last

Synopsis: Last non-nil instance in the list.
Declaration: function Last : TComponent
Visibility: public

Description: Last overrides the implementation of it’s ancestors to return the last non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.First (48), TObjectList.Last (88)

4.8.11 TComponentList.Insert

Synopsis: Insert a new component in the list
Declaration: procedure Insert (Index: Integer;AComponent: TComponent)
Visibility: public

Description: Insert inserts a TComponent instance (AComponent) in the list at position Index. It simply
overrides the parent implementation so it only accepts TComponent instances. It introduces no new
behaviour.

Errors: None.

See also: TObjectList.Insert (87), TComponentList.Add (47), TComponentList.Remove (47)

48

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.8.12 TComponentList.ltems

Synopsis: Index-based access to the elements in the list.

Declaration: Property Items[Index:

Visibility: public

Access: Read,Write

Integer]:

TComponent; default

Description: Items provides access to the components in the list using an index. It simply overrides the default
property of the parent classes so it returns/accepts TComponent instances only. Note that the index
is zero based.

See also: TObjectList.Items (88)

4.9 TFPCustomHashTable

4.9.1

Description

TFPCustomHashTable is a general-purpose hashing class. It can store string keys and pointers
associated with these strings. The hash mechanism is configurable and can be optionally be specified
when a new instance of the class is created; A default hash mechanism is implemented in RSHash

(43).

A TFPHasList should be used when fast lookup of data based on some key is required. The other
container objects only offer linear search methods, while the hash list offers faster search mecha-

nisms.
4.9.2 Method overview
Page Property Description
50 ChangeTableSize Change the table size of the hash table.
51 Clear Clear the hash table.
50 Create Instantiate a new TFPCustomHashTable instance using the de-
fault hash mechanism
50 CreateWith Instantiate a new TFPCustomHashTable instance with given al-
gorithm and size
51 Delete Delete a key from the hash list.
50 Destroy Free the hash table.
51 Find Search for an item with a certain key value.
51 IsEmpty Check if the hash table is empty.
4.9.3 Property overview
Page Property Access Description
53 AVGChainLen r Average chain length
52 Count r Number of items in the hash table.
54 Density r Number of filled slots
52 HashFunction w Hash function currently in use
52 HashTable r Hash table instance
52 HashTableSize W Size of the hash table
53 LoadFactor r Fraction of count versus size
53 MaxChainLength r Maximum chain length
54 NumberOfCollisions r Number of extra items
53 VoidSlots r Number of empty slots in the hash table.

49

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.9.4 TFPCustomHashTable.Create

Synopsis: Instantiate a new TFPCustomHashTable instance using the default hash mechanism
Declaration: constructor Create
Visibility: public

Description: Create creates a new instance of TFPCustomHashTable with hash size 196613 and hash al-
gorithm RSHash (43)

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable.Create With (50)

4.9.5 TFPCustomHashTable.CreateWith

Synopsis: Instantiate a new TFPCustomHashTable instance with given algorithm and size

Declaration: constructor CreateWith (AHashTableSize: LongWord;
aHashFunc: THashFunction)

Visibility: public

Description: CreateWith creates a new instance of TFPCustomHashTable with hash size AHashTableSize
and hash calculating algorithm aHashFunc.

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable.Create (50)

4.9.6 TFPCustomHashTable.Destroy
Synopsis: Free the hash table.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy removes the hash table from memory. If any data was associated with the keys in the
hash table, then this data is not freed. This must be done by the programmer.

Errors: None.

See also: TFPCustomHashTable.Destroy (50), TFPCustomHashTable.Create (50), TFPCustomHashTable.CreateWith
(50), THTCustomNode.Data (82)

4.9.7 TFPCustomHashTable.ChangeTableSize
Synopsis: Change the table size of the hash table.

Declaration: procedure ChangeTableSize (const ANewSize: LongWord); Virtual
Visibility: public

Description: ChangeTableSize changes the size of the hash table: it recomputes the hash value for all of the
keys in the table, so this is an expensive operation.

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable. HashTableSize (52)

50

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.9.8 TFPCustomHashTable.Clear
Synopsis: Clear the hash table.
Declaration: procedure Clear; Virtual
Visibility: public
Description: Clear removes all keys and their associated data from the hash table. The data itself is not freed
from memory, this should be done by the programmer.

Errors: None.

See also: TFPCustomHashTable.Destroy (50)

4.9.9 TFPCustomHashTable.Delete
Synopsis: Delete a key from the hash list.
Declaration: procedure Delete (const aKey: String); Virtual
Visibility: public
Description: Delete deletes all keys with value AKey from the hash table. It does not free the data associated
with key. If AKey is not in the list, nothing is removed.

Errors: None.

See also: TFPCustomHashTable.Find (51), TFPCustomHashTable.Add (49)

4.9.10 TFPCustomHashTable.Find
Synopsis: Search for an item with a certain key value.
Declaration: function Find(const aKey: String) : THTCustomNode
Visibility: public
Description: Find searches for the THTCustomNode (82) instance with key value equal to Akey and if it finds
it, it returns the instance. If no matching value is found, Ni1 is returned.

Note that the instance returned by this function cannot be freed; If it should be removed from the
hash table, the Delete (51) method should be used instead.

Errors: None.

See also: TFPCustomHashTable.Add (49), TFPCustomHashTable.Delete (51)

4.9.11 TFPCustomHashTable.IsEmpty
Synopsis: Check if the hash table is empty.
Declaration: function IsEmpty : Boolean
Visibility: public

Description: IsEmpty returns True if the hash table contains no elements, or Fal se if there are still elements
in the hash table.

Errors:

See also: TFPCustomHashTable.Count (52), TFPCustomHashTable.HashTableSize (52), TFPCustomHashTable. AVGChainLen
(53), TFPCustomHashTable.MaxChainLength (53)

51

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.9.12 TFPCustomHashTable.HashFunction

Synopsis: Hash function currently in use
Declaration: Property HashFunction : THashFunction
Visibility: public
Access: Read,Write

Description: HashFunction is the hash function currently in use to calculate hash values from keys. The
property can be set, this simply calls SetHashFunction (49). Note that setting the hash function does
NOT the hash value of all keys to be recomputed, so changing the value while there are still keys in
the table is not a good idea.

See also: TFPCustomHashTable.SetHashFunction (49), TFPCustomHashTable.HashTableSize (52)

4.9.13 TFPCustomHashTable.Count
Synopsis: Number of items in the hash table.

Declaration: Property Count : LongWord
Visibility: public
Access: Read
Description: Count is the number of items in the hash table.

See also: TFPCustomHashTable.ISEmpty (51), TFPCustomHashTable.HashTableSize (52), TFPCustomHashTable. AVGChainLen
(53), TFPCustomHashTable.MaxChainLength (53)

4.9.14 TFPCustomHashTable.HashTableSize
Synopsis: Size of the hash table
Declaration: Property HashTableSize : LongWord
Visibility: public
Access: Read,Write

Description: HashTableSize is the size of the hash table. It can be set, in which case it will be rounded to the
nearest prime number suitable for RSHash.

See also: TFPCustomHashTable. ISEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable. AVGChainLen
(53), TFPCustomHashTable.MaxChainLength (53), TFPCustomHashTable.VoidSlots (53), TFPCus-
tomHashTable.Density (54)

4.9.15 TFPCustomHashTable.HashTable

Synopsis: Hash table instance
Declaration: Property HashTable : TFPObjectList
Visibility: public
Access: Read

Description: TFPCustomHashTable is the internal list object (TFPODbjectList (73) used for the hash table.
Each element in this table is again a TFPObjectList (73) instance or Nil.

52

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.9.16 TFPCustomHashTable.VoidSlots

Synopsis: Number of empty slots in the hash table.
Declaration: Property VoidSlots : LongWord
Visibility: public
Access: Read

Description: VoidSlots is the number of empty slots in the hash table. Calculating this is an expensive opera-
tion.

See also: TFPCustomHashTable.IsEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable. AVGChainLen
(53), TFPCustomHashTable.MaxChainLength (53), TFPCustomHashTable.L.oadFactor (53), TFP-
CustomHashTable.Density (54), TFPCustomHashTable.NumberOfCollisions (54)

4.9.17 TFPCustomHashTable.LoadFactor

Synopsis: Fraction of count versus size
Declaration: Property LoadFactor : double
Visibility: public
Access: Read

Description: LoadFactor is the ratio of elements in the table versus table size. Ideally, this should be as small
as possible.

See also: TFPCustomHashTable.IsEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable. AVGChainLen
(53), TFPCustomHashTable.MaxChainLength (53), TFPCustomHashTable.VoidSlots (53), TFPCus-
tomHashTable.Density (54), TFPCustomHashTable.NumberOfCollisions (54)

4.9.18 TFPCustomHashTable.AVGChainLen
Synopsis: Average chain length

Declaration: Property AVGChainLen : double
Visibility: public
Access: Read

Description: AvVGChainLen is the average chain length, i.e. the ratio of elements in the table versus the number
of filled slots. Calculating this is an expensive operation.

See also: TFPCustomHashTable.ISEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable.LoadFactor
(53), TFPCustomHashTable.MaxChainLength (53), TFPCustomHashTable.VoidSlots (53), TFPCus-
tomHashTable.Density (54), TFPCustomHashTable.NumberOfCollisions (54)

4.9.19 TFPCustomHashTable.MaxChainLength

Synopsis: Maximum chain length
Declaration: Property MaxChainLength : LongWord

Visibility: public

53

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Access: Read

Description: MaxChainLength is the length of the longest chain in the hash table. Calculating this is an
expensive operation.

See also: TFPCustomHashTable.ISEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable.LoadFactor
(53), TFPCustomHashTable.AvgChainLength (49), TFPCustomHashTable. VoidSlots (53), TFPCus-
tomHashTable.Density (54), TFPCustomHashTable.NumberOfCollisions (54)

4.9.20 TFPCustomHashTable.NumberOfCollisions

Synopsis: Number of extra items
Declaration: Property NumberOfCollisions : LongWord
Visibility: public
Access: Read

Description: NumberOfCollisions is the number of items which are not the first item in a chain. If this
number is too big, the hash size may be too small.

See also: TFPCustomHashTable.ISEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable.LoadFactor
(53), TFPCustomHashTable.AvgChainLength (49), TFPCustomHashTable. VoidSlots (53), TFPCus-
tomHashTable.Density (54)

4.9.21 TFPCustomHashTable.Density
Synopsis: Number of filled slots

Declaration: Property Density : LongWord
Visibility: public
Access: Read
Description: Density is the number of filled slots in the hash table.

See also: TFPCustomHashTable.ISEmpty (51), TFPCustomHashTable.Count (52), TFPCustomHashTable.LoadFactor
(53), TFPCustomHashTable.AvgChainLength (49), TFPCustomHashTable. VoidSlots (53), TFPCus-
tomHashTable.Density (54)

4.10 TFPDataHashTable

4.10.1 Description

TFPDataHashTable is a TFPCustomHashTable (49) descendent which stores simple data point-
ers together with the keys. In case the data associated with the keys are objects, it’s better to use
TFPObjectHashTable (71), or for string data, TFPStringHashTable (81) is more suitable. The data
pointers are exposed with their keys through the Items (55) property.

4.10.2 Method overview

Page Property Description
55 Add Add a data pointer to the list.

54

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.10.3 Property overview

Page Property Access Description
55 Items w Key-based access to the items in the table

4.10.4 TFPDataHashTable.Add
Synopsis: Add a data pointer to the list.

Declaration: procedure Add(const aKey: String;AItem: pointer); Virtual
Visibility: public
Description: Add adds a data pointer (AItem) to the list with key AKey.
Errors: If AKey already exists in the table, an exception is raised.

See also: TFPDataHashTable.Items (55)

4.10.5 TFPDataHashTable.ltems

Synopsis: Key-based access to the items in the table
Declaration: Property Items[index: String]: Pointer; default
Visibility: public
Access: Read,Write

Description: Ttems provides access to the items in the hash table using their key: the array index Index is the
key. A key which is not present will result in an Ni1 pointer.

See also: TFPStringHashTable.Add (81)

4.11 TFPHashList

4.11.1 Description

TFPHashList implements a fast hash class. The class is built for speed, therefore the key values
can be shortstrings only, and the data can only be pointers.

if a base class for an own hash class is wanted, the TFPCustomHashTable (49) class can be used. If
a hash class for objects is needed instead of pointers, the TFPHashObjectList (65) class can be used.

55

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.11.2 Method overview

Page Property Description

57 Add Add a new key/data pair to the list

57 Clear Clear the list

56 Create Create a new instance of the hashlist

58 Delete Delete an item from the list.

56 Destroy Removes an instance of the hashlist from the heap
58 Error Raise an error

58 Expand Expand the list

58 Extract Extract a pointer from the list

59 Find Find data associated with key

59 FindIndexOf Return index of named item.

59 FindWithHash Find first element with given name and hash value
61 ForEachCall Call a procedure for each element in the list

57 HashOfIndex Return the hash valye of an item by index

59 IndexOf Return the index of the data pointer

57 NameOfIndex Returns the key name of an item by index

60 Pack Remove nil pointers from the list

60 Remove Remove first instance of a pointer

60 Rename Rename a key

60 ShowStatistics ~ Return some statistics for the list.

4.11.3 Property overview

Page Property Access Description

61 Capacity 1w Capacity of the list.

61 Count ™w Current number of elements in the list.
61 Items ™w Indexed array with pointers

62 List r Low-level hash list

62 Strs r Low-level memory area with strings.

4.11.4 TFPHashList.Create

Synopsis: Create a new instance of the hashlist

Declaration: constructor Create

Visibility: public

Description: Create creates a new instance of TFPHashList on the heap and sets the hash capacity to 1.

See also: TFPHashList.Destroy (56)

4.11.5 TFPHashList.Destroy

Synopsis: Removes an instance of the hashlist from the heap

Declaration: destructor Destroy;

Visibility: public

Description: Dest roy cleans up the memory structures maintained by the hashlist and removes the TFPHashList

instance from the heap.

Destroy should not be called directly, it’s better to use Free or FreeAndNil instead.

Override

56

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

See also: TFPHashList.Create (56), TFPHashList.Clear (57)

4.11.6 TFPHashList.Add
Synopsis: Add a new key/data pair to the list

Declaration: function Add(const AName: shortstring;Item: Pointer) : Integer
Visibility: public

Description: Add adds a new data pointer (Item) with key AName to the list. It returns the position of the item
in the list.

Errors: If not enough memory is available to hold the key and data, an exception may be raised. If an item
with this name already exists in the list, an exception is raised.

See also: TFPHashList.Extract (58), TFPHashList.Remove (60), TFPHashList.Delete (58)

4.11.7 TFPHashList.Clear
Synopsis: Clear the list

Declaration: procedure Clear
Visibility: public

Description: Clear removes all items from the list. It does not free the data items themselves. It frees all
memory needed to contain the items.

Errors: None.

See also: TFPHashList.Extract (58), TFPHashList.Remove (60), TFPHashList.Delete (58), TFPHashList. Add
(57)

4.11.8 TFPHashList.NameOfindex

Synopsis: Returns the key name of an item by index
Declaration: function NameOfIndex (Index: Integer) : ShortString
Visibility: public
Description: NameOf Index returns the key name of the item at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashList.HashOfIndex (57), TFPHashList.Find (59), TFPHashList.FindIndexOf (59), TFPHash-
List.FindWithHash (59)

4.11.9 TFPHashList.HashOflndex

Synopsis: Return the hash valye of an item by index
Declaration: function HashOfIndex (Index: Integer) : LongWord
Visibility: public

Description: HashOf Index returns the hash value of the item at position Index.

57

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashList. HashOfName (55), TFPHashList.Find (59), TFPHashList.FindIndexOf (59), TFPHash-
List.FindWithHash (59)

4.11.10 TFPHashList.Delete

Synopsis: Delete an item from the list.
Declaration: procedure Delete (Index: Integer)
Visibility: public
Description: Delete deletes the item at position Index. The data to which it points is not freed from memory.

Errors: TFPHashList.Extract (58)TFPHashList.Remove (60)TFPHashList.Add (57)

4.11.11 TFPHashList.Error
Synopsis: Raise an error

Declaration: procedure Error (const Msg: String;Data: PtrInt)
Visibility: public

Description: Error raises an EListError exception, with message Msg. The Data pointer is used to format
the message.

4.11.12 TFPHashList.Expand
Synopsis: Expand the list

Declaration: function Expand : TFPHashList
Visibility: public
Description: Expand enlarges the capacity of the list if the maximum capacity was reached. It returns itself.
Errors: If not enough memory is available, an exception may be raised.

See also: TFPHashList.Clear (57)

4.11.13 TFPHashList.Extract
Synopsis: Extract a pointer from the list

Declaration: function Extract (item: Pointer) : Pointer
Visibility: public

Description: Ext ract removes the data item from the list, if it is in the list. It returns the pointer if it was
removed from the list, Ni1 otherwise.

Extract does a linear search, and is not very efficient.

See also: TFPHashList.Delete (58), TFPHashList.Remove (60), TFPHashList.Clear (57)

58

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.11.14 TFPHashList.IndexOf

Synopsis: Return the index of the data pointer
Declaration: function IndexOf (Item: Pointer) : Integer
Visibility: public

Description: IndexOf returns the index of the first occurrence of pointer Item. If the item is not in the list, -1
is returned.

The performed search is linear, and not very efficient.

See also: TFPHashList.HashOfIndex (57), TFPHashList.NameOfIndex (57), TFPHashList.Find (59), TFPHash-
List.FindIndexOf (59), TFPHashList.FindWithHash (59)

4.11.15 TFPHashList.Find

Synopsis: Find data associated with key
Declaration: function Find(const AName: shortstring) : Pointer
Visibility: public

Description: Find searches (using the hash) for the data item associated with item AName and returns the data
pointer associated with it. If the item is not found, Ni1 is returned. It uses the hash value of the key
to perform the search.

See also: TFPHashList.HashOfIndex (57), TFPHashList.NameOflIndex (57), TFPHashList.IndexOf (59), TF-
PHashList.FindIndexOf (59), TFPHashList. FindWithHash (59)

4.11.16 TFPHashList.FindindexOf

Synopsis: Return index of named item.
Declaration: function FindIndexOf (const AName: shortstring) : Integer
Visibility: public

Description: FindIndexOf returns the index of the key AName, or -1 if the key does not exist in the list. It uses
the hash value to search for the key.

See also: TFPHashList.HashOfIndex (57), TFPHashList. NameOfIndex (57), TFPHashList.IndexOf (59), TF-
PHashList.Find (59), TFPHashList.FindWithHash (59)

4.11.17 TFPHashList.FindWithHash

Synopsis: Find first element with given name and hash value

Declaration: function FindWithHash (const AName: shortstring;AHash: LongWord)
Pointer

Visibility: public

Description: FindWithHash searches for the item with key AName. It uses the provided hash value AHash to
perform the search. If the item exists, the data pointer is returned, if not, the result is Nil.

See also: TFPHashList.HashOfIndex (57), TFPHashList.NameOfIndex (57), TFPHashList.IndexOf (59), TF-
PHashList.Find (59), TFPHashList.FindIndexOf (59)

59

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.11.18 TFPHashList.Rename

Synopsis: Rename a key

Declaration: function Rename (const AOldName: shortstring;const ANewName: shortstring)
Integer

Visibility: public

Description: Rename renames key AOldname to ANewName. The hash value is recomputed and the item is
moved in the list to it’s new position.

Errors: If an item with ANewName already exists, an exception will be raised.

4.11.19 TFPHashList.Remove

Synopsis: Remove first instance of a pointer
Declaration: function Remove (Item: Pointer) : Integer
Visibility: public

Description: Remove removes the first occurence of the data pointer Item in the list, if it is present. The return
value is the removed data pointer, or Ni1 if no data pointer was removed.

See also: TFPHashList.Delete (58), TFPHashList.Clear (57), TFPHashList.Extract (58)

4.11.20 TFPHashList.Pack

Synopsis: Remove nil pointers from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1 items from the list, and frees all unused memory.

See also: TFPHashList.Clear (57)

4.11.21 TFPHashList.ShowStatistics

Synopsis: Return some statistics for the list.
Declaration: procedure ShowStatistics
Visibility: public

Description: ShowStatistics prints some information about the hash list to standard output. It prints the
following values:
HashSizeSize of the hash table
HashMeanMean hash value
HashStdDevStandard deviation of hash values
ListSizeSize and capacity of the list

StringSizeSize and capacity of key strings

60

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.11.22 TFPHashList.ForEachCall

Synopsis: Call a procedure for each element in the list

Declaration: procedure ForEachCall (proc2call: TListCallback;arg: pointer)
procedure ForEachCall (proc2call: TListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops over the items in the list and calls proc2call, passing it the item and arg.

4.11.23 TFPHashList.Capacity
Synopsis: Capacity of the list.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity returns the current capacity of the list. The capacity is expanded as more elements are
added to the list. If a good estimate of the number of elements that will be added to the list, the
property can be set to a sufficiently large value to avoid reallocation of memory each time the list
needs to grow.

See also: TFPHashList.Count (61), TFPHashList.Items (61)

4.11.24 TFPHashList.Count

Synopsis: Current number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the current number of elements in the list.

See also: TFPHashList.Capacity (61), TFPHashList.Items (61)

4.11.25 TFPHashList.ltems

Synopsis: Indexed array with pointers
Declaration: Property Items[Index: Integer]: Pointer; default
Visibility: public
Access: Read,Write
Description: Items provides indexed access to the pointers, the index runs from 0 to Count-1 (61).
Errors: Specifying an invalid index will result in an exception.

See also: TFPHashList.Capacity (61), TFPHashList.Count (61)

61

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.11.26 TFPHashList.List

Synopsis: Low-level hash list
Declaration: Property List : PHashItemList
Visibility: public
Access: Read
Description: List exposes the low-level item list (42). It should not be used directly.

See also: TFPHashList.Strs (62), THashItemList (42)

4.11.27 TFPHashList.Strs
Synopsis: Low-level memory area with strings.
Declaration: Property Strs : PChar
Visibility: public
Access: Read
Description: St rs exposes the raw memory area with the strings.

See also: TFPHashList.List (62)

4.12 TFPHashObject

4.12.1 Description

TFPHashObject is a TObject descendent which is aware of the TFPHashObjectList (65) class.
It has a name property and an owning list: if the name is changed, it will reposition itself in the list
which owns it. It offers methods to change the owning list: the object will correctly remove itself
from the list which currently owns it, and insert itself in the new list.

4.12.2 Method overview

Page Property Description

63 ChangeOwner Change the list owning the object.

63 ChangeOwnerAndName Simultaneously change the list owning the object and the
name of the object.

63 Create Create a named instance, and insert in a hash list.
63 CreateNotOwned Create an instance not owned by any list.
64 Rename Rename the object

4.12.3 Property overview

Page Property Access Description
64 Hash r Hash value
64 Name r Current name of the object

62

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.12.4 TFPHashObject.CreateNotOwned

Synopsis: Create an instance not owned by any list.
Declaration: constructor CreateNotOwned
Visibility: public

Description: CreateNotOwned creates an instance of TFPHashObject which is not owned by any TF-
PHashObjectList (65) hash list. It also has no name when created in this way.

See also: TFPHashObject.Name (64), TFPHashObject.ChangeOwner (63), TFPHashObject.ChangeOwnerAndName
(63)

4.12.5 TFPHashObject.Create

Synopsis: Create a named instance, and insert in a hash list.

Declaration: constructor Create (HashObjectList: TFPHashObjectList;
const s: shortstring)

Visibility: public

Description: Create creates an instance of TFPHashOb ject, gives it the name S and inserts it in the hash list
HashObjectList (65).

See also: TFPHashObject.CreateNotOwned (63), TFPHashObject.ChangeOwner (63), TFPHashObject.Name
(64)

4.12.6 TFPHashObject.ChangeOwner
Synopsis: Change the list owning the object.

Declaration: procedure ChangeOwner (HashObjectList: TFPHashObjectList)
Visibility: public

Description: ChangeOwner can be used to move the object between hash lists: The object will be removed
correctly from the hash list that currently owns it, and will be inserted in the list HashObjectList.

Errors: If an object with the same name already is present in the new hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwnerAndName (63), TFPHashObject.Name (64)

4.12.7 TFPHashObject.ChangeOwnerAndName

Synopsis: Simultaneously change the list owning the object and the name of the object.

Declaration: procedure ChangeOwnerAndName (HashObjectList: TFPHashObjectList;
const s: shortstring)

Visibility: public

Description: ChangeOwnerAndName can be used to move the object between hash lists: The object will be
removed correctly from the hash list that currently owns it (using the current name), and will be
inserted in the list HashOb jectList with the new name S.

Errors: If the new name already is present in the new hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwner (63), TFPHashObject.Name (64)

63

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.12.8 TFPHashObject.Rename

Synopsis: Rename the object
Declaration: procedure Rename (const ANewName: shortstring)
Visibility: public
Description: Rename changes the name of the object, and notifies the hash list of this change.
Errors: If the new name already is present in the hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwner (63), TFPHashObject.ChangeOwnerAndName (63), TFPHashOb-
ject.Name (64)

4.12.9 TFPHashObject.Name

Synopsis: Current name of the object
Declaration: Property Name : shortstring
Visibility: public
Access: Read
Description: Name is the name of the object, it is stored in the hash list using this name as the key.

See also: TFPHashObject.Rename (64), TFPHashObject.ChangeOwnerAndName (63)

4.12.10 TFPHashObject.Hash

Synopsis: Hash value
Declaration: Property Hash : LongWord
Visibility: public
Access: Read
Description: Hash is the hash value of the object in the hash list that owns it.

See also: TFPHashObject.Name (64)

64

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13 TFPHashObjectList

4.13.1 Method overview
Page Property Description
66 Add Add a new key/data pair to the list
66 Clear Clear the list
65 Create Create a new instance of the hashlist
67 Delete Delete an object from the list.
65 Destroy Removes an instance of the hashlist from the heap
67 Expand Expand the list
67 Extract Extract a object instance from the list
68 Find Find data associated with key
68 FindIndexOf Return index of named object.
69 FindInstanceOf Search an instance of a certain class
69 FindWithHash Find first element with given name and hash value
70 ForEachCall Call a procedure for each object in the list
67 HashOfIndex Return the hash valye of an object by index
68 IndexOf Return the index of the object instance
66 NameOflndex Returns the key name of an object by index
69 Pack Remove nil object instances from the list
68 Remove Remove first occurrence of a object instance
69 Rename Rename a key
70 ShowStatistics ~ Return some statistics for the list.

4.13.2 Property overview

Page Property Access Description

70 Capacity ™w Capacity of the list.

70 Count w Current number of elements in the list.
71 Items ™wW Indexed array with object instances

71 List r Low-level hash list

71 OwnsObjects 1w Does the list own the objects it contains

4.13.3 TFPHashObjectList.Create
Synopsis: Create a new instance of the hashlist

Declaration: constructor Create (FreeObjects: Boolean)

Visibility: public

Description: Create creates a new instance of TFPHashObjectList on the heap and sets the hash capacity

to 1.

If FreeObjects is True (the default), then the list owns the objects: when an object is removed
from the list, it is destroyed (freed from memory). Clearing the list will free all objects in the list.

See also: TFPHashObjectList.Destroy (65), TFPHashObjectList.OwnsObjects (71)

4.13.4 TFPHashObjectList.Destroy

Synopsis: Removes an instance of the hashlist from the heap

Declaration: destructor Destroy;

Override

65

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Visibility: public

Description: Dest roy cleans up the memory structures maintained by the hashlist and removes the TFPHashObjectList
instance from the heap. If the list owns its objects, they are freed from memory as well.

Destroy should not be called directly, it’s better to use Free or FreeAndNil instead.

See also: TFPHashObjectList.Create (65), TFPHashObjectList.Clear (66)

4.13.5 TFPHashObjectList.Clear
Synopsis: Clear the list

Declaration: procedure Clear
Visibility: public

Description: C1lear removes all objects from the list. It does not free the objects themselves, unless OwnsObjects
(71) is True. It always frees all memory needed to contain the objects.

Errors: None.

See also: TFPHashObjectList.Extract (67), TFPHashObjectList.Remove (68), TFPHashObjectList.Delete (67),
TFPHashObjectList.Add (66)

4.13.6 TFPHashObjectList.Add
Synopsis: Add a new key/data pair to the list

Declaration: function Add(const AName: shortstring;AObject: TObject) : Integer
Visibility: public

Description: 2dd adds a new object instance (AOb ject) with key AName to the list. It returns the position of
the object in the list.

Errors: If not enough memory is available to hold the key and data, an exception may be raised. If an object
with this name already exists in the list, an exception is raised.

See also: TFPHashObjectList.Extract (67), TFPHashObjectList.Remove (68), TFPHashObjectList.Delete (67)

4.13.7 TFPHashObjectList.NameOfindex

Synopsis: Returns the key name of an object by index
Declaration: function NameOfIndex (Index: Integer) : ShortString
Visibility: public
Description: NameOf Index returns the key name of the object at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashObjectList.HashOfIndex (67), TFPHashObjectList.Find (68), TFPHashObjectList.FindIndexOf
(68), TFPHashObjectList.FindWithHash (69)

66

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13.8 TFPHashObjectList.HashOflndex
Synopsis: Return the hash valye of an object by index

Declaration: function HashOfIndex (Index: Integer) : LongWord
Visibility: public
Description: HashOf Index returns the hash value of the object at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashObjectList.HashOfName (65), TFPHashObjectList.Find (68), TFPHashObjectList.FindIndexOf
(68), TFPHashObjectList.FindWithHash (69)

4.13.9 TFPHashObjectList.Delete
Synopsis: Delete an object from the list.

Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Delete deletes the object at position Index. If OwnsObjects (71) is True, then the object itself
is also freed from memory.

See also: TFPHashObjectList.Extract (67), TFPHashObjectList.Remove (68), TFPHashObjectList.Add (66),
TFPHashObjectList.OwnsObjects (71)

4.13.10 TFPHashObjectList.Expand
Synopsis: Expand the list

Declaration: function Expand : TFPHashObjectList
Visibility: public
Description: Expand enlarges the capacity of the list if the maximum capacity was reached. It returns itself.
Errors: If not enough memory is available, an exception may be raised.

See also: TFPHashObjectList.Clear (66)

4.13.11 TFPHashObijectList.Extract

Synopsis: Extract a object instance from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes the data object from the list, if it is in the list. It returns the object instance if it
was removed from the list, Nil otherwise. The object is not freed from memory, regardless of the
value of OwnsObjects (71).

Extract does a linear search, and is not very efficient.

See also: TFPHashObjectList.Delete (67), TFPHashObjectList.Remove (68), TFPHashObjectList.Clear (66)

67

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13.12 TFPHashObjectList.Remove

Synopsis: Remove first occurrence of a object instance
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes the first occurence of the object instance Item in the list, if it is present. The
return value is the location of the removed object instance, or —1 if no object instance was removed.

If OwnsObjects (71) is True, then the object itself is also freed from memory.

See also: TFPHashObjectList.Delete (67), TFPHashObjectList.Clear (66), TFPHashObjectList.Extract (67)

4.13.13 TFPHashObjectList.IndexOf

Synopsis: Return the index of the object instance
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: IndexOf returns the index of the first occurrence of object instance AObject. If the object is not
in the list, -1 is returned.

The performed search is linear, and not very efficient.

See also: TFPHashObjectList.HashOfIndex (67), TFPHashObjectList. NameOfIndex (66), TFPHashObjectList.Find
(68), TFPHashObjectList.FindIndexOf (68), TFPHashObjectList.FindWithHash (69)

4.13.14 TFPHashObjectList.Find
Synopsis: Find data associated with key

Declaration: function Find(const s: shortstring) : TObject
Visibility: public

Description: Find searches (using the hash) for the data object associated with key AName and returns the data
object instance associated with it. If the object is not found, Ni1 is returned. It uses the hash value
of the key to perform the search.

See also: TFPHashObjectList. HashOfIndex (67), TFPHashObjectList. NameOfIndex (66), TFPHashObjectList.IndexOf
(68), TFPHashObjectList.FindIndexOf (68), TFPHashObjectList.FindWithHash (69)

4.13.15 TFPHashObjectList.FindindexOf

Synopsis: Return index of named object.
Declaration: function FindIndexOf (const s: shortstring) : Integer
Visibility: public

Description: FindIndexOf returns the index of the key AName, or -1 if the key does not exist in the list. It uses
the hash value to search for the key.

See also: TFPHashObjectList. HashOfIndex (67), TFPHashObjectList. NameOfIndex (66), TFPHashObjectList.IndexOf
(68), TFPHashObjectList.Find (68), TFPHashObjectList.FindWithHash (69)

68

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13.16 TFPHashObjectList.FindWithHash

Synopsis: Find first element with given name and hash value

Declaration: function FindWithHash (const AName: shortstring;AHash: LongWord)
Pointer

Visibility: public

Description: FindWithHash searches for the object with key AName. It uses the provided hash value AHash
to perform the search. If the object exists, the data object instance is returned, if not, the result is
Nil.

See also: TFPHashObjectList.HashOfIndex (67), TFPHashObjectList. NameOfIndex (66), TFPHashObjectList.IndexOf
(68), TFPHashObjectList.Find (68), TFPHashObjectList.FindIndexOf (68)

4.13.17 TFPHashObjectList.Rename

Synopsis: Rename a key

Declaration: function Rename (const AOldName: shortstring;const ANewName: shortstring)
Integer

Visibility: public

Description: Rename renames key AOldname to ANewName. The hash value is recomputed and the object is
moved in the list to it’s new position.

Errors: If an object with ANewName already exists, an exception will be raised.

4.13.18 TFPHashObjectList.FindInstanceOf

Synopsis: Search an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOf searches the list for an instance of class AClass. It starts searching at position
AStartAt. If AExact is True, only instances of class AClass are considered. If AExact is
False, then descendent classes of AClass are also taken into account when searching. If no
instance is found, Ni1 is returned.

4.13.19 TFPHashObjectList.Pack

Synopsis: Remove nil object instances from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1 objects from the list, and frees all unused memory.

See also: TFPHashObjectList.Clear (66)

69

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13.20 TFPHashObjectList.ShowStatistics

Synopsis: Return some statistics for the list.
Declaration: procedure ShowStatistics
Visibility: public

Description: ShowStatistics prints some information about the hash list to standard output. It prints the
following values:

HashSizeSize of the hash table
HashMeanMean hash value
HashStdDevStandard deviation of hash values
ListSizeSize and capacity of the list
StringSizeSize and capacity of key strings

4.13.21 TFPHashObjectList.ForEachCall

Synopsis: Call a procedure for each object in the list

Declaration: procedure ForEachCall (proc2call: TObjectListCallback;arg: pointer)
procedure ForEachCall (proc2call: TObjectListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops over the objects in the list and calls proc2call, passing it the object and
arg.

4.13.22 TFPHashObjectList.Capacity
Synopsis: Capacity of the list.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity returns the current capacity of the list. The capacity is expanded as more elements are
added to the list. If a good estimate of the number of elements that will be added to the list, the
property can be set to a sufficiently large value to avoid reallocation of memory each time the list
needs to grow.

See also: TFPHashObjectList.Count (70), TFPHashObjectList.Items (71)

4.13.23 TFPHashObjectList.Count

Synopsis: Current number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the current number of elements in the list.

See also: TFPHashObjectList.Capacity (70), TFPHashObjectList.Items (71)

70

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.13.24 TFPHashObjectList.OwnsObjects

Synopsis: Does the list own the objects it contains
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObjects determines what to do when an object is removed from the list: if it is True (the
default), then the list owns the objects: when an object is removed from the list, it is destroyed (freed
from memory). Clearing the list will free all objects in the list.

The value of OwnsOb jects is set when the hash list is created, and cannot be changed during the
lifetime of the hash list.

See also: TFPHashObjectList.Create (65)

4.13.25 TFPHashObjectList.ltems
Synopsis: Indexed array with object instances

Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write
Description: Items provides indexed access to the object instances, the index runs from 0 to Count-1 (70).
Errors: Specifying an invalid index will result in an exception.

See also: TFPHashObjectList.Capacity (70), TFPHashObjectList.Count (70)

4.13.26 TFPHashObijectList.List
Synopsis: Low-level hash list

Declaration: Property List : TFPHashList
Visibility: public
Access: Read
Description: List exposes the low-level hash list (55). It should not be used directly.

See also: TFPHashList (55)

4.14 TFPObjectHashTable

4.14.1 Description

TFPStringHashTable is a TFPCustomHashTable (49) descendent which stores object instances
together with the keys. In case the data associated with the keys are strings themselves, it’s better to
use TFPStringHashTable (81), or for arbitrary pointer data, TFPDataHashTable (54) is more suitable.
The objects are exposed with their keys through the Items (73) property.

71

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.14.2 Method overview
Page Property Description

73 Add Add a new object to the hash table
72 Create Create a new instance of TFPObjectHashTable
72 CreateWith Create a new hash table with given size and hash function

4.14.3 Property overview

Page Property Access Description
73 Items w Key-based access to the objects
73 OwnsObjects 1w Does the hash table own the objects ?

4.14.4 TFPObjectHashTable.Create

Synopsis: Create a new instance of TFPObjectHashTable
Declaration: constructor Create (AOwnsObjects: Boolean)
Visibility: public

Description: Create creates a new instance of TFPObjectHashTable on the heap. It sets the OwnsObjects
(73) property to AOwnsOb jects, and then calls the inherited Create. If AOwnsObjects is set
to True, then the hash table owns the objects: whenever an object is removed from the list, it is
automatically freed.

Errors: If not enough memory is available on the heap, an exception may be raised.

See also: TFPObjectHashTable.OwnsObjects (73), TFPObjectHashTable.CreateWith (72), TFPObjectHashTable.Items
(73)

4.14.5 TFPObjectHashTable.CreateWith

Synopsis: Create a new hash table with given size and hash function

Declaration: constructor CreateWith (AHashTableSize: LongWord;
aHashFunc: THashFunction;AOwnsObjects: Boolean)

Visibility: public
Description: CreateWith sets the OwnsObjects (73) property to AOwnsObjects, and then calls the inherited

CreateWith. If AOwnsObjects is set to True, then the hash table owns the objects: whenever
an object is removed from the list, it is automatically freed.

This constructor should be used when a table size and hash algorithm should be specified that differ
from the default table size and hash algorithm.

Errors: If not enough memory is available on the heap, an exception may be raised.

See also: TFPObjectHashTable.OwnsObjects (73), TFPObjectHashTable.Create (72), TFPObjectHashTable.Items
(73)

72

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.14.6 TFPObjectHashTable.Add
Synopsis: Add a new object to the hash table

Declaration: procedure Add(const aKey: String;AItem: TObject); Virtual
Visibility: public
Description: Add adds the object AItem to the hash table, and associates it with key aKey.
Errors: If the key aKey is already in the hash table, an exception will be raised.

See also: TFPObjectHashTable.Items (73)

4.14.7 TFPObjectHashTable.ltems

Synopsis: Key-based access to the objects
Declaration: Property Items[index: String]: TObject; default
Visibility: public
Access: Read,Write

Description: Items provides access to the objects in the hash table using their key: the array index Index is
the key. A key which is not present will result in an Nil instance.

See also: TFPObjectHashTable.Add (73)

4.14.8 TFPObjectHashTable.OwnsObjects

Synopsis: Does the hash table own the objects ?
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsOb-jects determines what happens with objects which are removed from the hash table: if
True, then removing an object from the hash list will free the object. If False, the object is not
freed. Note that way in which the object is removed is not relevant: be it Delete, Remove or
Clear.

See also: TFPObjectHashTable.Create (72), TFPObjectHashTable.Items (73)

4.15 TFPObjectList

4.15.1 Description

TFPObjectList is a TFPList (??) based list which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TObjectList (85), TFPOb jectList offers no notification mechanism of list op-
erations, allowing it to be faster than TOb jectList. For the same reason, it is also not a descendent
of TFPList (although it uses one internally).

73

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.2 Method overview

Page Property Description

75 Add Add an object to the list.

78 Assign Copy the contents of a list.

75 Clear Clear all elements in the list.

74 Create Create a new object list

75 Delete Delete an element from the list.

74 Destroy Clears the list and destroys the list instance

76 Exchange Exchange the location of two objects

76 Expand Expand the capacity of the list.

76 Extract Extract an object from the list

77 FindInstanceOf Search for an instance of a certain class

78 First Return the first non-nil object in the list

79 ForEachCall For each object in the list, call a method or procedure, passing it the
object.

77 IndexOf Search for an object in the list

77 Insert Insert a new object in the list

78 Last Return the last non-nil object in the list.

78 Move Move an object to another location in the list.

79 Pack Remove all Ni1 references from the list

76 Remove Remove an item from the list.

79 Sort Sort the list of objects

4.15.3 Property overview

Page Property Access Description

80 Capacity ™w Capacity of the list

80 Count ™w Number of elements in the list.

80 Items w Indexed access to the elements of the list.

81 List r Internal list used to keep the objects.

80 OwnsObjects 1w Should the list free elements when they are removed.

4.15.4 TFPObjectList.Create

Synopsis: Create a new object list

Declaration: constructor Create

constructor Create (FreeObjects:

Visibility: public

Boolean)

Description: Create instantiates a new object list. The FreeObjects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TFPObjectList.Destroy (74), TFPObjectList.OwnsObjects (80), TObjectList (85)

4.15.5 TFPObjectList.Destroy

Synopsis: Clears the list and destroys the list instance

Declaration: destructor Destroy;

Override

74

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Visibility: public
Description: Dest roy clears the list, freeing all objects in the list if OwnsObjects (80) is True.

See also: TFPObjectList.OwnsObjects (80), TObjectList.Create (85)

4.15.6 TFPObjectList.Clear

Synopsis: Clear all elements in the list.
Declaration: procedure Clear
Visibility: public
Description: Removes all objects from the list, freeing all objects in the list if OwnsObjects (80) is True.

See also: TObjectList.Destroy (85)

4.15.7 TFPObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: 2dd adds AObject to the list and returns the index of the object in the list.

Note that when OwnsObjects (80) is True, an object should not be added twice to the list: this will
result in memory corruption when the object is freed (as it will be freed twice). The Add method
does not check this, however.

Errors: None.

See also: TFPObjectList.OwnsObjects (80), TFPObjectList.Delete (75)

4.15.8 TFPObjectList.Delete

Synopsis: Delete an element from the list.
Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Delete removes the object at index Index from the list. When OwnsObjects (80) is True, the
object is also freed.

Errors: An access violation may occur when OwnsObjects (80) is True and either the object was freed
externally, or when the same object is in the same list twice.

See also: TTFPObjectList.Remove (40), TFPObjectList.Extract (76), TFPObjectList.OwnsObjects (80), TTF-
PObjectList.Add (40), TTFPObjectList.Clear (40)

75

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.9 TFPObijectList.Exchange

Synopsis: Exchange the location of two objects
Declaration: procedure Exchange (Indexl: Integer;Index2: Integer)
Visibility: public

Description: Exchange exchanges the objects at indexes Index1 and Index2 in a direct operation (i.e. no
delete/add is performed).

Errors: If either Index1 or Index?2 is invalid, an exception will be raised.

See also: TTFPObjectList.Add (40), TTFPObjectList.Delete (40)

4.15.10 TFPObjectList.Expand
Synopsis: Expand the capacity of the list.

Declaration: function Expand : TFPObjectList
Visibility: public

Description: Expand increases the capacity of the list. It calls #rtl.classes.tfplist.expand (??) and then returns a
reference to itself.

Errors: If there is not enough memory to expand the list, an exception will be raised.

See also: TFPObjectList.Pack (79), TFPObjectList.Clear (75), #rtl.classes.tfplist.expand (??)

4.15.11 TFPObjectList.Extract

Synopsis: Extract an object from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes Item from the list, if it is present in the list. It returns Ttem if it was found,
Nil if item was not present in the list.

Note that the object is not freed, and that only the first found object is removed from the list.
Errors: None.

See also: TFPObjectList.Pack (79), TFPObjectList.Clear (75), TFPObjectList.Remove (76), TFPObjectList.Delete
(75)

4.15.12 TFPObjectList.Remove

Synopsis: Remove an item from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes Item from the list, if it is present in the list. It frees Item if OwnsObjects (80) is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.

76

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Errors: None.

See also: TFPObjectList.Pack (79), TFPObjectList.Clear (75), TFPObjectList.Delete (75), TFPObjectList.Extract
(76)

4.15.13 TFPObjectList.IndexOf

Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: IndexOf searches for the presence of AO0bject in the list, and returns the location (index) in the
list. The index is 0-based, and -1 is returned if AOb ject was not found in the list.

Errors: None.

See also: TFPObjectList.Items (80), TFPObjectList.Remove (76), TFPObjectList.Extract (76)

4.15.14 TFPObjectList.FindInstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOf will look through the instances in the list and will return the first instance which
is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni1 is returned.
Errors: None.

See also: TFPObjectList.IndexOf (77)

4.15.15 TFPObijectList.Insert

Synopsis: Insert a new object in the list
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insert inserts AObject at position Index in the list. All elements in the list after this position
are shifted. The index is zero based, i.e. an insert at position 0 will insert an object at the first position
of the list.

Errors: None.

See also: TFPObjectList.Add (75), TFPObjectList.Delete (75)

77

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.16 TFPODbjectList.First

Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public

Description: First returns a reference to the first non-Ni1 element in the list. If no non-N1i1 element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.Last (78), TFPObjectList.Pack (79)

4.15.17 TFPObjectList.Last
Synopsis: Return the last non-nil object in the list.

Declaration: function Last : TObject
Visibility: public

Description: Last returns a reference to the last non-Ni1 element in the list. If no non-Ni1 element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.First (78), TFPObjectList.Pack (79)

4.15.18 TFPObijectList.Move

Synopsis: Move an object to another location in the list.
Declaration: procedure Move (CurIndex: Integer;NewIndex: Integer)
Visibility: public

Description: Move moves the object at current location CurIndex to location NewIndex. Note that the
NewIndex is determined after the object was removed from location Cur Index, and can hence be
shifted with 1 position if CurIndex is less than NewIndex.

Contrary to exchange (76), the move operation is done by extracting the object from it’s current
location and inserting it at the new location.

Errors: If either Cur Index or NewIndex is out of range, an exception may occur.

See also: TFPObjectList.Exchange (76), TFPObjectList.Delete (75), TFPObjectList.Insert (77)

4.15.19 TFPObjectList.Assign

Synopsis: Copy the contents of a list.
Declaration: procedure Assign (Obj: TFPObjectList)
Visibility: public
Description: Assign copies the contents of Ob j if Obj is of type TFPObjectList

Errors: None.

78

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.20 TFPObijectList.Pack

Synopsis: Remove all Ni1 references from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Nil elements from the list.
Errors: None.

See also: TFPObjectList.First (78), TFPObjectList.Last (78)

4.15.21 TFPObjectList.Sort

Synopsis: Sort the list of objects
Declaration: procedure Sort (Compare: TListSortCompare)
Visibility: public

Description: Sort will perform a quick-sort on the list, using Compare as the compare algorithm. This function
should accept 2 pointers and should return the following result:

less than 0If the first pointer comes before the second.
equal to 0If the pointers have the same value.

larger than OIf the first pointer comes after the second.

The function should be able to deal with Ni1l values.
Errors: None.

See also: #rtl.classes. TList.Sort (2?)

4.15.22 TFPObjectList.ForEachCall

Synopsis: For each object in the list, call a method or procedure, passing it the object.

Declaration: procedure ForEachCall (proc2call: TObjectListCallback;arg: pointer)
procedure ForEachCall (proc2call: TObjectListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops through all objects in the list, and calls proc2call, passing it the object in
the list. Additionally, arg is also passed to the procedure. Proc2call can be a plain procedure or
can be a method of a class.

Errors: None.

See also: TObjectListStaticCallback (42), TObjectListCallback (42)

79

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.23 TFPObjectList.Capacity
Synopsis: Capacity of the list
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the number of elements that the list can contain before it needs to expand itself, i.e.,
reserve more memory for pointers. It is always equal or larger than Count (80).

See also: TFPObjectList.Count (80)

4.15.24 TFPObjectList.Count
Synopsis: Number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the number of elements in the list. Note that this includes Ni1 elements.

See also: TFPObjectList.Capacity (80)

4.15.25 TFPObjectList.OwnsObjects
Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObjects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TFPObjectList.Create (74), TFPObjectList.Delete (75), TFPObjectList.Remove (76), TFPObjectList.Clear
(75)

4.15.26 TFPObjectList.ltems
Synopsis: Indexed access to the elements of the list.
Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Items is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from O (zero) to Count—1.

See also: TFPObjectList.Count (80)

80

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.15.27 TFPObjectList.List
Synopsis: Internal list used to keep the objects.

Declaration: Property List : TFPList
Visibility: public
Access: Read
Description: List is a reference to the TFPList (??) instance used to manage the elements in the list.

See also: #rtl.classes.tfplist (??)

4.16 TFPStringHashTable

4.16.1 Description

TFPStringHashTable is a TFPCustomHashTable (49) descendent which stores simple strings
together with the keys. In case the data associated with the keys are objects, it’s better to use TF-
PObjectHashTable (71), or for arbitrary pointer data, TFPDataHashTable (54) is more suitable. The
strings are exposed with their keys through the Items (81) property.

4.16.2 Method overview

Page Property Description
81 Add Add a new string to the hash list

4.16.3 Property overview

Page Property Access Description
81 Items ™w Key based access to the strings in the hash table

4.16.4 TFPStringHashTable.Add
Synopsis: Add a new string to the hash list

Declaration: procedure Add(const aKey: String;const altem: String); Virtual
Visibility: public
Description: Add adds a new string AItem to the hash list with key AKey.
Errors: If a string with key Akey already exists in the hash table, an exception will be raised.

See also: TFPStringHashTable.Items (81)

4.16.5 TFPStringHashTable.ltems
Synopsis: Key based access to the strings in the hash table

Declaration: Property Items[index: String]: String; default
Visibility: public

Access: Read,Write

81

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Description: Ttems provides access to the strings in the hash table using their key: the array index Index is the
key. A key which is not present will result in an empty string.

See also: TFPStringHashTable.Add (81)

4.17 THTCustomNode

4.17.1 Description

THTCustomNode is used by the TFPCustomHashTable (49) class to store the keys and associated
values.

4.17.2 Method overview

Page Property Description
82 CreateWith Create a new instance of THTCustomNode
82 HasKey Check whether this node matches the given key.

4.17.3 Property overview

Page Property Access Description
83 Key r Key value associated with this hash item.

4.17.4 THTCustomNode.CreateWith

Synopsis: Create a new instance of THTCustomNode
Declaration: constructor CreateWith (const AString: String)
Visibility: public

Description: CreateWith creates a new instance of THTCustomNode and stores the string AString in it.
It should never be necessary to call this method directly, it will be called by the TFPHashTable (40)
class when needed.

Errors: If no more memory is available, an exception may be raised.

See also: TFPHashTable (40)

4.17.5 THTCustomNode.HasKey
Synopsis: Check whether this node matches the given key.

Declaration: function HasKey (const AKey: String) : Boolean
Visibility: public

Description: HasKey checks whether this node matches the given key AKey, by comparing it with the stored
key. It returns True if it does, False if not.

Errors: None.

See also: THTCustomNode.Key (83)

82

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.17.6 THTCustomNode.Key

Synopsis: Key value associated with this hash item.
Declaration: Property Key : String
Visibility: public
Access: Read

Description: Key is the key value associated with this hash item. It is stored when the item is created, and is
read-only.

See also: THTCustomNode.CreateWith (82)

4.18 THTDataNode

4.18.1 Description

THTDataNode is used by TDataHashTable (40) to store the hash items in. It simply holds the data
pointer.

It should not be necessary to use THTDat aNode directly, it’s only for inner use by TFPDat aHashTable

4.18.2 Property overview

Page Property Access Description
83 Data w Data pointer

4.18.3 THTDataNode.Data
Synopsis: Data pointer
Declaration: Property Data : pointer
Visibility: public
Access: Read,Write

Description: Pointer containing the user data associated with the hash value.

4.19 THTObjectNode

4.19.1 Description

THTOb jectNode is a THTCustomNode (82) descendent which holds the data in the TFPObjec-
tHashTable (71) hash table. It exposes a data string.

It should not be necessary to use THTOb jectNode directly, it’s only for inner use by TFPObjectHashTable

4.19.2 Property overview

Page Property Access Description
84 Data w Object instance

83

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.19.3 THTObjectNode.Data

Synopsis: Object instance
Declaration: Property Data : TObject
Visibility: public
Access: Read,Write

Description: Dat a is the object instance associated with the key value. It is exposed in TFPObjectHashTable.Items
(73)

See also: TFPObjectHashTable (71), TFPObjectHashTable.Items (73), THTOwnedObjectNode (84)

4.20 THTOwnedObjectNode

4.20.1 Description

THTOwnedObjectNode is used instead of THTObjectNode (83) in case TFPObjectHashTable
(71) owns it’s objects. When this object is destroyed, the associated data object is also destroyed.

4.20.2 Method overview

Page Property Description
84 Destroy Destroys the node and the object.

4.20.3 THTOwnedObjectNode.Destroy
Synopsis: Destroys the node and the object.

Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy first frees the data object, and then only frees itself.

See also: THTOwnedObjectNode (84), TFPObjectHashTable.OwnsObjects (73)

4.21 THTStringNode

4.21.1 Description

THTStringNode is a THTCustomNode (82) descendent which holds the data in the TFPString-
HashTable (81) hash table. It exposes a data string.

It should not be necessary to use THTSt ringNode directly, it’s only for inner use by TFPStringHashTable

4.21.2 Property overview

Page Property Access Description
85 Data w String data

84

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.21.3 THTStringNode.Data
Synopsis: String data
Declaration: Property Data : String
Visibility: public
Access: Read,Write

Description: Data is the data of this has node. The data is a string, associated with the key. It is also exposed in
TFPStringHashTable.Items (81)

See also: TFPStringHashTable (81)

4.22 TObjectList

4.22.1 Description

TObjectList is a TList (??) descendent which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TFPObjectList (73), TOb jectList offers a notification mechanism of list change
operations: insert, delete. This slows down bulk operations, so if the notifications are not needed,
TObjectList may be more appropriate.

4.22.2 Method overview

Page Property Description

86 Add Add an object to the list.

85 create Create a new object list.

86 Extract Extract an object from the list.

87 FindInstanceOf Search for an instance of a certain class

87 First Return the first non-nil object in the list

87 IndexOf Search for an object in the list

87 Insert Insert an object in the list.

88 Last Return the last non-nil object in the list.

86 Remove Remove (and possibly free) an element from the list.

4.22.3 Property overview

Page Property Access Description
88 Items ™w Indexed access to the elements of the list.
88 OwnsObjects 1w Should the list free elements when they are removed.

4.22.4 TObjectList.create

Synopsis: Create a new object list.

Declaration: constructor create
constructor create(freeobjects: Boolean)

Visibility: public

85

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

Description: Create instantiates a new object list. The FreeObjects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TObjectList.Destroy (85), TObjectList.OwnsObjects (88), TFPObjectList (73)

4.22.5 TObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: Add overrides the TList (??) implementation to accept objects (AObject) instead of pointers.
The function returns the index of the position where the object was added.
Errors: If the list must be expanded, and not enough memory is available, an exception may be raised.

See also: TObjectList.Insert (87), #rtl.classes. TList.Delete (??), TObjectList.Extract (86), TObjectList.Remove
(86)

4.22.6 TObjectList.Extract
Synopsis: Extract an object from the list.

Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes the object Item from the list if it is present in the list. Contrary to Remove (86),
Extract does not free the extracted element if OwnsObjects (88) is True

The function returns a reference to the item which was removed from the list, or Ni1l if no element
was removed.

Errors: None.

See also: TObjectList.Remove (86)

4.22.7 TObjectList.Remove

Synopsis: Remove (and possibly free) an element from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes Item from the list, if it is present in the list. It frees It em if OwnsObjects (88) is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TObjectList.Extract (86)

86

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.22.8 TODbjectList.IndexOf
Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public
Description: IndexOf overrides the TList (??) implementation to accept an object instance instead of a pointer.
The function returns the index of the first match for AOb ject in the list, or -1 if no match was found.
Errors: None.

See also: TObjectList.FindInstanceOf (87)

4.22.9 TObjectList.FindinstanceOf
Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOf will look through the instances in the list and will return the first instance which
is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Nil is returned.
Errors: None.

See also: TObjectList.IndexOf (87)

4.22.10 TObjectList.Insert
Synopsis: Insert an object in the list.
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insert inserts AObject in the list at position Index. The index is zero-based. This method
overrides the implementation in TList (??) to accept objects instead of pointers.

Errors: If an invalid Index is specified, an exception is raised.

See also: TObjectList.Add (86), TObjectList.Remove (86)

4.22.11 TObjectList.First
Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public

Description: Fi rst returns a reference to the first non-Ni1 element in the list. If no non-N1i1 element is found,
Nil is returned.

Errors: None.

See also: TObjectList.Last (88), TObjectList.Pack (85)

87

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.22.12 TObjectList.Last

Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public

Description: Last returns a reference to the last non-Ni1 element in the list. If no non-Ni1 element is found,
Nil is returned.

Errors: None.

See also: TObjectList.First (87), TObjectList.Pack (85)

4.22.13 TObjectList.OwnsObjects
Synopsis: Should the list free elements when they are removed.

Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObjects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TObjectList.Create (85), TObjectList.Delete (85), TObjectList.Remove (86), TObjectList.Clear (85)

4.22.14 TObjectList.ltems

Synopsis: Indexed access to the elements of the list.
Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Ttems is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from O (zero) to Count—-1.

See also: #rtl.classes. TList.Count (??)

4.23 TObjectQueue

4.23.1 Method overview
Page Property Description

89 Peek Look at the first object in the queue.
89 Pop Pop the first element off the queue
89 Push Push an object on the queue

88

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.23.2 TObjectQueue.Push
Synopsis: Push an object on the queue
Declaration: function Push (AObject: TObject) : TObject
Visibility: public
Description: Push pushes another object on the queue. It overrides the Push method as implemented in TQueue
so it accepts only objects as arguments.

Errors: If not enough memory is available to expand the queue, an exception may be raised.

See also: TObjectQueue.Pop (89), TObjectQueue.Peek (89)

4.23.3 TObjectQueue.Pop
Synopsis: Pop the first element off the queue
Declaration: function Pop : TObject
Visibility: public
Description: Pop removes the first element in the queue, and returns a reference to the instance. If the queue is
empty, Nil is returned.

Errors: None.

See also: TObjectQueue.Push (89), TObjectQueue.Peek (89)

4.23.4 TObjectQueue.Peek
Synopsis: Look at the first object in the queue.
Declaration: function Peek : TObject
Visibility: public
Description: Peek returns the first object in the queue, without removing it from the queue. If there are no more
objects in the queue, N1i1 is returned.

Errors: None

See also: TObjectQueue.Push (89), TObjectQueue.Pop (89)

4.24 TObjectStack

4.24.1 Description
TObjectStack is a stack implementation which manages pointers only.

TObjectStack introduces no new behaviour, it simply overrides some methods to accept and/or
return TOb ject instances instead of pointers.

4.24.2 Method overview

Page Property Description

90 Peek Look at the top object in the stack.
90 Pop Pop the top object of the stack.

90 Push Push an object on the stack.

&9

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.24.3 TObjectStack.Push

Synopsis: Push an object on the stack.
Declaration: function Push (AObject: TObject) : TObject
Visibility: public

Description: Push pushes another object on the stack. It overrides the Push method as implemented in TStack
S0 it accepts only objects as arguments.

Errors: If not enough memory is available to expand the stack, an exception may be raised.

See also: TObjectStack.Pop (90), TObjectStack.Peek (90)

4.24.4 TObjectStack.Pop
Synopsis: Pop the top object of the stack.

Declaration: function Pop : TObject
Visibility: public

Description: Pop pops the top object of the stack, and returns the object instance. If there are no more objects on
the stack, Ni1l is returned.

Errors: None

See also: TObjectStack.Push (90), TObjectStack.Peek (90)

4.24.5 TObjectStack.Peek

Synopsis: Look at the top object in the stack.
Declaration: function Peek : TObject
Visibility: public

Description: Peek returns the top object of the stack, without removing it from the stack. If there are no more
objects on the stack, Nil is returned.

Errors: None

See also: TObjectStack.Push (90), TObjectStack.Pop (90)

4.25 TOrderedList

4.25.1 Description

TOrderedList provides the base class for TQueue (93) and TStack (93). It provides an interface
for pushing and popping elements on or off the list, and manages the internal list of pointers.

Note that TOrderedList does not manage objects on the stack, i.e. objects are not freed when the
ordered list is destroyed.

90

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.25.2 Method overview
Page Property Description

92 AtLeast Check whether the list contains a certain number of elements.
91 Count Number of elements on the list.

91 Create Create a new ordered list

91 Destroy Free an ordered list

92 Peek Return the next element to be popped from the list.

92 Pop Remove an element from the list.

92 Push Push another element on the list.

4.25.3 TOrderedList.Create

Synopsis: Create a new ordered list
Declaration: constructor Create
Visibility: public
Description: Create instantiates a new ordered list. It initializes the internal pointer list.
Errors: None.

See also: TOrderedList.Destroy (91)

4.25.4 TOrderedList.Destroy
Synopsis: Free an ordered list

Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy cleans up the internal pointer list, and removes the TOrderedList instance from mem-
ory.

Errors: None.

See also: TOrderedList.Create (91)

4.25.5 TOrderedList.Count
Synopsis: Number of elements on the list.

Declaration: function Count : Integer
Visibility: public
Description: Count is the number of pointers in the list.
Errors: None.

See also: TOrderedList. AtLeast (92)

91

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.25.6 TOrderedList.AtLeast

Synopsis: Check whether the list contains a certain number of elements.
Declaration: function AtLeast (ACount: Integer) : Boolean
Visibility: public

Description: At Least returns True if the number of elements in the list is equal to or bigger than ACount. It
returns False otherwise.

Errors: None.

See also: TOrderedList.Count (91)

4.25.7 TOrderedList.Push
Synopsis: Push another element on the list.

Declaration: function Push (AItem: Pointer) : Pointer
Visibility: public
Description: Push adds ATtem to the list, and returns ATt em.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TOrderedList.Pop (92), TOrderedList.Peek (92)

4.25.8 TOrderedList.Pop

Synopsis: Remove an element from the list.
Declaration: function Pop : Pointer
Visibility: public

Description: Pop removes an element from the list, and returns the element that was removed from the list. If no
element is on the list, Ni1 is returned.

Errors: None.

See also: TOrderedList.Peek (92), TOrderedList.Push (92)

4.25.9 TOrderedList.Peek

Synopsis: Return the next element to be popped from the list.
Declaration: function Peek : Pointer
Visibility: public

Description: Peek returns the element that will be popped from the list at the next call to Pop (92), without
actually popping it from the list.

Errors: None.

See also: TOrderedList.Pop (92), TOrderedList.Push (92)

92

CHAPTER 4. REFERENCE FOR UNIT "CONTNRS’

4.26 TQueue

4.26.1 Description

TQueue is a descendent of TOrderedList (90) which implements Push (92) and Pop (92) behaviour
as a queue: what is first pushed on the queue, is popped of first (FIFO: First in, first out).

TQueue offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(90)

4.27 TStack

4.27.1 Description

TStack is a descendent of TOrderedList (90) which implements Push (92) and Pop (92) behaviour
as a stack: what is last pushed on the stack, is popped of first (LIFO: Last in, first out).

TStack offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(90)

93

Chapter 5

Reference for unit ’dbugintf’

5.1 Writing a debug server

Writing a debug server is relatively easy. It should instantiate a TSimpleIPCServer class from
the SimpleIPC (94) unit, and use the DebugServerID as ServerID identification. This constant,
as well as the record containing the message which is sent between client and server is defined in the
msgintf unit.

The dbugintf unit relies on the SimpleIPC (94) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (94) unit should also be functional.

5.2 Overview

Use dbugintf to add debug messages to your application. The messages are not sent to standard
output, but are sent to a debug server process which collects messages from various clients and
displays them somehow on screen.

The unit is transparant in its use: it does not need initialization, it will start the debug server by itself
if it can find it: the program should be called debugserver and should be in the PATH. When the
first debug message is sent, the unit will initialize itself.

The FCL contains a sample debug server (dbugsvr) which can be started in advance, and which
writes debug message to the console (both on Windows and Linux). The Lazarus project contains a
visual application which displays the messages in a GUIL

The dbugintf unit relies on the SimpleIPC (94) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (94) unit should also be functional.

5.3 Constants, types and variables

5.3.1 Resource strings

SEntering = ’'> Entering '
String used when sending method enter message.

SExiting = < Exiting '

94

CHAPTER 5. REFERENCE FOR UNIT 'DBUGINTF’

String used when sending method exit message.

SProcessID = 'Process %s’

String used when sending identification message to the server.
SSeparator = '>-—=—=—=-=-=-=—=-=-=—=-=—=-=—=-J'

String used when sending a separator line.

5.3.2 Constants

SendError : String = '’

Whenever a call encounteres an exception, the exception message is stored in this variable.

5.3.3 Types

TDebugLevel = (dlInformation,dlWarning,dlError)

Table 5.1: Enumeration values for type TDebugLevel

Value Explanation

dlError Error message
dlInformation Informational message
dlWarning Warning message

TDebugLevel indicates the severity level of the debug message to be sent. By default, an informa-
tional message is sent.

5.4 Procedures and functions

5.4.1 GetDebuggingEnabled
Declaration: function GetDebuggingEnabled : Boolean
Visibility: default

5.4.2 InitDebugClient
Synopsis: Initialize the debug client.
Declaration: function InitDebugClient : Boolean
Visibility: default

Description: InitDebugClient starts the debug server and then performs all necessary initialization of the
debug IPC communication channel.

Normally this function should not be called. The SendDebug (96) call will initialize the debug client
when it is first called.

Errors: None.

See also: SendDebug (96), StartDebugServer (99)

95

CHAPTER 5. REFERENCE FOR UNIT 'DBUGINTF’

5.4.3 SendBoolean
Synopsis: Send the value of a boolean variable
Declaration: procedure SendBoolean (const Identifier: String;const Value: Boolean)
Visibility: default

Description: SsendBoolean is a simple wrapper around SendDebug (96) which sends the name and value of a
boolean value as an informational message.

Errors: None.
See also: SendDebug (96), SendDateTime (96), SendInteger (97), SendPointer (98)

5.4.4 SendDateTime
Synopsis: Send the value of a TDateTime variable.

Declaration:procedure SendDateTime (const Identifier: String;const Value: TDateTime)

Visibility: default

Description: SendDateTime is a simple wrapper around SendDebug (96) which sends the name and value of an
integer value as an informational message. The value is converted to a string using the DateTimeToStr

(??) call.
Errors: None.
See also: SendDebug (96), SendBoolean (96), SendInteger (97), SendPointer (98)

5.4.5 SendDebug

Synopsis: Send a message to the debug server.
Declaration: procedure SendDebug (const Msg: String)

Visibility: default

Description: SendDebug sends the message Msg to the debug server as an informational message (debug level
dlInformation). If no debug server is running, then an attempt will be made to start the server

first.

The binary that is started is called debugserver and should be somewhere on the PATH. A sample
binary which writes received messages to standard output is included in the FCL, it is called dbugsrv.
This binary can be renamed to debugserver or can be started before the program is started.

Errors: Errors are silently ignored, any exception messages are stored in SendError (95).

See also: SendDebugEx (96), SendDebugFmt (97), SendDebugFmtEx (97)

5.4.6 SendDebugEx

Synopsis: Send debug message other than informational messages

Declaration: procedure SendDebugEx (const Msg: String;MType: TDebugLevel)

Visibility: default

96

CHAPTER 5. REFERENCE FOR UNIT 'DBUGINTF’

Description: SendDebugEx allows to specify the debug level of the message to be sent in MType. By default,
SendDebug (96) uses informational messages.

Other than that the function of SendDebugEx is equal to that of SendDebug
Errors: None.

See also: SendDebug (96), SendDebugFmt (97), SendDebugFmtEx (97)

5.4.7 SendDebugFmt

Synopsis: Format and send a debug message
Declaration: procedure SendDebugFmt (const Msg: String;const Args: Array of const)
Visibility: default

Description: sendDebugFmt is a utility routine which formats a message by passing Msg and Args to Format
(??) and sends the result to the debug server using SendDebug (96). It exists mainly to avoid the
Format call in calling code.

Errors: None.

See also: SendDebug (96), SendDebugEx (96), SendDebugFmtEx (97), #rtl.sysutils.format (??)

5.4.8 SendDebugFmtEx

Synopsis: Format and send message with alternate type

Declaration: procedure SendDebugFmtEx (const Msg: String;const Args: Array of const;
MType: TDebugLevel)

Visibility: default

Description: sendDebugFmtEx is a utility routine which formats a message by passing Msg and Args to
Format (??) and sends the result to the debug server using SendDebugEx (96) with Debug level
MType. It exists mainly to avoid the Format call in calling code.

Errors: None.

See also: SendDebug (96), SendDebugEx (96), SendDebugFmt (97), #rtl.sysutils.format (??)

5.4.9 Sendinteger

Synopsis: Send the value of an integer variable.

Declaration: procedure SendInteger (const Identifier: String;const Value: Integer;
HexNotation: Boolean)

Visibility: default

Description: sendInteger is a simple wrapper around SendDebug (96) which sends the name and value of
an integer value as an informational message. If HexNotation is True, then the value will be
displayed using hexadecimal notation.

Errors: None.

See also: SendDebug (96), SendBoolean (96), SendDateTime (96), SendPointer (98)

97

CHAPTER 5. REFERENCE FOR UNIT 'DBUGINTF’

5.4.10 SendMethodEnter

Synopsis: Send method enter message
Declaration: procedure SendMethodEnter (const MethodName: String)
Visibility: default

Description: SsendMethodEnter sends a "Entering MethodName" message to the debug server. After that it
increases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odExit (98), the indentation of messages can be decreased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Errors: None.

See also: SendDebug (96), SendMethodExit (98), SendSeparator (99)

5.4.11 SendMethodEXxit
Synopsis: Send method exit message

Declaration: procedure SendMethodExit (const MethodName: String)
Visibility: default

Description: SendMethodExit sends a "Exiting MethodName" message to the debug server. After that it
decreases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odEnter (98), the indentation of messages can be increased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Note that the indentation level will not be made negative.
Errors: None.

See also: SendDebug (96), SendMethodEnter (98), SendSeparator (99)

5.4.12 SendPointer

Synopsis: Send the value of a pointer variable.
Declaration: procedure SendPointer (const Identifier: String;const Value: Pointer)
Visibility: default

Description: sendInteger is a simple wrapper around SendDebug (96) which sends the name and value of
a pointer value as an informational message. The pointer value is displayed using hexadecimal
notation.

Errors: None.

See also: SendDebug (96), SendBoolean (96), SendDateTime (96), SendInteger (97)

98

CHAPTER 5. REFERENCE FOR UNIT 'DBUGINTF’

5.4.13 SendSeparator

Synopsis: Send a separator message
Declaration: procedure SendSeparator
Visibility: default

Description: sendSeparator is a simple wrapper around SendDebug (96) which sends a short horizontal line
to the debug server. It can be used to visually separate execution of blocks of code or blocks of
values.

Errors: None.

See also: SendDebug (96), SendMethodEnter (98), SendMethodExit (98)

5.4.14 SetDebuggingEnabled

Declaration: procedure SetDebuggingEnabled(const AValue: Boolean)

Visibility: default

5.4.15 StartDebugServer

Synopsis: Start the debug server
Declaration: function StartDebugServer : Integer
Visibility: default

Description: startDebugServer attempts to start the debug server. The process started is called debugserver
and should be located in the PATH.

Normally this function should not be called. The SendDebug (96) call will attempt to start the server
by itself if it is not yet running.

Errors: On error, False is returned.

See also: SendDebug (96), InitDebugClient (95)

99

Chapter 6

Reference for unit ’dbugmsg’

6.1 Used units

Table 6.1: Used units by unit ’"dbugmsg’

Name Page
Classes 2?

6.2 Overview

dbugmsg is an auxialiary unit used in the dbugintf (94) unit. It defines the message protocol used
between the debug unit and the debug server.

6.3 Constants, types and variables

6.3.1 Constants

DebugServerID : String = ' fpcdebugserver’

DebugServerID is a string which is used when creating the message protocol, it is used when
identifying the server in the (platform dependent) client-server protocol.

lctError = 2
lctError is the identification of error messages.
lctIdentify = 3

lctIdentify is sent by the client to a server when it first connects. It’s the first message, and
contains the name of client application.

lctInformation = 0

100

CHAPTER 6. REFERENCE FOR UNIT 'DBUGMSG’

lctInformation is the identification of informational messages.
lctStop = -1

lctStop is sent by the client to a server when it disconnects.
lctWarning = 1

lctWarning is the identification of warning messages.

6.3.2 Types

TDebugMessage = record
MsgType : Integer;
MsgTimeStamp : TDateTime;
Msg : String;

end

TDebugMessage is a record that describes the message passed from the client to the server. It
should not be passed directly in shared memory, as the string containing the message is allocated
on the heap. Instead, the WriteDebugMessageToStream (102) and ReadDebugMessageFromStream
(101) can be used to read or write the message from/to a stream.

6.4 Procedures and functions

6.4.1 DebugMessageName
Synopsis: Return the name of the debug message
Declaration: function DebugMessageName (msgType: Integer) : String
Visibility: default

Description: DebugMessageName returns the name of the message type. It can be used to examine the
MsgType field of a TDebugMessage (101) record, and if msgType contains a known type, it returns
a string describing this type.

Errors: If MsgType contains an unknown type, ' Unknown’ is returned.

6.4.2 ReadDebugMessageFromStream
Synopsis: Read a message from stream

Declaration: procedure ReadDebugMessageFromStream (AStream: TStream;
var Msg: TDebugMessage)

Visibility: default

Description: ReadDebugMessageFromSt ream reads a TDebugMessage (101) record (Msg) from the stream
AStream.

The record is not read in a byte-ordering safe way, i.e. it cannot be exchanged between little- and
big-endian systems.

Errors: If the stream contains not enough bytes or is malformed, then an exception may be raised.

See also: TDebugMessage (101), WriteDebugMessageToStream (102)

101

CHAPTER 6. REFERENCE FOR UNIT 'DBUGMSG’

6.4.3 WriteDebugMessageToStream

Synopsis: Write a message to stream

Declaration: procedure WriteDebugMessageToStream(AStream: TStream;
const Msg: TDebugMessage)

Visibility: default

Description: WriteDebugMessageFromSt ream writes a TDebugMessage (101) record (Msg) to the stream
AStream.

The record is not written in a byte-ordering safe way, i.e. it cannot be exchanged between little- and
big-endian systems.

Errors: A stream write error may occur if the stream cannot be written to.

See also: TDebugMessage (101), ReadDebugMessageToStream (100)

102

Chapter 7

Reference for unit ’eventlog’

7.1 Used units

Table 7.1: Used units by unit ’eventlog’

Name Page
Classes 2?
sysutils 7?

7.2 Overview

The EventLog unit implements the TEventLog (105) component, which is a component that can be
used to send log messages to the system log (if it is available) or to a file.

7.3 Constants, types and variables

7.3.1 Resource strings

SLogCustom = ’Custom (%d)’
Custom message formatting string
SLogDebug = ’'Debug’

Debug message name

SLogError = "Error’

Error message name

SLogInfo = 'Info’

Informational message name

103

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

SLogWarning = ’'Warning’

Warning message name

7.3.2 Types

TEventType = (etCustom,etInfo,etWarning,etError,etDebug)

Table 7.2: Enumeration values for type TEventType

Value Explanation
etCustom Custom event type.
etDebug Debug event
etError Error event

etInfo Informational event
etWarning Warning event

TEventType determines the type of event. Depending on the system logger, the log event may
end up in different places, or may be displayed in a different manner. A suitable mapping is shown
for each system. In the case of Windows, the formatting of the message is done differently, and a
different icon is shown for each type of message.

TLogCategoryEvent = procedure (Sender: TObject;var Code: Word) of object

TLogCategoryEvent is the event type for the TEventLog.OnGetCustomCategory (111) event
handler. It should return a OS event catagory code for the et Custom log event type in the Code
parameter.

TLogCodeEvent = procedure (Sender: TObject;var Code: DWord) of object

TLogCodeEvent is the event type for the OnGetCustomEvent (111) and OnGetCustomEventID
(111) event handlers. It should return a OS system log code for the et Custom log event or event
ID type in the Code parameter.

TLogType = (ltSystem,ltFile)

Table 7.3: Enumeration values for type TLogType

Value Explanation
ItFile Write to file
ItSystem Use the system log

TLogType determines where the log messages are written. It is the type of the TEventLog.LogType
(108) property. It can have 2 values:

ItFile This is used to write all messages to file. if no system logging mechanism exists, this is used
as a fallback mechanism.

ItSystem This is used to send all messages to the system log mechanism. Which log mechanism this
is, depends on the operating system.

104

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.4 ELogError

7.4.1

Description

ELogError is the exception used in the TEventLog (105) component to indicate errors.

7.5 TEventLog

7.5.1

Description

TEventLog is a component which can be used to send messages to the system log. In case no
system log exists (such as on Windows 95/98 or DOS), the messages are written to a file. Messages
can be logged using the general Log (107) call, or the specialized Warning (107), Error (107), Info
(108) or Debug (108) calls, which have the event type predefined.

7.5.2 Method overview
Page Property Description
108 Debug Log a debug message
105 Destroy Clean up TEventLog instance
107 Error Log an error message to
106 EventTypeToString Create a string representation of an event type
108 Info Log an informational message
107 Log Log a message to the system log.
106 RegisterMessageFile Register message file
107 Warning Log a warning message.
7.5.3 Property overview
Page Property Access Description
109 Active W Activate the log mechanism
110 CustomLogType W Custom log type ID
109 DefaultEventType W Default event type for the Log (107) call.
110 EventIDOffset ™w Offset for event ID messages identifiers
109 FileName w File name for log file
108 Identification w Identification string for messages
108 LogType W Log type
111 OnGetCustomCategory 1w Event to retrieve custom message category
111 OnGetCustomEvent ™w Event to retrieve custom event Code
111 OnGetCustomEventID rw Event to retrieve custom event ID
110 TimeStampFormat w Format for the timestamp string
7.5.4 TEventLog.Destroy

Synopsis: Clean up TEventLog instance

Declaration: destructor Destroy;

Visibility: public

Override

Description: Destroy cleans up the TEventLog instance. It cleans any log structures that might have been set
up to perform logging, by setting the Active (109) property to False.

105

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

See also: TEventLog.Active (109)

7.5.5 TEventLog.EventTypeToString

Synopsis: Create a string representation of an event type
Declaration: function EventTypeToString(E: TEventType) : String
Visibility: public

Description: Event TypeToString converts the event type E to a suitable string representation for logging
purposes. It’s mainly used when writing messages to file, as the system log usually has it’s own
mechanisms for displaying the various event types.

See also: TEventType (104)

7.5.6 TEventLog.RegisterMessageFile
Synopsis: Register message file

Declaration: function RegisterMessageFile (AFileName: String) : Boolean; Virtual
Visibility: public

Description: RegisterMessageFile is used on Windows to register the file AFileName containing the
formatting strings for the system messages. This should be a file containing resource strings. If
AFileName is empty, the filename of the application binary is substituted.

When a message is logged to the windows system log, Windows looks for a formatting string in the
file registered with this call.

There are 2 kinds of formatting strings:

Category strings these should be numbered from 1 to 4

1Should contain the description of the et Info event type.
2Should contain the description of the etWarning event type.
4Should contain the description of the et Error event type.
4Should contain the description of the et Debug event type.

None of these strings should have a string substitution placeholder.

The second type of strings are the message definitions. Their number starts at EventIDOffset (110)
(default is 1000) and each string should have 1 placeholder.

Free Pascal comes with a fclel.res resource file which contains default values for the 8 strings, in
english. It can be linked in the application binary with the statement

{SR fclel.res}

This file is generated from the fclel.mc and fclel.rc files that are distributed with the Free Pascal
sources.

If the strings are not registered, windows will still display the event messages, but they will not be
formatted nicely.

Note that while any messages logged with the event logger are displayed in the event viewern Win-
dows locks the file registered here. This usually means that the binary is locked.

On non-windows operating systems, this call is ignored.

Errors: If AFileName is invalid, false is returned.

106

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.5.7 TEventLog.Log
Synopsis: Log a message to the system log.

Declaration: procedure Log(EventType: TEventType;Msg: String); Overload
procedure Log (EventType: TEventType;Fmt: String;Args: Array of const)
; Overload
procedure Log(Msg: String); Overload
procedure Log(Fmt: String;Args: Array of const); Overload

Visibility: public
Description: Log sends a log message to the system log. The message is either the parameter Msg as is, or is
formatted from the Fmt and Args parameters. If EventType is specified, then it is used as the

message event type. If EventType is omitted, then the event type is determined from Default-
EventType (109).

If Event Type is et Custom, then the OnGetCustomEvent (111), OnGetCustomEventID (111) and
OnGetCustomCategory (111).

The other logging calls: Info (108), Warning (107), Error (107) and Debug (108) use the Log call to
do the actual work.

See also: TEventLog.Info (108), TEventLog.Warning (107), TEventLog.Error (107), TEventLog.Debug (108),
TEventLog.OnGetCustomEvent (111), TEventLog.OnGetCustomEventID (111), TEventLog.OnGetCustomCategory
(111)

7.5.8 TEventLog.Warning
Synopsis: Log a warning message.

Declaration: procedure Warning(Msg: String); Overload
procedure Warning (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Warning is a utility function which logs a message with the etWarning type. The message is
either the parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (107), TEventLog.Info (108), TEventLog.Error (107), TEventLog.Debug (108)

7.5.9 TEventLog.Error
Synopsis: Log an error message to

Declaration: procedure Error (Msg: String); Overload
procedure Error (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Error is a utility function which logs a message with the etError type. The message is either
the parameter Msgq as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (107), TEventLog.Info (108), TEventLog.Warning (107), TEventLog.Debug (108)

107

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.5.10 TEventLog.Debug
Synopsis: Log a debug message

Declaration: procedure Debug (Msg: String); Overload
procedure Debug (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Debug is a utility function which logs a message with the et Debug type. The message is either
the parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (107), TEventLog.Info (108), TEventLog.Warning (107), TEventLog.Error (107)

7.5.11 TEventLog.Info

Synopsis: Log an informational message

Declaration: procedure Info (Msg: String); Overload
procedure Info(Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Info is a utility function which logs a message with the et Info type. The message is either the
parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (107), TEventLog.Warning (107), TEventLog.Error (107), TEventLog.Debug (108)

7.5.12 TEventLog.ldentification

Synopsis: Identification string for messages
Declaration: Property Identification : String
Visibility: published
Access: Read,Write

Description: Identification is used as a string identifying the source of the messages in the system log. If
it is empty, the filename part of the application binary is used.

See also: TEventLog.Active (109), TEventLog. TimeStampFormat (110)

7.5.13 TEventLog.LogType
Synopsis: Log type
Declaration: Property LogType : TLogType
Visibility: published
Access: Read,Write

Description: LogType is the type of the log: if it is 1t System, then the system log is used, if it is available.
Ifitis 1tFile or there is no system log available, then the log messages are written to a file. The
name for the log file is taken from the FileName (109) property.

See also: TEventLog.FileName (109)

108

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.5.14 TEventLog.Active

Synopsis: Activate the log mechanism
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive determines whether the log mechanism is active: if set to True, the component connects
to the system log mechanism, or opens the log file if needed. Any attempt to log a message while the
log is not active will try to set this property to True. Disconnecting from the system log or closing
the log file is done by setting the Act ive property to False.

If the connection to the system logger fails, or the log file cannot be opened, then setting this property
may result in an exception.

See also: TEventLog.Log (107)

7.5.15 TEventLog.DefaultEventType
Synopsis: Default event type for the Log (107) call.

Declaration: Property DefaultEventType : TEventType
Visibility: published
Access: Read,Write

Description: DefaultEvent Type is the event type used by the Log (107) call if it’'s Event Type parameter
is omitted.

See also: TEventLog.Log (107)

7.5.16 TEventLog.FileName
Synopsis: File name for log file

Declaration: Property FileName : String
Visibility: published
Access: Read,Write

Description: FileName is the name of the log file used to log messages if no system logger is available or the
LogType (104) is 1tFile. If none is specified, then the name of the application binary is used, with
the extension replaced by .log. The file is then located in the /tmp directory on unix-like systems, or
in the application directory for Dos/Windows like systems.

See also: TEventType.LogType (104)

109

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.5.17 TEventLog.TimeStampFormat

Synopsis: Format for the timestamp string
Declaration: Property TimeStampFormat : String
Visibility: published
Access: Read,Write

Description: TimeStampFormat is the formatting string used to create a timestamp string when writing log
messages to file. It should have a format suitable for the FormatDateTime (??) call. If it is left empty,
then yyyy-mm-dd hh:nn:ss.zzz is used.

See also: TEventLog.Identification (108)

7.5.18 TEventLog.CustomLogType
Synopsis: Custom log type ID
Declaration: Property CustomLogType : Word
Visibility: published
Access: Read,Write

Description: CustomLogType is used in the EventTypeToString (106) to format the custom log event type
string.

See also: TEventLog.EventTypeToString (106)

7.5.19 TEventLog.EventlDOffset

Synopsis: Offset for event ID messages identifiers
Declaration: Property EventIDOffset : DWord
Visibility: published
Access: Read,Write
Description: Event IDOf fset is the offset for the message formatting strings in the windows resource file.

This property is ignored on other platforms.

The message strings in the file registered with the RegisterMessageFile (106) call are windows re-
source strings. They each have a unique ID, which must be communicated to windows. In the
resource file distributed by Free Pascal, the resource strings are numbered from 1000 to 1004. The
actual number communicated to windows is formed by adding the ordinal value of the message’s
eventtype to Event IDOf fset (which is by default 1000), which means that by default, the string

numbers are:

1000Custom event types
1001Information event type
1002Warning event type
1003Error event type
1004Debug event type

See also: TEventLog.RegisterMessageFile (106)

110

CHAPTER 7. REFERENCE FOR UNIT ’EVENTLOG’

7.5.20 TEventLog.OnGetCustomCategory

Synopsis: Event to retrieve custom message category
Declaration: Property OnGetCustomCategory : TLogCategoryEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomCategory is called on the windows platform to determine the category of a custom
event type. It should return an ID which will be used by windows to look up the string which
describes the message category in the file containing the resource strings.

See also: TEventLog.OnGetCustomEventID (111), TEventLog.OnGetCustomEvent (111)

7.5.21 TEventLog.OnGetCustomEventID

Synopsis: Event to retrieve custom event ID
Declaration: Property OnGetCustomEventID : TLogCodeEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomEvent ID is called on the windows platform to determine the category of a custom
event type. It should return an ID which will be used by windows to look up the string which formats
the message, in the file containing the resource strings.

See also: TEventLog.OnGetCustomCategory (111), TEventLog.OnGetCustomEvent (111)

7.5.22 TEventLog.OnGetCustomEvent

Synopsis: Event to retrieve custom event Code
Declaration: Property OnGetCustomEvent : TLogCodeEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomEvent is called on the windows platform to determine the event code of a custom
event type. It should return an ID.

See also: TEventLog.OnGetCustomCategory (111), TEventLog.OnGetCustomEventID (111)

111

Chapter 8

Reference for unit ’ezcgi’

8.1 Used units

>

Table 8.1: Used units by unit "ezcgi

Name Page
Classes ??
strings 112
sysutils 2?

8.2 Overview

ezcgi, written by Michael Hess, provides a single class which offers simple access to the CGI en-
vironment which a CGI program operates under. It supports both GET and POST methods. It’s
intended for simple CGI programs which do not need full-blown CGI support. File uploads are not
supported by this component.

To use the unit, a descendent of the TEZCGI class should be created and the DoPost (115) or DoGet
(115) methods should be overidden.

8.3 Constants, types and variables

8.3.1 Constants
hexTable = "0123456789ABCDEF’

String constant used to convert a number to a hexadecimal code or back.

8.4 ECGIException

8.4.1 Description
Exception raised by TEZcgi (113)

112

CHAPTER 8. REFERENCE FOR UNIT "EZCGI’

8.5 TEZcgi

8.5.1 Description

TEZcgi implements all functionality to analyze the CGI environment and query the variables present
in it. It’s main use is the exposed variables.

Programs wishing to use this class should make a descendent class of this class and override the
DoPost (115) or DoGet (115) methods. To run the program, an instance of this class must be created,
and it’s Run (114) method should be invoked. This will analyze the environment and call the DoPost
or DoGet method, depending on what HTTP method was used to invoke the program.

8.5.2 Method overview

Page Property Description

113 Create Creates a new instance of the TEZCGI component
113 Destroy Removes the TEZCGI component from memory
115 DoGet Method to handle GET requests

115 DoPost Method to handle POST requests

115 GetValue Return the value of a request variable.

114 PutLine Send a line of output to the web-client

114 Run Run the CGI application.

114 WriteContent Writes the content type to standard output

8.5.3 Property overview

Page Property Access Description

117 Email ™w Email of the server administrator

117 Name ™w Name of the server administrator

116 Names r Indexed array with available variable names.

115 Values r Variables passed to the CGI script

117 VariableCount r Number of available variables.

116 Variables r Indexed array with variables as name=value pairs.

8.5.4 TEZcgi.Create
Synopsis: Creates a new instance of the TEZCGI component

Declaration: constructor Create
Visibility: public

Description: Create initializes the CGI program’s environment: it reads the environment variables passed to
the CGI program and stores them in the Variable (112) property.

See also: TZECGI. Variables (112), TZECGI.Names (112), TZECGI.Values (112)

8.5.5 TEZcgi.Destroy

Synopsis: Removes the TEZCGI component from memory
Declaration: destructor Destroy; Override

Visibility: public

113

CHAPTER 8. REFERENCE FOR UNIT "EZCGI’

Description: Destroy removes all variables from memory and then calls the inherited destroy, removing the
TEZCGI instance from memory.

Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TEZcgi.Create (113)

8.5.6 TEZcgi.Run
Synopsis: Run the CGI application.

Declaration: procedure Run
Visibility: public

Description: Run analyses the variables passed to the application, processes the request variables (it stores them
in the Variables (112) property) and calls the DoPost (115) or DoGet (115) methods, depending on
the method passed to the web server.

After creating the instance of TEZCGI, the Run method is the only method that should be called
when using this component.

See also: TZECGI. Variables (112), TEZCGIL.DoPost (115), TEZCGLDoGet (115)

8.5.7 TEZcgi.WriteContent

Synopsis: Writes the content type to standard output
Declaration: procedure WriteContent (ctype: String)
Visibility: public

Description: WriteContent writes the content type cType to standard output, followed by an empty line.
After this method was called, no more HTTP headers may be written to standard output. Any HTTP
headers should be written before WriteContent is called. It should be called from the DoPost
(115) or DoGet (115) methods.

See also: TEZCGI.DoPost (115), TEZCGILDoGet (115), TEZcgi.PutLine (114)

8.5.8 TEZcgi.PutLine

Synopsis: Send a line of output to the web-client
Declaration: procedure PutLine (sOut: String)
Visibility: public

Description: Put Line writes a line of text (sOut) to the web client (currently, to standard output). It should
be called only after WriteContent (114) was called with a content type of text. The sent text is not
processed in any way, i.e. no HTML entities or so are inserted instead of special HTML characters.
This should be done by the user.

Errors: No check is performed whether the content type is right.

See also: TEZcgi.WriteContent (114)

114

CHAPTER 8. REFERENCE FOR UNIT "EZCGI’

8.5.9 TEZcgi.GetValue

Synopsis: Return the value of a request variable.
Declaration: function GetValue (Index: String;defaultValue: String) : String
Visibility: public

Description: GetValue returns the value of the variable named Index, and returns DefaultValue if it is
empty or does not exist.

See also: TEZCGI. Values (115)

8.5.10 TEZcgi.DoPost
Synopsis: Method to handle POST requests

Declaration: procedure DoPost; Virtual
Visibility: public

Description: DoPost is called by the Run (114) method the POST method was used to invoke the CGI applica-
tion. It should be overridden in descendents of TEZcgi to actually handle the request.

See also: TEZcgi.Run (114), TEZcgi.DoGet (115)

8.5.11 TEZcgi.DoGet

Synopsis: Method to handle GET requests
Declaration: procedure DoGet; Virtual
Visibility: public

Description: DoGet is called by the Run (114) method the GET method was used to invoke the CGI application.
It should be overridden in descendents of TEZcgi to actually handle the request.

See also: TEZcgi.Run (114), TEZcgi.DoPost (115)

8.5.12 TEZcgi.Values
Synopsis: Variables passed to the CGI script

Declaration: Property Values[Index: String]: String
Visibility: public
Access: Read

Description: values is a name-based array of variables that were passed to the script by the web server or the
HTTP request. The Index variable is the name of the variable whose value should be retrieved. The
following standard values are available:

AUTH_TYPEAuthorization type
CONTENT_LENGTHContent length
CONTENT_TYPEContent type

115

CHAPTER 8. REFERENCE FOR UNIT "EZCGI’

GATEWAY_INTERFACEUsed gateway interface
PATH_INFORequested URL
PATH_TRANSLATEDTransformed URL
QUERY_STRINGClient query string
REMOTE_ADDRAddress of remote client
REMOTE_HOSTDNS name of remote client
REMOTE_IDENTRemote identity.
REMOTE_USERRemote user
REQUEST_METHODRequest methods (POST or GET)
SCRIPT_NAMEScript name
SERVER_NAMEServer host name
SERVER_PORTServer port
SERVER_PROTOCOLServer protocol
SERVER_SOFTWAREWEeb server software
HTTP_ACCEPT Accepted responses
HTTP_ACCEPT_CHARSET Accepted character sets
HTTP_ACCEPT_ENCODINGAccepted encodings
HTTP_IF_MODIFIED_SINCEProxy information
HTTP_REFERERReferring page
HTTP_USER_AGENTC Client software name

Other than the standard list, any variables that were passed by the web-client request, are also avail-
able. Note that the variables are case insensitive.

See also: TEZCGI. Variables (116), TEZCGI.Names (116), TEZCGI.GetValue (115), TEZcgi.VariableCount
(117)

8.5.13 TEZcgi.Names

Synopsis: Indexed array with available variable names.
Declaration: Property Names[Index: Integer]: String
Visibility: public
Access: Read

Description: Names provides indexed access to the available variable names. The Index may run from O to
VariableCount (117). Any other value will result in an exception being raised.

See also: TEZcgi.Variables (116), TEZcgi.Values (115), TEZcgi.GetValue (115), TEZcgi.VariableCount (117)

8.5.14 TEZcgi.Variables

Synopsis: Indexed array with variables as name=value pairs.
Declaration: Property Variables[Index: Integer]: String

Visibility: public

116

CHAPTER 8. REFERENCE FOR UNIT "EZCGI’

Access: Read

Description: Variables provides indexed access to the available variable names and values. The variables are
returned as Name=Value pairs. The Index may run from O to VariableCount (117). Any other
value will result in an exception being raised.

See also: TEZcgi.Names (116), TEZcgi.Values (115), TEZcgi.GetValue (115), TEZcgi.VariableCount (117)

8.5.15 TEZcgi.VariableCount

Synopsis: Number of available variables.
Declaration: Property VariableCount : Integer
Visibility: public
Access: Read

Description: TEZcgi . VariableCount returns the number of available CGI variables. This includes both the
standard CGI environment variables and the request variables. The actual names and values can be
retrieved with the Names (116) and Variables (116) properties.

See also: TEZcgi.Names (116), TEZcgi.Variables (116), TEZcgi.Values (115), TEZcgi.GetValue (115)

8.5.16 TEZcgi.Name

Synopsis: Name of the server administrator
Declaration: Property Name : String
Visibility: public
Access: Read,Write

Description: Name is used when displaying an error message to the user. This should set prior to calling the
TEZcgi.Run (114) method.

See also: TEZcgi.Run (114), TEZcgi.Email (117)

8.5.17 TEZcgi.Email

Synopsis: Email of the server administrator
Declaration: Property Email : String
Visibility: public
Access: Read,Write

Description: Email is used when displaying an error message to the user. This should set prior to calling the
TEZcgi.Run (114) method.

See also: TEZcgi.Run (114), TEZcgi.Name (117)

117

Chapter 9

Reference for unit ’gettext’

9.1 Used units

Table 9.1: Used units by unit ’gettext’

Name Page
Classes 2?
sysutils 7?

9.2 Overview

The gettext unit can be used to hook into the resource string mechanism of Free Pascal to provide
translations of the resource strings, based on the GNU gettext mechanism. The unit provides a class
(TMOFile (120)) to read the .mo files with localizations for various languages. It also provides a
couple of calls to translate all resource strings in an application based on the translations in a .mo
file.

9.3 Constants, types and variables

9.3.1 Constants
MOFileHeaderMagic = $950412de

This constant is found as the first integer in a .mo
9.3.2 Types

PLongWordArray = "“TLongWordArray
Pointer to a TLongWordArray (119) array.

PMOStringTable = ~TMOStringTable

118

CHAPTER 9. REFERENCE FOR UNIT "GETTEXT’

Pointer to a TMOStringTable (119) array.

PPCharArray = "TPCharArray

Pointer to a TPCharArray (119) array.

TLongWordArray = Array[0..(1shl30)divSizeOf (LongWord)] of LongWord

TLongWordArray is an array used to define the PLongWordArray (118) pointer. A variable of
type TLongWordArray should never be directly declared, as it would occupy too much memory.
The PLongWordArray type can be used to allocate a dynamic number of elements.

TMOFileHeader = packed record

magic : LongWord;
revision : LongWord;
nstrings : LongWord;

OrigTabOffset : LongWord;

TransTabOffset : LongWord;

HashTabSize : LongWord;

HashTabOffset : LongWord;
end

This structure describes the structure of a .mo file with string localizations.

TMOStringInfo = packed record
length : LongWord;
offset : LongWord;

end

This record is one element in the string tables describing the original and translated strings. It de-
scribes the position and length of the string. The location of these tables is stored in the TMOFile-
Header (119) record at the start of the file.

TMOStringTable = Array[0..(1shl130)divSizeOf (IMOStringInfo)] of TMOStringInfo

TMOStringTable is an array type containing TMOStringInfo (119) records. It should never be
used directly, as it would occupy too much memory.

TPCharArray = Array[0..(1shl30)divSizeOf (PChar)] of PChar

TLongWordArray is an array used to define the PPCharArray (119) pointer. A variable of type
TPCharArray should never be directly declared, as it would occupy too much memory. The
PPCharArray type can be used to allocate a dynamic number of elements.

9.4 Procedures and functions

9.4.1 GetLanguagelDs

Synopsis: Return the current language IDs

119

CHAPTER 9. REFERENCE FOR UNIT "GETTEXT’

Declaration: procedure GetLanguagelIDs (var Lang: String;var FallbackLang: String)
Visibility: default

Description: Get LanguageIDs returns the current language IDs (an ISO string) as returned by the operating
system. On windows, the GetUserDefaultLCID and GetLocaleInfo calls are used. On
other operating systems, the LC_ALL, LC_MESSAGES or LANG environment variables are exam-
ined.

9.4.2 TranslateResourceStrings

Synopsis: Translate the resource strings of the application.

Declaration: procedure TranslateResourceStrings (AFile: TMOFile)
procedure TranslateResourceStrings (const AFilename: String)

Visibility: default

Description: TranslateResourceStrings translates all the resource strings in the application based on the
values in the .mo file AFileName or AFile. The procedure creates an TMOFile (120) instance to
read the .mo file if a filename is given.

Errors: If the file does not exist or is an invalid .mo file.

See also: TranslateUnitResourceStrings (120), TMOFile (120)

9.4.3 TranslateUnitResourceStrings

Synopsis: Translate the resource strings of a unit.

Declaration: procedure TranslateUnitResourceStrings (const AUnitName: String;
AFile: TMOFile)
procedure TranslateUnitResourceStrings (const AUnitName: String;
const AFilename: String)

Visibility: default

Description: TranslateUnitResourceStrings is identical in function to TranslateResourceStrings (120),
but translates the strings of a single unit (AUnitName) which was used to compile the application.
This can be more convenient, since the resource string files are created on a unit basis.

See also: TranslateResourceStrings (120), TMOFile (120)

9.5 EMOFileError

9.5.1 Description

EMOFileError israised in case an TMOFile (120) instance is created with an invalid .mo.

9.6 TMOFile
9.6.1 Description
TMOFile is a class providing easy access to a .mo file. It can be used to translate any of the strings

that reside in the .mo file. The internal structure of the .mo is completely hidden.

120

CHAPTER 9. REFERENCE FOR UNIT "GETTEXT’

9.6.2 Method overview

Page Property Description
121 Create Create a new instance of the TMOF1i1le class.

121 Destroy = Removes the TMOF1le instance from memory
121 Translate Translate a string

9.6.3 TMOFile.Create

Synopsis: Create a new instance of the TMOF i le class.
Declaration: constructor Create (const AFilename: String)
constructor Create (AStream: TStream)

Visibility: public
Description: Create creates a new instance of the MOFile class. It opens the file AFileName or the stream
AStream. If a stream is provided, it should be seekable.

The whole contents of the file is read into memory during the Create call. This means that the
stream is no longer needed after the Create call.

Errors: If the named file does not exist, then an exception may be raised. If the file does not contain a valid
TMOFileHeader (119) structure, then an EMOFileError (120) exception is raised.

See also: TMOFile.Destroy (121)

9.6.4 TMOFile.Destroy
Synopsis: Removes the TMOF i 1 e instance from memory

Declaration: destructor Destroy; Override

Visibility: public
Description: Destroy cleans the internal structures with the contents of the .mo. After this the TMOFile

instance is removed from memory.

See also: TMOFile.Create (121)

9.6.5 TMOFile.Translate

Synopsis: Translate a string

Declaration: function Translate (AOrig: PChar;ALen: Integer;AHash: LongWord) : String
function Translate (AOrig: String;AHash: LongWord) : String
function Translate (AOrig: String) String

Visibility: public
Description: Translate translates the string AOrig. The string should be in the .mo file as-is. The string can
be given as a plain string, as a PChar (with length ALen). If the hash value (AHash) of the string

is not given, it is calculated.
If the string is in the . mo file, the translated string is returned. If the string is not in the file, an empty

string is returned.

Errors: None.

121

Chapter 10

Reference for unit ’idea’

10.1 Used units

Table 10.1: Used units by unit ’idea’

Name Page
Classes 2?
sysutils 7

10.2 Overview

Besides some low level IDEA encryption routines, the IDEA unit also offers 2 streams which offer
on-the-fly encryption or decryption: there are 2 stream objects: A write-only encryption stream
which encrypts anything that is written to it, and a decription stream which decrypts anything that is
read from it.

10.3 Constants, types and variables
10.3.1 Constants

IDEABLOCKSIZE = 8

IDEA block size

IDEAKEYSIZE = 16

IDEA Key size constant.

KEYLEN = (6 = ROUNDS + 4)

Key length

ROUNDS = 8

Number of rounds to encrypt

122

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

10.3.2 Types
IdeaCryptData = TIdeaCryptData

Provided for backward functionality.

IdeaCryptKey = TIdeaCryptKey

Provided for backward functionality.

IDEAkey = TIDEAKey

Provided for backward functionality.

TIdeaCryptData = Array[0..3] of Word

TIdeaCryptData is an internal type, defined to hold data for encryption/decryption.
TIdeaCryptKey = Array[0..7] of Word

The actual encryption or decryption key for IDEA is 64-bit long. This type is used to hold such a
key. It can be generated with the EnKeyIDEA (124) or DeKeyIDEA (123) algorithms depending on
whether an encryption or decryption key is needed.

TIDEAKey = Array[0..keylen-1] of Word

The IDEA key should be filled by the user with some random data (say, a passphrase). This key is

used to generate the actual encryption/decryption keys.

10.4 Procedures and functions

10.4.1 Cipherldea
Synopsis: Encrypt or decrypt a buffer.

Declaration: procedure CipherIdea (Input: TIdeaCryptData;var outdata: TIdeaCryptData;
z: TIDEAKey)

Visibility: default

Description: CipherIdea encrypts or decrypts a buffer with data (Input) using key z. The resulting encrypted
or decrypted data is returned in Output.

Errors: None.

See also: EnKeyldea (124), DeKeyldea (123), TIDEAEncryptStream (125), TIDEADecryptStream (124)

10.4.2 DeKeyldea

Synopsis: Create a decryption key from an encryption key.
Declaration: procedure DeKeyIdea(z: TIDEAKey;var dk: TIDEAKey)

Visibility: default

123

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

Description: DeKeyIdea creates a decryption key based on the encryption key z. The decryption key is returned
in dk. Note that only a decryption key generated from the encryption key that was used to encrypt
the data can be used to decrypt the data.

Errors: None.

See also: EnKeyldea (124), Cipherldea (123)

10.4.3 EnKeyldea
Synopsis: Create an IDEA encryption key from a user key.
Declaration: procedure EnKeyIdea (UserKey: TIdeaCryptKey;var z: TIDEAKey)
Visibility: default

Description: EnKeyIdea creates an IDEA encryption key from user-supplied data in UserKey. The Encryp-
tion key is stored in z.

Errors: None.

See also: DeKeyldea (123), Cipherldea (123)

10.5 EIDEAError

10.5.1 Description

EIDEAError is used to signal errors in the IDEA encryption decryption streams.

10.6 TIDEADeCryptStream

10.6.1 Description

TIDEADecryptStream is a stream which decrypts anything that is read from it using the IDEA
mechanism. It reads the encrypted data from a source stream and decrypts it using the CipherIDEA
(123) algorithm. It is a read-only stream: it is not possible to write data to this stream.

When creating a TIDEADecryptStream instance, an IDEA decryption key should be passed to
the constructor, as well as the stream from which encrypted data should be read written.

The encrypted data can be created with a TIDEAEncryptStream (125) encryption stream.

10.6.2 Method overview

Page Property Description

124 Read Reads data from the stream, decrypting it as needed
125 Seek Set position on the stream

125 Write Write data to the stream

10.6.3 TIDEADeCryptStream.Read

Synopsis: Reads data from the stream, decrypting it as needed

Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override

124

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

Visibility: public
Description: Read attempts to read Count bytes from the stream, placing them in Buf fer the bytes are read

from the source stream and decrypted as they are read. (bytes are read from the source stream in
blocks of 8 bytes. The function returns the number of bytes actually read.

Errors: If an error occurs when reading data from the source stream, an exception may be raised.

See also: TIDEADecryptStream. Write (125), TIDEADecryptStream.Seek (125), TIDEAEncryptStream (125)

10.6.4 TIDEADeCryptStream.Write
Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write always raises an EIDEAError (124) exception, because the decryption stream is read-only.
To write to an encryption stream, use the Write (126) method of the TIDEAEncryptStream (125)

decryption stream.
Errors: An EIDEAError (124) exception is raised when calling this method.
See also: TIDEADecryptStream.Read (124), TIDEAEncryptStream (125), TIDEAEncryptStream. Write (126)

10.6.5 TIDEADeCryptStream.Seek

Synopsis: Set position on the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Seek will only work on a forward seek. It emulates a forward seek by reading and discarding bytes

from the input stream. The TIDEADecryptStream stream tries to provide seek capabilities for
the following limited number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them.

Errors: An EIDEAError (124) exception is raised if the stream does not allow the requested seek operation.

See also: TIDEADeCryptStream.Read (124)

10.7 TIDEAEncryptStream

10.7.1 Description

TIDEAEncryptStream is a stream which encrypts anything that is written to it using the IDEA
mechanism, and then writes the encrypted data to the destination stream using the CipherIDEA (123)
algorithm. It is a write-only stream: it is not possible to read data from this stream.

When creating a TIDEAEncryptStream instance, an IDEA encryption key should be passed to
the constructor, as well as the stream to which encrypted data should be written.

The resulting encrypted data can be read again with a TIDEADecryptStream (124) decryption stream.

125

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

10.7.2 Method overview

Page Property Description
126 Destroy Flush data buffers and free the stream instance.

127 Flush Write remaining bytes from the stream
126 Read Read data from the stream

127 Seek Set stream position

126 Write Write bytes to the stream to be encrypted

10.7.3 TIDEAEncryptStream.Destroy

Synopsis: Flush data buffers and free the stream instance.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes any data still remaining in the internal encryption buffer, and then calls the inher-
ited Destroy

By default, the destination stream is not freed when the encryption stream is freed.
Errors: None.

See also: TIDEAStream.Create (128)

10.7.4 TIDEAEnNcryptStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read always raises an EIDEAError (124) exception, because the encryption stream is write-only.
To read from an encrypted stream, use the Read (124) method of the TIDEADecryptStream (124)
decryption stream.

Errors: An EIDEAError (124) exception is raised when calling this method.

See also: TIDEAEncryptStream.Write (126), TIDEADecryptStream (124), TIDEADecryptStream.Read (124)

10.7.5 TIDEAEnNcryptStream.Write

Synopsis: Write bytes to the stream to be encrypted
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write writes Count bytes from Buf fer to the stream, encrypting the bytes as they are written
(encryption in blocks of 8 bytes).

Errors: If an error occurs writing to the destination stream, an error may occur.

See also: TIDEADecryptStream.Read (124)

126

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

10.7.6 TIDEAEncryptStream.Seek

Synopsis: Set stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seek return the current position if called with 0 and soFromCurrent as arguments. With all
other values, it will always raise an exception, since it is impossible to set the position on an encryp-
tion stream.

Errors: An EIDEAError (124) will be raised unless called with 0 and soFromCurrent as arguments.

See also: TIDEAEncryptStream.Write (126), EIDEAError (124)

10.7.7 TIDEAEncryptStream.Flush
Synopsis: Write remaining bytes from the stream
Declaration: procedure Flush
Visibility: public

Description: F1ush writes the current encryption buffer to the stream. Encryption always happens in blocks of 8
bytes, so if the buffer is not completely filled at the end of the writing operations, it must be flushed.
It should never be called directly, unless at the end of all writing operations. It is called automatically
when the stream is destroyed.

Errors: None.

See also: TIDEAEncryptStream. Write (126)

10.8 TIDEAStream

10.8.1 Description

Do not create instances of TIDEASt ream directly. It implements no useful functionality: it serves
as a common ancestor of the TIDEAEncryptStream (125) and TIDEADeCryptStream (124), and
simply provides some fields that these descendent classes use when encrypting/decrypting. One of
these classes should be created, depending on whether one wishes to encrypt or to decrypt.

10.8.2 Method overview

Page Property Description
128 Create Creates a new instance of the TIDEASt ream class

10.8.3 Property overview

Page Property Access Description
128 Key r Key used when encrypting/decrypting

127

CHAPTER 10. REFERENCE FOR UNIT ’IDEA’

10.8.4 TIDEAStream.Create

Synopsis: Creates a new instance of the TIDEASt ream class
Declaration: constructor Create (AKey: TIDEAKey;Dest: TStream)
Visibility: public

Description: Create stores the encryption/decryption key and then calls the inherited Create to store the
Dest stream.

Errors: None.

See also: TIDEAEncryptStream (125), TIDEADeCryptStream (124)

10.8.5 TIDEAStream.Key
Synopsis: Key used when encrypting/decrypting

Declaration: Property Key : TIDEAKey
Visibility: public
Access: Read

Description: Key is the key as it was passed to the constructor of the stream. It cannot be changed while data is
read or written. It is the key as it is used when encrypting/decrypting.

See also: Cipherldea (123)

128

Chapter 11

Reference for unit ’inicol’

11.1 Used units

Table 11.1: Used units by unit ’inicol’

Name Page
Classes 2?
Inifiles 129
sysutils ??

11.2 Overview

inicol contains an implementation of TCollection and TCollectionItem descendents which
cooperate to read and write the collection from and to a .ini file. It uses the TCustomlIniFile (2?) class
for this.

11.3 Constants, types and variables

11.3.1 Constants
KeyCount = ’Count’

KeyCount is used as a key name when reading or writing the number of items in the collection
from the global section.

SGlobal = ’"Global’

SGlobal is used as the default name of the global section when reading or writing the collection.

129

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.4 EIniCol

11.4.1 Description

EIniCol is used to report error conditions in the load and save methods of TIniCollection (130).

11.5 TIniCollection

11.5.1 Description

TIniCollection is a collection (??) descendent which has the capability to write itself to an
.ini file. It introduces some load and save mechanisms, which can be used to write all items in the
collection to disk. The items should be descendents of the type TIniCollectionltem (133).

All methods work using a TCustomInifile class, making it possible to save to alternate file
formats, or even databases.

An instance of TIniCollection should never be used directly. Instead, a descendent should be
used, which sets the FPrefix and FSectionPrefix protected variables.

11.5.2 Method overview
Page Property Description
130 Load Loads the collection from the default filename.
132 LoadFromFile Load collection from file.
132 LoadFromlIni Load collection from a file in .ini file format.

131 Save Save the collection to the default filename.
131 SaveToFile Save collection to a file in .ini file format
131 SaveTolni Save the collection to a TCustomIniFile descendent

11.5.3 Property overview

Page Property Access Description

133 FileName w Filename of the collection

133 GlobalSection 1w Name of the global section
132 Prefix r Prefix used in global section
133 SectionPrefix r Prefix string for section names

11.5.4 TIniCollection.Load

Synopsis: Loads the collection from the default filename.
Declaration: procedure Load
Visibility: public

Description: Load loads the collection from the file as specified in the FileName (133) property. It calls the
LoadFromPFile (132) method to do this.

Errors: If the collection was not loaded or saved to file before this call, an EIniCol exception will be
raised.

See also: TIniCollection.LoadFromFile (132), TIniCollection.LoadFromlIni (132), TIniCollection.Save (131),
TIniCollection.FileName (133)

130

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.5.5 TIniCollection.Save

Synopsis: Save the collection to the default filename.
Declaration: procedure Save
Visibility: public

Description: save writes the collection to the file as specified in the FileName (133) property, using GlobalSec-
tion (133) as the section. It calls the SaveToFile (131) method to do this.

Errors: If the collection was not loaded or saved to file before this call, an EIniCol exception will be
raised.

See also: TIniCollection.SaveToFile (131), TIniCollection.SaveTolni (131), TIniCollection.Load (130), TIni-
Collection.FileName (133)

11.5.6 TIniCollection.SaveTolni

Synopsis: Save the collection to a TCustomIniFile descendent
Declaration: procedure SaveToIni (Ini: TCustomInifile;Section: String); Virtual
Visibility: public

Description: SaveToIni does the actual writing. It writes the number of elements in the global section (as
specified by the Sect ion argument), as well as the section name for each item in the list. The item
names are written using the Prefix (132) property for the key. After this it calls the SaveTolni (134)
method of all TIniCollectionItem (133) instances.

This means that the global section of the .ini file will look something like this:

[globalsection]

Count=3
Prefixl=SectionPrefixFirstItemName
Prefix2=SectionPrefixSecondItemName
Prefix3=SectionPrefixThirdItemName

This construct allows to re-use an ini file for multiple collections.

After this method is called, the GlobalSection (133) property contains the value of Section, it will
be used in the Save (133) method.

See also: TIniCollectionltem.SaveTolni (134)

11.5.7 TIniCollection.SaveToFile

Synopsis: Save collection to a file in .ini file format
Declaration: procedure SaveToFile (AFileName: String;Section: String)
Visibility: public

Description: saveToFile will create a TMemIniFile instance with the AFi1eName argument as a filename.
This instance is passed on to the SaveTolni (131) method, together with the Sect ion argument, to
do the actual saving.

Errors: An exception may be raised if the path in AFi leName does not exist.

See also: TIniCollection.SaveTolni (131), TIniCollection.LoadFromFile (132)

131

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.5.8 TIniCollection.LoadFromlni

Synopsis: Load collection from a file in .ini file format.
Declaration: procedure LoadFromIni (Ini: TCustomInifile;Section: String); Virtual
Visibility: public

Description: LoadFromIni will load the collection from the Ini instance. It first clears the collection, and
reads the number of items from the global section with the name as passed through the Section
argument. After this, an item is created and added to the collection, and its data is read by calling
the TIniCollectionltem.LoadFromlIni (134) method, passing the appropriate section name as found
in the global section.

The description of the global section can be found in the TIniCollection.SaveTolni (131) method
description.

See also: TIniCollection.LoadFromFile (132), TIniCollectionltem.LoadFromIni (134), TIniCollection.SaveTolni
(131)

11.5.9 TIniCollection.LoadFromFile
Synopsis: Load collection from file.

Declaration: procedure LoadFromFile (AFileName: String;Section: String)
Visibility: public

Description: LoadFromFile creates a TMemIniFile instance using AFileName as the filename. It calls
LoadFromlni (132) using this instance and Section as the parameters.

See also: TIniCollection.LoadFromIni (132), TIniCollection.Load (130), TIniCollection.SaveTolni (131), TIni-
Collection.SaveToFile (131)

11.5.10 TIniCollection.Prefix
Synopsis: Prefix used in global section

Declaration: Property Prefix : String
Visibility: public
Access: Read

Description: Prefix is used when writing the section names of the items in the collection to the global section,
or when reading the names from the global section. If the prefix is set to It em then the global section
might look something like this:

[MyCollection]
Count=2
Iteml=FirstItem
Item2=SecondItem

A descendent of TIniCollection should set the value of this property, it cannot be empty.

See also: TIniCollection.SectionPrefix (133), TIniCollection.GlobalSection (133)

132

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.5.11 TiniCollection.SectionPrefix

Synopsis: Prefix string for section names
Declaration: Property SectionPrefix : String
Visibility: public
Access: Read

Description: SectionPrefix is a string that is prepended to the section name as returned by the TIniCollec-
tionltem.SectionName (135) property to return the exact section name. It can be empty.

See also: TIniCollection.Section (130), TIniCollection.GlobalSection (133)

11.5.12 TiniCollection.FileName

Synopsis: Filename of the collection
Declaration: Property FileName : String
Visibility: public
Access: Read,Write

Description: FileName is the filename as used in the last LoadFromFile (132) or SaveToFile (131) operation.
It is used in the Load (130) or Save (131) calls.

See also: TIniCollection.Save (131), TIniCollection.LoadFromFile (132), TIniCollection.SaveToFile (131),
TIniCollection.Load (130)

11.5.13 TiniCollection.GlobalSection
Synopsis: Name of the global section

Declaration: Property GlobalSection : String
Visibility: public
Access: Read,Write

Description: G1lobalSect ion contains the value of the Sect i on argument in the LoadFromlIni (132) or Save-
Tolni (131) calls. It’s used in the Load (130) or Save (131) calls.

See also: TIniCollection.Save (131), TIniCollection.LoadFromFile (132), TIniCollection.SaveToFile (131),
TIniCollection.Load (130)

11.6 TIniCollectionltem

11.6.1 Description

TIniCollectionItem is a #rtl.classes.tcollectionitem (??) descendent which has some extra
methods for saving/loading the item to or from an .ini file.

To use this class, a descendent should be made, and the SaveTolni (134) and LoadFromlIni (134)
methods should be overridden. They should implement the actual loading and saving. The loading
and saving is always initiated by the methods in TIniCollection (130), TIniCollection.LoadFromIni
(132) and TIniCollection.SaveTolni (131) respectively.

133

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.6.2 Method overview
Page Property Description
135 LoadFromFile Load item from a file
134 LoadFromlni = Method called when the item must be loaded
134 SaveToFile Save item to a file
134 SaveTolni Method called when the item must be saved

11.6.3 Property overview

Page Property Access Description
135 SectionName rw Default section name

11.6.4 TIniCollectionltem.SaveTolni
Synopsis: Method called when the item must be saved

Declaration: procedure SaveToIni (Ini: TCustomInifile;Section: String); Virtual
; Abstract

Visibility: public
Description: saveToIni is called by TIniCollection.SaveTolni (131) when it saves this item. Descendent

classes should override this method to save the data they need to save. All write methods of the

TCustomIniFile instance passed in Ini can be used, as long as the writing happens in the sec-
tion passed in Section.

Errors: No checking is done to see whether the values are actually written to the correct section.

See also: TIniCollection.SaveTolni (131), TIniCollectionItem.LoadFromlIni (134), TIniCollectionltem.SaveToFile
(134), TIniCollectionltem.LoadFromFile (135)

11.6.5 TiniCollectionltem.LoadFromIni
Synopsis: Method called when the item must be loaded

Declaration: procedure LoadFromIni (Ini: TCustomInifile;Section: String); Virtual
; Abstract

Visibility: public

Description: LoadFromIni is called by TIniCollection.LoadFromIni (132) when it saves this item. Descendent
classes should override this method to load the data they need to load. All read methods of the

TCustomIniFile instance passed in Ini can be used, as long as the reading happens in the
section passed in Section.

Errors: No checking is done to see whether the values are actually read from the correct section.

See also: TIniCollection.LoadFromIni (132), TIniCollectionltem.SaveTolni (134), TIniCollectionltem.LoadFromFile
(135), TIniCollectionltem.SaveToFile (134)

11.6.6 TIniCollectionltem.SaveToFile

Synopsis: Save item to a file

Declaration: procedure SaveToFile (FileName: String;Section: String)

134

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

Visibility: public
Description: SaveToFile creates an instance of TIniFile with the indicated FileName calls SaveTolni
(134) to save the item to the indicated file in .ini format under the section Section

Errors: An exception can occur if the file is not writeable.

See also: TIniCollectionltem.SaveTolni (134), TIniCollectionltem.LoadFromFile (135)

11.6.7 TIniCollectionltem.LoadFromFile
Synopsis: Load item from a file

Declaration: procedure LoadFromFile (FileName: String;Section: String)
Visibility: public
Description: LoadFromFile creates an instance of TMemIniFile and calls LoadFromlIni (134) to load the
item from the indicated file in .ini format from the section Section.

Errors: None.

See also: TIniCollectionltem.SaveToFile (134), TIniCollectionltem.LoadFromlIni (134)

11.6.8 TIniCollectionltem.SectionName
Synopsis: Default section name
Declaration: Property SectionName : String
Visibility: public
Access: Read,Write

Description: SsectionName is the section name under which the item will be saved or from which it should be

read. The read/write functions should be overridden in descendents to determine a unique section
name within the .ini file.

See also: TIniCollectionltem.SaveToFile (134), TIniCollectionItem.LoadFromlIni (134)

11.7 'TNamedIniCollection

11.7.1 Method overview

Page Property Description
136 FindByName

136 FindByUserData

136 IndexOfName

136 IndexOfUserData

11.7.2 Property overview

Page Property Access Description
136 NamedItems 1w

135

CHAPTER 11. REFERENCE FOR UNIT ’INICOL’

11.7.3 TNamedIniCollection.IndexOfUserData
Declaration: function IndexOfUserData (UserData: TObject) : Integer

Visibility: public

11.7.4 TNamedIniCollection.IndexOfName
Declaration: function IndexOfName (const AName: String) : Integer

Visibility: public

11.7.5 TNamedIniCollection.FindByName
Declaration: function FindByName (const AName: String) : TNamedIniCollectionItem

Visibility: public

11.7.6 TNamedIniCollection.FindByUserData
Declaration: function FindByUserData (UserData: TObject) : TNamedIniCollectionItem

Visibility: public

11.7.7 TNamedIniCollection.Nameditems
Declaration: Property NamedItems|[Index: Integer]: TNamedIniCollectionItem; default
Visibility: public

Access: Read,Write

11.8 TNamedIniCollectionltem

11.8.1 Property overview

Page Property Access Description
136 Name w
136 UserData 1w

11.8.2 TNamedIniCollectionltem.UserData
Declaration: Property UserData : TObject
Visibility: public

Access: Read,Write

11.8.3 TNamedIniCollectionltem.Name
Declaration: Property Name : String
Visibility: published

Access: Read,Write

136

Chapter 12

Reference for unit ’iostream’

12.1 Used units

Table 12.1: Used units by unit ’iostream’

Name Page
Classes 2?

12.2 Overview

The iostream implements a descendent of THandleStream (??) streams that can be used to read from
standard input and write to standard output and standard diagnostic output (stderr).

12.3 Constants, types and variables

12.3.1 Types

TIOSType = (iosInput,iosOutPut,iosError)

Table 12.2: Enumeration values for type TIOSType

Value Explanation

iosError The stream can be used to write to standard diagnostic output
iosInput The stream can be used to read from standard input
iosOutPut The stream can be used to write to standard output

TIOSType is passed to the Create (138) constructor of TIOStream (138), it determines what kind
of stream is created.

137

CHAPTER 12. REFERENCE FOR UNIT 'IOSTREAM’

12.4 EIOStreamError

12.4.1 Description

Error thrown in case of an invalid operation on a TIOStream (138).

12.5 TIOStream

12.5.1 Description

TIOStream can be used to create a stream which reads from or writes to the standard input, output
or stderr file descriptors. It is a descendent of THandleStream. The type of stream that is created
is determined by the TIOSType (137) argument to the constructor. The handle of the standard input,
output or stderr file descriptors is determined automatically.

The TIOStream keeps an internal Position, and attempts to provide minimal Seek (139) be-
haviour based on this position.

12.5.2 Method overview
Page Property Description

138 Create Construct a new instance of TIOStream (138)
138 Read Read data from the stream.

139 Seek Set the stream position

139 SetSize Set the size of the stream

139 Write Write data to the stream

12.5.3 TIOStream.Create

Synopsis: Construct a new instance of TIOStream (138)
Declaration: constructor Create (aIOSType: TIOSType)
Visibility: public
Description: Create creates a new instance of TIOStream (138), which can subsequently be used

Errors: No checking is performed to see whether the requested file descriptor is actually open for read-
ing/writing. In that case, subsequent calls to Read or Write or seek will fail.

See also: TIOStream.Read (138), TIOStream.Write (139)

12.5.4 TIOStream.Read
Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read checks first whether the type of the stream allows reading (type is iosInput). If not, it
raises a EIOStreamError (138) exception. If the stream can be read, it calls the inherited Read to
actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow reading.

See also: TIOSType (137), TIOStream. Write (139)

138

CHAPTER 12. REFERENCE FOR UNIT 'IOSTREAM’

12.5.5 TIOStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write checks first whether the type of the stream allows writing (type is 1osOutput or iosError).
If not, it raises a EIOStreamError (138) exception. If the stream can be written to, it calls the inherited
Write to actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow writing.

See also: TIOSType (137), TIOStream.Read (138)

12.5.6 TIOStream.SetSize

Synopsis: Set the size of the stream
Declaration: procedure SetSize (NewSize: LongInt); Override
Visibility: public

Description: set Size overrides the standard Set Size implementation. It always raises an exception, because
the standard input, output and stderr files have no size.

Errors: An EIOStreamError exception is raised when this method is called.

See also: EIOStreamError (138)

12.5.7 TIOStream.Seek
Synopsis: Set the stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Seek overrides the standard Seek implementation. Normally, standard input, output and stderr are

not seekable. The TIOStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them, if the stream is of type
iosInput.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EIOStreamError exception.

Errors: An EIOStreamError (138) exception is raised if the stream does not allow the requested seek opera-
tion.

See also: EIOStreamError (138)

139

Chapter 13

Reference for unit ’Pipes’

13.1 Used units

Table 13.1: Used units by unit ’Pipes’

Name Page
Classes 2?
sysutils ?2?

13.2 Overview

The Pipes unit implements streams that are wrappers around the OS’s pipe functionality. It creates
a pair of streams, and what is written to one stream can be read from another.

13.3 Constants, types and variables

13.3.1 Constants

ENoReadMSg = ’'Cannot read from OuputPipeStream.’
Constant used in ENoReadPipe (141) exception.

ENoSeekMsg = ’Cannot seek on pipes’

Constant used in EPipeSeek (142) exception.

ENoWriteMsg = ’'Cannot write to InputPipeStream.’
Constant used in ENoWritePipe (141) exception.

EPipeMsg = ’'Failed to create pipe.’

Constant used in EPipeCreation (141) exception.

140

CHAPTER 13. REFERENCE FOR UNIT "PIPES’

13.4 Procedures and functions

13.4.1 CreatePipeHandles

Synopsis: Function to create a set of pipe handles

Declaration: function CreatePipeHandles (var Inhandle: THandle;var OutHandle: THandle)
Boolean

Visibility: default

Description: CreatePipeHandles provides an OS-independent way to create a set of pipe filehandles. These
handles are inheritable to child processes. The reading end of the pipe is returned in InHandle, the
writing end in OutHandle.

Errors: On error, False is returned.

See also: CreatePipeStreams (141)

13.4.2 CreatePipeStreams

Synopsis: Create a pair of pipe stream.

Declaration: procedure CreatePipeStreams (var InPipe: TInputPipeStream;
var OutPipe: TOutputPipeStream)

Visibility: default

Description: CreatePipeStreams creates a set of pipe file descriptors with CreatePipeHandles (141), and if
that call is succesfull, a pair of streams is created: InPipe and OutPipe.

Errors: If no pipe handles could be created, an EPipeCreation (141) exception is raised.

See also: CreatePipeHandles (141), TInputPipeStream (142), TOutputPipeStream (143)

13.5 ENoReadPipe

13.5.1 Description

Exception raised when a write operation is attempted on a write-only pipe.

13.6 ENoWritePipe

13.6.1 Description

Exception raised when a read operation is attempted on a read-only pipe.

13.7 EPipeCreation

13.7.1 Description

Exception raised when an error occurred during the creation of a pipe pair.

141

CHAPTER 13. REFERENCE FOR UNIT "PIPES’

13.8 EPipeError

13.8.1 Description

Exception raised when an invalid operation is performed on a pipe stream.

13.9 EPipeSeek

13.9.1 Description

Exception raised when an invalid seek operation is attempted on a pipe.

13.10 TInputPipeStream

13.10.1 Description

TInputPipeStream is created by the CreatePipeStreams (141) call to represent the reading end
of a pipe. It is a TStream (??) descendent which does not allow writing, and which mimics the seek
operation.

13.10.2 Method overview
Page Property Description

143 Read Read data from the stream to a buffer.
142 Seek Set the current position of the stream
142 Write Write data to the stream.

13.10.3 Property overview

Page Property Access Description
143 NumBytesAvailable r Number of bytes available for reading.

13.10.4 TInputPipeStream.Write

Synopsis: Write data to the stream.
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write overrides the parent implementation of Write. On a TInputPipeStream will always
raise an exception, as the pipe is read-only.

Errors: An ENoWritePipe (141) exception is raised when this function is called.

See also: TInputPipeStream.Read (143), TInputPipeStream.Seek (142)

13.10.5 TInputPipeStream.Seek

Synopsis: Set the current position of the stream

Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override

142

CHAPTER 13. REFERENCE FOR UNIT "PIPES’

Visibility: public

Description: Seek overrides the standard Seek implementation. Normally, pipe streams stderr are not seek-
able. The TInputPipeStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EPipeSeek exception.
Errors: An EPipeSeek (142) exception is raised if the stream does not allow the requested seek operation.

See also: EPipeSeek (142), #rtl.classes.tstream.seek (??)

13.10.6 TInputPipeStream.Read
Synopsis: Read data from the stream to a buffer.

Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read calls the inherited read and adjusts the internal position pointer of the stream.
Errors: None.

See also: TInputPipeStream.Write (142), TInputPipeStream.Seek (142)

13.10.7 TInputPipeStream.NumBytesAvailable
Synopsis: Number of bytes available for reading.

Declaration: Property NumBytesAvailable : DWord
Visibility: public
Access: Read

Description: NumBytesAvailable is the number of bytes available for reading. This is the number of bytes
in the OS buffer for the pipe. It is not a number of bytes in an internal buffer.

If this number is nonzero, then reading NumBytesAvailable bytes from the stream will not block
the process. Reading more than NumBytesAvailable bytes will block the process, while it waits
for the requested number of bytes to become available.

See also: TInputPipeStream.Read (143)

13.11 TOutputPipeStream
13.11.1 Description

TOutputPipeStreamis created by the CreatePipeStreams (141) call to represent the writing end
of a pipe. It is a TStream (??) descendent which does not allow reading.

143

CHAPTER 13. REFERENCE FOR UNIT "PIPES’

13.11.2 Method overview

Page Property Description
144 Read Read data from the stream.
144 Seek Sets the position in the stream

13.11.3 TOutputPipeStream.Seek

Synopsis: Sets the position in the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek is overridden in TOutputPipeStream. Calling this method will always raise an exception:
an output pipe is not seekable.

Errors: An EPipeSeek (142) exception is raised if this method is called.

13.11.4 TOutputPipeStream.Read

Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read overrides the parent Read implementation. It always raises an exception, because a output
pipe is write-only.

Errors: An ENoReadPipe (141) exception is raised when this function is called.

See also: TOutputPipeStream.Seek (144)

144

Chapter 14

Reference for unit ’pooledmm’

14.1 Used units

Table 14.1: Used units by unit ’pooledmm’

Name Page
Classes 2?

14.2 Overview

pooledmm is a memory manager class which uses pools of blocks. Since it is a higher-level im-
plementation of a memory manager which works on top of the FPC memory manager, It also offers
more debugging and analysis tools. It is used mainly in the LCL and Lazarus IDE.

14.3 Constants, types and variables

14.3.1 Types

PPooledMemManagerItem = “TPooledMemManagerItem

PPooledMemManagerItem is a pointer type, pointing to a TPooledMemManagerltem (146)
item, used in a linked list.

TEnumItemsMethod = procedure (Item: Pointer) of object

TEnumItemsMethodis a prototype for the callback used in the TNonFreePooledMemManager.Enumerateltems
(147) call. The parameter Item will be set to each of the pointers in the item list of TNonFreeP-
ooledMemManager (146).

TPooledMemManagerItem = record
Next : PPooledMemManagerItem;
end

145

CHAPTER 14. REFERENCE FOR UNIT 'POOLEDMM’

TPooledMemManagerItem is used internally by the TPooledMemManager (148) class to main-
tain the free list block. It simply points to the next free block.

14.4 TNonFreePooledMemManager

14.4.1 Description

TNonFreePooledMemManager keeps a list of fixed-size memory blocks in memory. Each block
has the same size, making it suitable for storing a lot of records of the same type. It does not free the
items stored in it, except when the list is cleared as a whole.

It allocates memory for the blocks in a exponential way, i.e. each time a new block of memory must
be allocated, it’s size is the double of the last block. The first block will contain 8 items.

14.4.2 Method overview

Page Property Description

146 Clear Clears the memory

146 Create Creates a new instance of TNonFreePooledMemManager

147 Destroy Removes the TNonFreePooledMemManager instance from mem-
ory

147 Enumerateltems Enumerate all items in the list

147 Newltem Return a pointer to a new memory block

14.4.3 Property overview

Page Property Access Description
147 ItemSize r Size of an item in the list

14.4.4 TNonFreePooledMemManager.Clear
Synopsis: Clears the memory
Declaration: procedure Clear
Visibility: public

Description: Clear clears all blocks from memory, freeing the allocated memory blocks. None of the pointers
returned by Newltem (147) is valid after a call to Clear

See also: TNonFreePooledMemManager.NewItem (147)

14.4.5 TNonFreePooledMemManager.Create
Synopsis: Creates a new instance of TNonFreePooledMemManager
Declaration: constructor Create (TheltemSize: Integer)
Visibility: public

Description: Create creates a new instance of TNonFreePooledMemManager and sets the item size to
TheItemSize.

Errors: If not enough memory is available, an exception may be raised.

See also: TNonFreePooledMemManager.ItemSize (147)

146

CHAPTER 14. REFERENCE FOR UNIT 'POOLEDMM’

14.4.6 TNonFreePooledMemManager.Destroy

Synopsis: Removes the TNonFreePooledMemManager instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy clears the list, clears the internal structures, and then calls the inherited Destroy.
Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TNonFreePooledMemManager.Create (146), TNonFreePooledMemManager.Clear (146)

14.4.7 TNonFreePooledMemManager.Newltem

Synopsis: Return a pointer to a new memory block
Declaration: function NewItem : Pointer
Visibility: public

Description: NewItem returns a pointer to an unused memory block of size ItemSize (147). It will allocate new
memory on the heap if necessary.

Note that there is no way to mark the memory block as free, except by clearing the whole list.
Errors: If no more memory is available, an exception may be raised.

See also: TNonFreePooledMemManager.Clear (146)

14.4.8 TNonFreePooledMemManager.Enumerateltems

Synopsis: Enumerate all items in the list
Declaration: procedure Enumerateltems (const Method: TEnumItemsMethod)
Visibility: public

Description: EnumerateItems will enumerate over all items in the list, passing the items to Method. This
can be used to execute certain operations on all items in the list. (for example, simply list them)

14.4.9 TNonFreePooledMemManager.ltemSize

Synopsis: Size of an item in the list
Declaration: Property ItemSize : Integer
Visibility: public
Access: Read

Description: ItemSize is the size of a single block in the list. It’s a fixed size determined when the list is
created.

See also: TNonFreePooledMemManager.Create (146)

147

CHAPTER 14. REFERENCE FOR UNIT 'POOLEDMM’

14.5 TPooledMemManager

14.5.1 Description

TPooledMemManager is a class which maintains a linked list of blocks, represented by the TPooled-
MemManagerltem (146) record. It should not be used directly, but should be descended from and

the descendent should implement the actual memory manager.

14.5.2 Method overview
Page Property Description

148 Clear Clears the list
148 Create Creates a new instance of the TPooledMemManager class
148 Destroy Removes an instance of TPooledMemManager class from memory

14.5.3 Property overview

Page Property Access Description

150 AllocatedCount r Total number of allocated items in the list
149 Count r Number of items in the list

150 FreeCount r Number of free items in the list

150 FreedCount r Total number of freed items in the list.

149 MaximumFreeCountRatio rw Maximum ratio of free items over total items
149 MinimumFreeCount ™w Minimum count of free items in the list

14.5.4 TPooledMemManager.Clear
Synopsis: Clears the list

Declaration: procedure Clear
Visibility: public
Description: Clear clears the list, it disposes all items in the list.

See also: TPooledMemManager.FreedCount (150)

14.5.5 TPooledMemManager.Create

Synopsis: Creates a new instance of the TPooledMemManager class
Declaration: constructor Create
Visibility: public
Description: Create initializes all necessary properties and then calls the inherited create.

See also: TPooledMemManager.Destroy (148)
14.5.6 TPooledMemManager.Destroy

Synopsis: Removes an instance of TPooledMemManager class from memory

Declaration: destructor Destroy; Override

148

CHAPTER 14. REFERENCE FOR UNIT 'POOLEDMM’

Visibility: public
Description: Destroy calls Clear (148) and then calls the inherited destroy.

Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TPooledMemManager.Create (148)

14.5.7 TPooledMemManager.MinimumFreeCount

Synopsis: Minimum count of free items in the list
Declaration: Property MinimumFreeCount : Integer
Visibility: public
Access: Read,Write

Description: MinimumFreeCount is the minimum number of free items in the linked list. When disposing
an item in the list, the number of items is checked, and only if the required number of free items is
present, the item is actually freed.

The default value is 100000

See also: TPooledMemManager.MaximumFreeCountRatio (149)

14.5.8 TPooledMemManager.MaximumFreeCountRatio

Synopsis: Maximum ratio of free items over total items
Declaration: Property MaximumFreeCountRatio : Integer
Visibility: public
Access: Read,Write

Description: MaximumFreeCountRatio is the maximum ratio (divided by 8) of free elements over the total
amount of elements: When disposing an item in the list, if the number of free items is higher than
this ratio, the item is freed.

The default value is 8.

See also: TPooledMemManager.MinimumFreeCount (149)

14.5.9 TPooledMemManager.Count
Synopsis: Number of items in the list

Declaration: Property Count : Integer
Visibility: public
Access: Read
Description: Count is the total number of items allocated from the list.

See also: TPooledMemManager.FreeCount (150), TPooledMemManager.AllocatedCount (150), TPooledMem-
Manager.FreedCount (150)

149

CHAPTER 14. REFERENCE FOR UNIT 'POOLEDMM’

14.5.10 TPooledMemManager.FreeCount

Synopsis: Number of free items in the list
Declaration: Property FreeCount : Integer
Visibility: public
Access: Read
Description: FreeCount is the current total number of free items in the list.

See also: TPooledMemManager.Count (149), TPooledMemManager.AllocatedCount (150), TPooledMem-
Manager.FreedCount (150)

14.5.11 TPooledMemManager.AllocatedCount
Synopsis: Total number of allocated items in the list

Declaration: Property AllocatedCount : Inté64
Visibility: public
Access: Read
Description: A11ocatedCount is the total number of newly allocated items on the list.

See also: TPooledMemManager.Count (149), TPooledMemManager.FreeCount (150), TPooledMemManager.FreedCount
(150)

14.5.12 TPooledMemManager.FreedCount

Synopsis: Total number of freed items in the list.
Declaration: Property FreedCount : Int64
Visibility: public
Access: Read
Description: FreedCount is the total number of elements actually freed in the list.

See also: TPooledMemManager.Count (149), TPooledMemManager.FreeCount (150), TPooledMemManager. AllocatedCount
(150)

150

Chapter 15

Reference for unit ’process’

15.1 Used units

Table 15.1: Used units by unit ’process’

Name Page
Classes 7
Pipes 140
sysutils 7

15.2 Overview

The Process unit contains the code for the TProcess (153) component, a cross-platform compo-
nent to start and control other programs, offering also access to standard input and output for these
programs.

TProcess does not handle wildcard expansion, does not support complex pipelines as in Unix.
If this behaviour is desired, the shell can be executed with the pipeline as the command it should
execute.

15.3 Constants, types and variables

15.3.1 Types

TProcessOption = (poRunSuspended,poWaitOnExit,poUsePipes,
poStderrToOutPut, poNoConsole, poNewConsole,
poDefaultErrorMode, poNewProcessGroup, poDebugProcess,
poDebugOnlyThisProcess)

When a new process is started using TProcess.Execute (155), these options control the way the
process is started. Note that not all options are supported on all platforms.

TProcessOptions= Set of (poDebugOnlyThisProcess,poDebugProcess,
poDefaultErrorMode, poNewConsole,

151

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

Table 15.2: Enumeration values for type TProcessOption

Value Explanation

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)
poDefaultErrorMode Use default error handling.

poNewConsole Start a new console window for the process (Win32 only)
poNewProcessGroup Start the process in a new process group (Win32 only)
poNoConsole Do not allow access to the console window for the process (Win32 only)
poRunSuspended Start the process in suspended state.

poStderrToOutPut Redirect standard error to the standard output stream.
poUsePipes Use pipes to redirect standard input and output.
poWaitOnExit Wait for the process to terminate before returning.

poNewProcessGroup, poNoConsole, poRunSuspended,
poStderrToOutPut, poUsePipes, poWaitOnExit)

Set of TProcessOption (151).

TProcessPriority = (ppHigh,pplIdle,ppNormal, ppRealTime)

Table 15.3: Enumeration values for type TProcessPriority

Value Explanation

ppHigh The process runs at higher than normal priority.

ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

This enumerated type determines the priority of the newly started process. It translates to default
platform specific constants. If finer control is needed, then platform-dependent mechanism need to
be used to set the priority.

TShowWindowOptions = (swoNone, swoHIDE, swoMaximize, swoMinimize,
swoRestore, swoShow, swoShowDefault,
swoShowMaximized, swoShowMinimized,
swoshowMinNOActive, swoShowNA, swoShowNoActivate,
swoShowNormal)

This type describes what the new process’ main window should look like. Most of these have only
effect on Windows. They are ignored on other systems.

TStartupOption = (suoUseShowWindow, suoUseSize, suoUsePosition,
suoUseCountChars, suoUseFillAttribute)

These options are mainly for Win32, and determine what should be done with the application once
it’s started.

152

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

Table 15.4: Enumeration values for type TShowWindowOptions

Value Explanation

swoHIDE The main window is hidden.

swoMaximize The main window is maximized.

swoMinimize The main window is minimized.

swoNone Allow system to position the window.

swoRestore Restore the previous position.

swoShow Show the main window.

swoShowDefault When showing Show the main window on

swoShowMaximized The main window is shown maximized

swoShowMinimized The main window is shown minimized

swoshowMinNOActive The main window is shown minimized but not activated

swoShowNA The main window is shown but not activated

swoShowNoActivate The main window is shown but not activated

swoShowNormal The main window is shown normally

Table 15.5: Enumeration values for type TStartupOption

Value Explanation
suoUseCountChars Use the console character width as specified in TProcess (153).
suoUseFillAttribute Use the console fill attribute as specified in TProcess (153).
suoUsePosition Use the window sizes as specified in TProcess (153).
suoUseShowWindow Use the Show Window options specified in TShowWindowOption (152)
suoUseSize Use the window sizes as specified in TProcess (153)

TStartupOptions= Set of

Set of TStartUpOption (152).

15.4 EProcess

15.4.1 Description

(suoUseCountChars, suoUseFillAttribute,
suoUsePosition, suoUseShowWindow, suoUseSize)

Exception raised when an error occurs in a TProcess routine.

15.5 TProcess

15.5.1 Description

TProcess is a component that can be used to start and control other processes (programs/binaries).
It contains a lot of options that control how the process is started. Many of these are Win32 specific,
and have no effect on other platforms, so they should be used with care.

The simplest way to use this component is to create an instance, set the CommandLine (161) property
to the full pathname of the program that should be executed, and call Execute (155). To determine
whether the process is still running (i.e. has not stopped executing), the Running (165) property can

be checked.

153

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

More advanced techniques can be used with the Options (163) settings.

15.5.2 Method overview

Page Property Description

156 Closelnput Close the input stream of the process

156 CloseOutput Close the output stream of the process

156 CloseStderr Close the error stream of the process

155 Create Create a new instance of the TProcess class.
155 Destroy Destroy this instance of TProcess

155 Execute Execute the program with the given options
156 Resume Resume execution of a suspended process
157 Suspend Suspend a running process

157 Terminate Terminate a running process

157 WaitOnExit ~ Wait for the program to stop executing.

15.5.3 Property overview

Page Property Access Description

161 Active ™w Start or stop the process.

161 ApplicationName rw Name of the application to start

161 CommandLine ™w Command-line to execute

162 ConsoleTitle w Title of the console window

162 CurrentDirectory 1w Working directory of the process.

162 Desktop w Desktop on which to start the process.

163 Environment ™ Environment variables for the new process

160 ExitStatus r Exit status of the process.

168 FillAttribute ™™ Color attributes of the characters in the console window
(Windows only)

158 Handle r Handle of the process

161 InheritHandles ™w Should the created process inherit the open handles of the
current process.

159 Input r Stream connected to standard input of the process.

163 Options w Options to be used when starting the process.

160 Output r Stream connected to standard output of the process.

164 Priority w Priority at which the process is running.

158 ProcessHandle Alias for Handle (158)

159 ProcessID ID of the process.

165 Running Determines wheter the process is still running.

165 ShowWindow w Determines how the process main window is shown (Win-
dows only)

164 StartupOptions w Additional (Windows) startup options

160 Stderr r Stream connected to standard diagnostic output of the pro-
cess.

158 ThreadHandle Main process thread handle

159 ThreadID ID of the main process thread

166 ~ WindowColumns rw Number of columns in console window (windows only)

166 WindowHeight ™ Height of the process main window

166 WindowLeft ™w X-coordinate of the initial window (Windows only)

158 WindowRect w Positions for the main program window.

167 WindowRows ™w Number of rows in console window (Windows only)

167 WindowTop ™w Y-coordinate of the initial window (Windows only)

167 WindowWidth ™ Height of the process main window (Windows only)

154

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.4 TProcess.Create
Synopsis: Create a new instance of the TProcess class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new instance of the TProcess class. After calling the inherited constructor, it
simply sets some default values.

15.5.5 TProcess.Destroy
Synopsis: Destroy this instance of TProcess

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up this instance of TProcess. Prior to calling the inherited destructor, it cleans
up any streams that may have been created. If a process was started and is still executed, it is not
stopped, but the standard input/output/stderr streams are no longer available, because they have been
destroyed.

Errors: None.

See also: TProcess.Create (155)

15.5.6 TProcess.Execute
Synopsis: Execute the program with the given options
Declaration: procedure Execute; Virtual
Visibility: public
Description: Execute actually executes the program as specified in CommandLine (161), applying as much as

of the specified options as supported on the current platform.

If the poWaitOnExit option is specified in Options (163), then the call will only return when the
program has finished executing (or if an error occured). If this option is not given, the call returns
immediatly, but the WaitOnExit (157) call can be used to wait for it to close, or the Running (165)
call can be used to check whether it is still running.

The TProcess.Terminate (157) call can be used to terminate the program if it is still running, or the
Suspend (157) call can be used to temporarily stop the program’s execution.

The ExitStatus (160) function can be used to check the program’s exit status, after it has stopped
executing.

Errors: On error a EProcess (153) exception is raised.

See also: TProcess.Running (165), TProcess. WaitOnExit (157), TProcess.Terminate (157), TProcess.Suspend
(157), TProcess.Resume (156), TProcess.ExitStatus (160)

155

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.7 TProcess.Closelnput

Synopsis: Close the input stream of the process
Declaration: procedure CloseInput; Virtual
Visibility: public

Description: CloseInput closes the input file descriptor of the process, that is, it closes the handle of the pipe
to standard input of the process.

See also: TProcess.Input (159), TProcess.StdErr (160), TProcess.Output (160), TProcess.CloseOutput (156),
TProcess.CloseStdErr (156)

15.5.8 TProcess.CloseOutput

Synopsis: Close the output stream of the process
Declaration: procedure CloseOutput; Virtual
Visibility: public

Description: CloseOutput closes the output file descriptor of the process, that is, it closes the handle of the
pipe to standard output of the process.

See also: TProcess.Output (160), TProcess.Input (159), TProcess.StdErr (160), TProcess.Closelnput (156),
TProcess.CloseStdErr (156)

15.5.9 TProcess.CloseStderr

Synopsis: Close the error stream of the process
Declaration: procedure CloseStderr; Virtual
Visibility: public

Description: CloseStdErr closes the standard error file descriptor of the process, that is, it closes the handle
of the pipe to standard error output of the process.

See also: TProcess.Output (160), TProcess.Input (159), TProcess.StdErr (160), TProcess.Closelnput (156),
TProcess.CloseStdErr (156)

15.5.10 TProcess.Resume

Synopsis: Resume execution of a suspended process
Declaration: function Resume : Integer; Virtual
Visibility: public

Description: Resume should be used to let a suspended process resume it’s execution. It should be called in
particular when the poRunSuspended flag is set in Options (163).

Errors: None.

See also: TProcess.Suspend (157), TProcess.Options (163), TProcess.Execute (155), TProcess.Terminate (157)

156

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.11 TProcess.Suspend

Synopsis: Suspend a running process

Declaration: function Suspend Integer; Virtual

Visibility: public
Description: Suspend suspends a running process. If the call is successful, the process is suspended: it stops

running, but can be made to execute again using the Resume (156) call.
Suspend is fundamentally different from TProcess.Terminate (157) which actually stops the pro-

CeESss.

Errors: On error, a nonzero result is returned.
See also: TProcess.Options (163), TProcess.Resume (156), TProcess.Terminate (157), TProcess.Execute (155)

15.5.12 TProcess.Terminate

Synopsis: Terminate a running process
Boolean; Virtual

Declaration: function Terminate (AExitCode: Integer)
Visibility: public
Description: Terminate stops the execution of the running program. It effectively stops the program.
On Windows, the program will report an exit code of AExitCode, on other systems, this value is

ignored.
Errors: On error, a nonzero value is returned.

See also: TProcess.ExitStatus (160), TProcess.Suspend (157), TProcess.Execute (155), TProcess. WaitOnExit
(157)

15.5.13 TProcess.WaitOnExit

Synopsis: Wait for the program to stop executing.

Declaration: function WaitOnExit Boolean
Visibility: public
Description: WaitOnExit waits for the running program to exit. It returns True if the wait was succesful, or
False if there was some error waiting for the program to exit.
Note that the return value of this function has changed. The old return value was a DWord with a
platform dependent error code. To make things consistent and cross-platform, a boolean return type

was used.
Errors: On error, False is returned. No extended error information is available, as it is highly system

dependent.
See also: TProcess.ExitStatus (160), TProcess.Terminate (157), TProcess.Running (165)

157

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.14 TProcess.WindowRect

Synopsis: Positions for the main program window.
Declaration: Property WindowRect : Trect
Visibility: public
Access: Read,Write

Description: WindowRect can be used to specify the position of

15.5.15 TProcess.Handle
Synopsis: Handle of the process

Declaration: Property Handle : THandle
Visibility: public
Access: Read

Description: Handle identifies the process. In Unix systems, this is the process ID. On windows, this is the
process handle. It can be used to signal the process.

The handle is only valid after TProcess.Execute (155) has been called. It is not reset after the process
stopped.

See also: TProcess.ThreadHandle (158), TProcess.ProcessID (159), TProcess. ThreadID (159)

15.5.16 TProcess.ProcessHandle
Synopsis: Alias for Handle (158)

Declaration: Property ProcessHandle : THandle
Visibility: public
Access: Read
Description: ProcessHandle equals Handle (158) and is provided for completeness only.

See also: TProcess.Handle (158), TProcess. ThreadHandle (158), TProcess.ProcessID (159), TProcess. ThreadID
(159)

15.5.17 TProcess.ThreadHandle
Synopsis: Main process thread handle

Declaration: Property ThreadHandle : THandle
Visibility: public
Access: Read

Description: ThreadHandle is the main process thread handle. On Unix, this is the same as the process ID, on
Windows, this may be a different handle than the process handle.

The handle is only valid after TProcess.Execute (155) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (158), TProcess.ProcessID (159), TProcess.ThreadID (159)

158

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.18 TProcess.ProcessiD
Synopsis: ID of the process.

Declaration: Property ProcessID : Integer
Visibility: public
Access: Read

Description: ProcessID is the ID of the process. It is the same as the handle of the process on Unix systems,
but on Windows it is different from the process Handle.

The ID is only valid after TProcess.Execute (155) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (158), TProcess. ThreadHandle (158), TProcess.ThreadID (159)

15.5.19 TProcess.ThreadlD

Synopsis: ID of the main process thread
Declaration: Property ThreadID : Integer
Visibility: public
Access: Read

Description: ProcessID is the ID of the main process thread. It is the same as the handle of the main proces
thread (or the process itself) on Unix systems, but on Windows it is different from the thread Handle.

The ID is only valid after TProcess.Execute (155) has been called. It is not reset after the process
stopped.

See also: TProcess.ProcessID (159), TProcess.Handle (158), TProcess. ThreadHandle (158)

15.5.20 TProcess.Input

Synopsis: Stream connected to standard input of the process.
Declaration: Property Input : TOutputPipeStream
Visibility: public
Access: Read

Description: Input is a stream which is connected to the process’ standard input file handle. Anything written
to this stream can be read by the process.
The Input stream is only instantiated when the poUseP ipes flag is used in Options (163).
Note that writing to the stream may cause the calling process to be suspended when the created
process is not reading from it’s input, or to cause errors when the process has terminated.

See also: TProcess.OutPut (160), TProcess.StdErr (160), TProcess.Options (163), TProcessOption (151)

159

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.21 TProcess.Output

Synopsis: Stream connected to standard output of the process.
Declaration: Property Output : TInputPipeStream
Visibility: public
Access: Read

Description: Output is a stream which is connected to the process’ standard output file handle. Anything written
to standard output by the created process can be read from this stream.

The Output stream is only instantiated when the poUsePipes flag is used in Options (163).

The Output stream also contains any data written to standard diagnostic output (stderr) when
the poStdErrToOutPut flag is used in Options (163).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (159), TProcess.StdErr (160), TProcess.Options (163), TProcessOption (151)

15.5.22 TProcess.Stderr

Synopsis: Stream connected to standard diagnostic output of the process.
Declaration: Property Stderr : TInputPipeStream
Visibility: public
Access: Read

Description: StdErr is a stream which is connected to the process’ standard diagnostic output file handle
(StdErr). Anything written to standard diagnostic output by the created process can be read from
this stream.

The StdErr stream is only instantiated when the poUseP ipes flag is used in Options (163).

The Output stream equals the Output (160) when the poStdErrToOutPut flag is used in Op-
tions (163).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (159), TProcess.Output (160), TProcess.Options (163), TProcessOption (151)

15.5.23 TProcess.ExitStatus

Synopsis: Exit status of the process.
Declaration: Property ExitStatus : Integer
Visibility: public
Access: Read

Description: ExitStatus contains the exit status as reported by the process when it stopped executing. The
value of this property is only meaningful when the process is no longer running. If it is not running
then the value is zero.

See also: TProcess.Running (165), TProcess.Terminate (157)

160

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.24 TProcess.InheritHandles

Synopsis: Should the created process inherit the open handles of the current process.
Declaration: Property InheritHandles : Boolean
Visibility: public
Access: Read,Write

Description: InheritHandles determines whether the created process inherits the open handles of the current
process (value True) or not (False).

On Unix, setting this variable has no effect.

See also: TProcess.InPut (159), TProcess.Output (160), TProcess.StdErr (160)

15.5.25 TProcess.Active

Synopsis: Start or stop the process.
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive starts the process if it is set to True, or terminates the process if set to False. It’s mostly
intended for use in an IDE.

See also: TProcess.Execute (155), TProcess.Terminate (157)

15.5.26 TProcess.ApplicationName

Synopsis: Name of the application to start
Declaration: Property ApplicationName : String
Visibility: published
Access: Read,Write

Description: ApplicationName is an alias for TProcess.CommandLine (161). It’s mostly foruse in the Win-
dows CreateProcess call. If CommandLine is not set, then ApplicationName will be used
instead.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

See also: TProcess.CommandLine (161)

15.5.27 TProcess.CommandLine

Synopsis: Command-line to execute
Declaration: Property CommandLine : String
Visibility: published

Access: Read,Write

161

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

Description: CommandLine is the command-line to be executed: this is the name of the program to be executed,
followed by any options it should be passed.

If the command to be executed or any of the arguments contains whitespace (space, tab character,
linefeed character) it should be enclosed in single or double quotes.

If no absolute pathname is given for the command to be executed, it is searched for in the PATH
environment variable. On Windows, the current directory always will be searched first. On other
platforms, this is not so.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

See also: TProcess.ApplicationName (161)

15.5.28 TProcess.ConsoleTitle

Synopsis: Title of the console window
Declaration: Property ConsoleTitle : String
Visibility: published
Access: Read,Write

Description: ConsoleTit1le is used on Windows when executing a console application: it specifies the title
caption of the console window. On other platforms, this property is currently ignored.

Changing this property after the process was started has no effect.

See also: TProcess.WindowColumns (166), TProcess.WindowRows (167)

15.5.29 TProcess.CurrentDirectory
Synopsis: Working directory of the process.

Declaration: Property CurrentDirectory : String
Visibility: published
Access: Read,Write

Description: CurrentDirectory specifies the working directory of the newly started process.

Changing this property after the process was started has no effect.

See also: TProcess.Environment (163)

15.5.30 TProcess.Desktop
Synopsis: Desktop on which to start the process.

Declaration: Property Desktop : String
Visibility: published
Access: Read,Write

Description: DeskTop is used on Windows to determine on which desktop the process’ main window should be

shown. Leaving this empty means the process is started on the same desktop as the currently running
process.

Changing this property after the process was started has no effect.

On unix, this parameter is ignored.

162

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

See also: TProcess.Input (159), TProcess.Output (160), TProcess.StdErr (160)

15.5.31 TProcess.Environment

Synopsis: Environment variables for the new process
Declaration: Property Environment : TStrings
Visibility: published
Access: Read,Write

Description: Environment contains the environment for the new process; it’s a list of Name=Value pairs,
one per line.

If it is empty, the environment of the current process is passed on to the new process.

See also: TProcess.Options (163)

15.5.32 TProcess.Options

Synopsis: Options to be used when starting the process.
Declaration: Property Options : TProcessOptions
Visibility: published
Access: Read,Write

Description: Opt i ons determine how the process is started. They should be set before the Execute (155) call is

made.
Table 15.6:

option Meaning
poRunSuspended Start the process in suspended state.
poWaitOnExit Wait for the process to terminate before returning.
poUsePipes Use pipes to redirect standard input and output.
poStderrToOutPut Redirect standard error to the standard output stream.
poNoConsole Do not allow access to the console window for the process (Win32 only)
poNewConsole Start a new console window for the process (Win32 only)
poDefaultErrorMode Use default error handling.
poNewProcessGroup Start the process in a new process group (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)

See also: TProcessOption (151), TProcessOptions (152), TProcess.Priority (164), TProcess.StartUpOptions
(164)

163

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.33 TProcess.Priority

Synopsis: Priority at which the process is running.
Declaration: Property Priority : TProcessPriority
Visibility: published
Access: Read,Write

Description: Priority determines the priority at which the process is running.

Table 15.7:
Priority Meaning
ppHigh The process runs at higher than normal priority.
ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

Note that not all priorities can be set by any user. Usually, only users witha dministrative rights (the
root user on Unix) can set a higher process priority.

On unix, the process priority is mapped on Nice values as follows:

Table 15.8:
Priority Nice value
ppHigh 20
ppldle 20
ppNormal 0

ppRealTime -20

See also: TProcessPriority (152)

15.5.34 TProcess.StartupOptions
Synopsis: Additional (Windows) startup options
Declaration: Property StartupOptions : TStartupOptions
Visibility: published
Access: Read,Write

Description: sStartUpOpt ions contains additional startup options, used mostly on Windows system. They de-
termine which other window layout properties are taken into account when starting the new process.

See also: TProcess.ShowWindow (165), TProcess.WindowHeight (166), TProcess.WindowWidth (167), TPro-

cess.WindowLeft (166), TProcess.WindowTop (167), TProcess.WindowColumns (166), TProcess. WindowRows
(167), TProcess.FillAttribute (168)

164

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

Table 15.9:
Priority Meaning
suoUseShowWindow Use the Show Window options specified in ShowWindow (165)
suoUseSize Use the specified window sizes
suoUsePosition Use the specified window sizes.
suoUseCountChars Use the specified console character width.
suoUseFillAttribute Use the console fill attribute specified in Fill Attribute (168).

15.5.35 TProcess.Running
Synopsis: Determines wheter the process is still running.
Declaration: Property Running Boolean
Visibility: published
Access: Read

Description: Running can be read to determine whether the process is still running.

See also: TProcess.Terminate (157), TProcess.Active (161), TProcess.ExitStatus (160)

15.5.36 TProcess.ShowWindow

Synopsis: Determines how the process main window is shown (Windows only)
Declaration: Property ShowWindow TShowWindowOptions
Visibility: published

Access: Read,Write

Description: showWindow determines how the process’ main window is shown. It is useful only on Windows.

Table 15.10:
Option Meaning
swoNone Allow system to position the window.
SWOHIDE The main window is hidden.
swoMaximize The main window is maximized.
swoMinimize The main window is minimized.
swoRestore Restore the previous position.
swoShow Show the main window.
swoShowDefault When showing Show the main window on a default position

swoShowMaximized
swoShowMinimized

swoshowMinNOActive

The main window is shown maximized
The main window is shown minimized
The main window is shown minimized but not activated

swoShowNA The main window is shown but not activated
swoShowNoActivate The main window is shown but not activated
swoShowNormal The main window is shown normally

165

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.37 TProcess.WindowColumns

Synopsis: Number of columns in console window (windows only)
Declaration: Property WindowColumns : Cardinal
Visibility: published
Access: Read,Write

Description: WindowColumns is the number of columns in the console window, used to run the command in.
This property is only effective if suoUseCountChars is specified in StartupOptions (164)

See also: TProcess.WindowHeight (166), TProcess.WindowWidth (167), TProcess.WindowLeft (166), TPro-
cess.WindowTop (167), TProcess.WindowRows (167), TProcess.Fill Attribute (168), TProcess.StartupOptions
(164)

15.5.38 TProcess.WindowHeight

Synopsis: Height of the process main window
Declaration: Property WindowHeight : Cardinal
Visibility: published
Access: Read,Write

Description: WindowHeight is the initial height (in pixels) of the process’ main window. This property is only
effective if suoUseSize is specified in StartupOptions (164)

See also: TProcess.WindowWidth (167), TProcess.WindowLeft (166), TProcess.WindowTop (167), TPro-
cess.WindowColumns (166), TProcess.WindowRows (167), TProcess.Fill Attribute (168), TProcess.StartupOptions
(164)

15.5.39 TProcess.WindowLeft

Synopsis: X-coordinate of the initial window (Windows only)
Declaration: Property WindowLeft : Cardinal
Visibility: published
Access: Read,Write

Description: WindowLeft is the initial X coordinate (in pixels) of the process’ main window, relative to the
left border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (164)

See also: TProcess.WindowHeight (166), TProcess.WindowWidth (167), TProcess.WindowTop (167), TPro-
cess. WindowColumns (166), TProcess.WindowRows (167), TProcess.FillAttribute (168), TProcess.StartupOptions
(164)

166

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.40 TProcess.WindowRows

Synopsis: Number of rows in console window (Windows only)
Declaration: Property WindowRows : Cardinal
Visibility: published
Access: Read,Write

Description: WindowRows is the number of rows in the console window, used to run the command in. This
property is only effective if suoUseCountChars is specified in StartupOptions (164)

See also: TProcess.WindowHeight (166), TProcess.WindowWidth (167), TProcess.WindowLeft (166), TPro-
cess.WindowTop (167), TProcess. WindowColumns (166), TProcess.Fill Attribute (168), TProcess.StartupOptions
(164)

15.5.41 TProcess.WindowTop

Synopsis: Y-coordinate of the initial window (Windows only)
Declaration: Property WindowTop : Cardinal
Visibility: published
Access: Read,Write

Description: WindowTop is the initial Y coordinate (in pixels) of the process’ main window, relative to the
top border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (164)

See also: TProcess.WindowHeight (166), TProcess. WindowWidth (167), TProcess.WindowLeft (166), TPro-
cess.WindowColumns (166), TProcess.WindowRows (167), TProcess.Fill Attribute (168), TProcess.StartupOptions
(164)

15.5.42 TProcess.WindowWidth

Synopsis: Height of the process main window (Windows only)
Declaration: Property WindowWidth : Cardinal
Visibility: published
Access: Read,Write

Description: WindowWidth is the initial width (in pixels) of the process’ main window. This property is only
effective if suoUseSize is specified in StartupOptions (164)

See also: TProcess.WindowHeight (166), TProcess.WindowLeft (166), TProcess.WindowTop (167), TPro-
cess. WindowColumns (166), TProcess.WindowRows (167), TProcess.FillAttribute (168), TProcess.StartupOptions
(164)

167

CHAPTER 15. REFERENCE FOR UNIT 'PROCESS’

15.5.43 TProcess.FillAttribute

Synopsis: Color attributes of the characters in the console window (Windows only)
Declaration: Property FillAttribute : Cardinal
Visibility: published
Access: Read,Write

Description: Fil1Attribute is a WORD value which specifies the background and foreground colors of the
console window.

See also: TProcess.WindowHeight (166), TProcess.WindowWidth (167), TProcess.WindowLeft (166), TPro-
cess.WindowTop (167), TProcess.WindowColumns (166), TProcess.WindowRows (167), TProcess.StartupOptions
(164)

168

Chapter 16

Reference for unit ’streamcoll’

16.1 Used units

Table 16.1: Used units by unit ’streamcoll’

Name Page
Classes 2?
sysutils ??

16.2 Overview

The streamcoll unit contains the implentation of a collection (and corresponding collection item)
which implements routines for saving or loading the collection to/from a stream. The collection item
should implement 2 routines to implement the streaming; the streaming itself is not performed by the
TStreamCollection (172) collection item.

The streaming performed here is not compatible with the streaming implemented in the Classes
unit for components. It is independent of the latter and can be used without a component to hold the
collection.

The collection item introduces mostly protected methods, and the unit contains a lot of auxiliary
routines which aid in streaming.

16.3 Procedures and functions

16.3.1 ColReadBoolean

Synopsis: Read a boolean value from a stream
Declaration: function ColReadBoolean (S: TStream) : Boolean
Visibility: default

Description: ColReadBoolean reads a boolean from the stream S as it was written by ColWriteBoolean (171)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

169

CHAPTER 16. REFERENCE FOR UNIT 'STREAMCOLL’

See also: ColReadDateTime (170), ColWriteBoolean (171), ColReadString (171), ColReadInteger (170), Col-
ReadFloat (170), ColReadCurrency (170)

16.3.2 ColReadCurrency

Synopsis: Read a currency value from the stream
Declaration: function ColReadCurrency(S: TStream) : Currency
Visibility: default

Description: ColReadCurrency reads a currency value from the stream S as it was written by ColWriteCur-
rency (171) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColReadDateTime (170), ColReadBoolean (169), ColReadString (171), ColReadInteger (170), Col-
ReadFloat (170), ColWriteCurrency (171)

16.3.3 ColReadDateTime

Synopsis: Read a TDateTime value from a stream
Declaration: function ColReadDateTime (S: TStream) : TDateTime
Visibility: default

Description: Col1ReadDateTime reads a currency value from the stream S as it was written by ColWriteDate-
Time (171) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColWriteDateTime (171), ColReadBoolean (169), ColReadString (171), ColReadInteger (170), Col-
ReadFloat (170), ColReadCurrency (170)

16.3.4 ColReadFloat

Synopsis: Read a floating point value from a stream
Declaration: function ColReadFloat (S: TStream) : Double
Visibility: default

Description: Col1ReadFloat reads a double value from the stream S as it was written by ColWriteFloat (172)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

See also: ColReadDateTime (170), ColReadBoolean (169), ColReadString (171), ColReadInteger (170), Col-
WriteFloat (172), ColReadCurrency (170)

16.3.5 ColReadInteger

Synopsis: Read a 32-bit integer from a stream.
Declaration: function ColReadInteger (S: TStream) : Integer

Visibility: default

170

CHAPTER 16. REFERENCE FOR UNIT 'STREAMCOLL’

Description: ColReadInteger reads a 32-bit integer from the stream S as it was written by ColWriteInteger
(172) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColReadDateTime (170), ColReadBoolean (169), ColReadString (171), ColWriteInteger (172), Col-
ReadFloat (170), ColReadCurrency (170)

16.3.6 ColReadString
Synopsis: Read a string from a stream
Declaration: function ColReadString(S: TStream) : String
Visibility: default

Description: ColReadStream reads a string value from the stream S as it was written by ColWriteString (172)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

See also: ColReadDateTime (170), ColReadBoolean (169), ColWriteString (172), ColReadInteger (170), Col-
ReadFloat (170), ColReadCurrency (170)

16.3.7 ColWriteBoolean
Synopsis: Write a boolean to a stream
Declaration: procedure ColWriteBoolean (S: TStream;AValue: Boolean)
Visibility: default
Description: ColWriteBoolean writes the boolean AValue to the stream. S.

See also: ColReadBoolean (169), ColWriteString (172), ColWritelnteger (172), ColWriteCurrency (171),
ColWriteDateTime (171), ColWriteFloat (172)

16.3.8 ColWriteCurrency
Synopsis: Write a currency value to stream
Declaration: procedure ColWriteCurrency(S: TStream;AValue: Currency)
Visibility: default
Description: ColWriteCurrency writes the currency AValue to the stream S.

See also: ColWriteBoolean (171), ColWriteString (172), ColWriteInteger (172), ColWriteDateTime (171),
ColWriteFloat (172), ColReadCurrency (170)

16.3.9 ColWriteDateTime
Synopsis: Write a TDateTime value to stream
Declaration: procedure ColWriteDateTime (S: TStream;AValue: TDateTime)
Visibility: default
Description: ColWriteDateTime writes the TDateTimeAValue to the stream S.

See also: ColReadDateTime (170), ColWriteBoolean (171), ColWriteString (172), ColWritelnteger (172),
ColWriteFloat (172), ColWriteCurrency (171)

171

CHAPTER 16. REFERENCE FOR UNIT 'STREAMCOLL’

16.3.10 ColWriteFloat

Synopsis: Write floating point value to stream
Declaration: procedure ColWriteFloat (S: TStream;AValue: Double)
Visibility: default
Description: ColWriteFloat writes the double AValue to the stream S.

See also: ColWriteDateTime (171), ColWriteBoolean (171), ColWriteString (172), ColWriteInteger (172),
ColReadFloat (170), ColWriteCurrency (171)

16.3.11 ColWritelnteger
Synopsis: Write a 32-bit integer to a stream

Declaration: procedure ColWritelInteger (S: TStream;AValue: Integer)
Visibility: default
Description: ColWriteInteger writes the 32-bit integer AValue to the stream S. No endianness is observed.

See also: ColWriteBoolean (171), ColWriteString (172), ColReadInteger (170), ColWriteCurrency (171),
ColWriteDateTime (171)

16.3.12 ColWriteString

Synopsis: Write a string value to the stream
Declaration: procedure ColWriteString(S: TStream;AValue: String)
Visibility: default
Description: ColWriteString writes the string value AValue to the stream S.

See also: ColWriteBoolean (171), ColReadString (171), ColWriteInteger (172), ColWriteCurrency (171),
ColWriteDateTime (171), ColWriteFloat (172)

16.4 EStreamColl

16.4.1 Description

Exception raised when an error occurs when streaming the collection.

16.5 TStreamCollection

16.5.1 Description

TStreamCollection is a TCollection (??) descendent which implements 2 calls LoadFrom-
Stream (173) and SaveToStream (173) which load and save the contents of the collection to a stream.

The collection items must be descendents of the TStreamCollectionltem (174) class for the streaming
to work correctly.

Note that the stream must be used to load collections of the same type.

172

CHAPTER 16. REFERENCE FOR UNIT 'STREAMCOLL’

16.5.2 Method overview

Page Property Description
173 LoadFromStream Load the collection from a stream
173 SaveToStream Load the collection from the stream.

16.5.3 Property overview

Page Property Access Description
173 Streaming r Indicates whether the collection is currently being written to
stream

16.5.4 TStreamCollection.LoadFromStream

Synopsis: Load the collection from a stream
Declaration: procedure LoadFromStream(S: TStream)
Visibility: public

Description: LoadFromSt ream loads the collection from the stream S, if the collection was saved using Save-
ToStream (173). It reads the number of items in the collection, and then creates and loads the items
one by one from the stream.

Errors: An exception may be raised if the stream contains invalid data.

See also: TStreamCollection.SaveToStream (173)

16.5.5 TStreamCollection.SaveToStream

Synopsis: Load the collection from the stream.
Declaration: procedure SaveToStream(S: TStream)
Visibility: public

Description: saveToStream saves the collection to the stream S so it can be read from the stream with Load-
FromStream (173). It does this by writing the number of collection items to the stream, and then
streaming all items in the collection by calling their SaveToSt ream method.

Errors: None.

See also: TStreamCollection.LoadFromStream (173)

16.5.6 TStreamCollection.Streaming

Synopsis: Indicates whether the collection is currently being written to stream
Declaration: Property Streaming : Boolean
Visibility: public
Access: Read

Description: St reaming is set to True if the collection is written to or loaded from stream, and is set again to
False if the streaming process is finished.

See also: TStreamCollection.LoadFromStream (173), TStreamCollection.SaveToStream (173)

173

CHAPTER 16. REFERENCE FOR UNIT 'STREAMCOLL’

16.6 TStreamCollectionltem

16.6.1 Description

TStreamCollectionItem is a TCollectionltem (??) descendent which implements 2 abstract
routines: LoadFromStream and SaveToStream which must be overridden in a descendent
class.

These 2 routines will be called by the TStreamCollection (172) to save or load the item from the
stream.

174

Chapter 17

Reference for unit ’streamex’

17.1 Used units

Table 17.1: Used units by unit ’streamex’

Name Page
Classes 2?

17.2 Overview

streamex implements some extensions to be used together with streams from the classes unit.

17.3 TBidirBinaryObjectReader

17.3.1 Description

TBidirBinaryObjectReader is a class descendent from TBinaryObjectReader (??), which
implements the necessary support for BiDi data: the position in the stream (not available in the
standard streaming) is emulated.

17.3.2 Property overview

Page Property Access Description
175 Position 1w Position in the stream

17.3.3 TBidirBinaryObjectReader.Position

Synopsis: Position in the stream
Declaration: Property Position : LongInt

Visibility: public

175

CHAPTER 17. REFERENCE FOR UNIT 'STREAMEX”

Access: Read,Write

Description: Position exposes the position of the stream in the reader for use in the TDelphiReader (176)
class.

See also: TDelphiReader (176)

17.4 TBidirBinaryObjectWriter

17.4.1 Description

TBidirBinaryObjectReader is a class descendent from TBinaryObjectWriter (??), which
implements the necessary support for BiDi data.

17.4.2 Property overview

Page Property Access Description
176 Position rw Position in the stream

17.4.3 TBidirBinaryObjectWriter.Position

Synopsis: Position in the stream
Declaration: Property Position : LongInt
Visibility: public
Access: Read,Write
Description: Position exposes the position of the stream in the writer for use in the TDelphiWriter (177) class.

See also: TDelphiWriter (177)

17.5 TDelphiReader

17.5.1 Description

TDelphiReader is a descendent of TReader which has support for BiDi Streaming. It overrides
the stream reading methods for strings, and makes sure the stream can be positioned in the case of
strings. For this purpose, it makes use of the TBidirBinaryObjectReader (175) driver class.

17.5.2 Method overview

Page Property Description

177 GetDriver Return the driver class as a TBidirBinaryObjectReader (175) class
177 Read Read data from stream

177 ReadStr Overrides the standard ReadSt r method

17.5.3 Property overview

Page Property Access Description
177 Position 1w Position in the stream

176

CHAPTER 17. REFERENCE FOR UNIT 'STREAMEX”

17.5.4 TDelphiReader.GetDriver
Synopsis: Return the driver class as a TBidirBinaryObjectReader (175) class

Declaration: function GetDriver : TBidirBinaryObjectReader
Visibility: public

Description: GetDriver simply returns the used driver and typecasts it as TBidirBinaryObjectReader (175)
class.

See also: TBidirBinaryObjectReader (175)

17.5.5 TDelphiReader.ReadStr
Synopsis: Overrides the standard ReadSt r method
Declaration: function ReadStr : String
Visibility: public
Description: ReadStr makes sure the TBidirBinaryObjectReader (175) methods are used, to store additional
information about the stream position when reading the strings.

See also: TBidirBinaryObjectReader (175)

17.5.6 TDelphiReader.Read
Synopsis: Read data from stream
Declaration: procedure Read (var Buf;Count: LongInt); Override
Visibility: public
Description: Read reads raw data from the stream. It reads Count bytes from the stream and places them in
Buf. It forces the use of the TBidirBinaryObjectReader (175) class when reading.

See also: TBidirBinaryObjectReader (175), TDelphiReader.Position (177)

17.5.7 TDelphiReader.Position
Synopsis: Position in the stream
Declaration: Property Position : LongInt
Visibility: public
Access: Read,Write
Description: Position in the stream.

See also: TDelphiReader.Read (177)

17.6 TDelphiWriter

17.6.1 Description

TDelphiWriter is a descendent of TWriter which has support for BiDi Streaming. It overrides
the stream writing methods for strings, and makes sure the stream can be positioned in the case of
strings. For this purpose, it makes use of the TBidirBinaryObjectWriter (176) driver class.

177

CHAPTER 17. REFERENCE FOR UNIT 'STREAMEX”

17.6.2 Method overview

Page Property Description

178 FlushBuffer Flushes the stream buffer

178 GetDriver Return the driver class as a TBidirBinaryObjectWriter (176) class
178 Write Write raw data to the stream

178 WriteStr Write a string to the stream

179 WriteValue = Write value type

17.6.3 Property overview

Page Property Access Description
179 Position 1w Position in the stream

17.6.4 TDelphiWriter.GetDriver
Synopsis: Return the driver class as a TBidirBinaryObjectWriter (176) class

Declaration: function GetDriver : TBidirBinaryObjectWriter
Visibility: public

Description: GetDriver simply returns the used driver and typecasts it as TBidirBinaryObjectWriter (176)
class.

See also: TBidirBinaryObjectWriter (176)

17.6.5 TDelphiWriter.FlushBuffer

Synopsis: Flushes the stream buffer
Declaration: procedure FlushBuffer
Visibility: public

Description: FlushBuf fer flushes the internal buffer of the writer. It simply calls the F1ushBuf fer method
of the driver class.

17.6.6 TDelphiWriter.Write

Synopsis: Write raw data to the stream
Declaration: procedure Write (const Buf;Count: LongInt); Override
Visibility: public

Description: Write writes Count bytes from Buf to the buffer, updating the position as needed.

17.6.7 TDelphiWriter.WriteStr
Synopsis: Write a string to the stream

Declaration: procedure WriteStr (const Value: String)

Visibility: public

178

CHAPTER 17. REFERENCE FOR UNIT 'STREAMEX”

Description: WriteStr writes a string to the stream, forcing the use of the TBidirBinaryObjectWriter (176)
class methods, which update the position of the stream.

See also: TBidirBinaryObjectWriter (176)

17.6.8 TDelphiWriter.WriteValue

Synopsis: Write value type
Declaration: procedure WriteValue (Value: TValueType)
Visibility: public

Description: WriteValue overrides the same method in TWriter to force the use of the TBidirBinaryOb-
jectWriter (176) methods, which update the position of the stream.

See also: TBidirBinaryObjectWriter (176)

17.6.9 TDelphiWriter.Position

Synopsis: Position in the stream
Declaration: Property Position : LonglInt
Visibility: public
Access: Read,Write

Description: Position exposes the position in the stream as exposed by the TBidirBinaryObjectWriter (176)
instance used when streaming.

See also: TBidirBinaryObjectWriter (176)

179

Chapter 18

Reference for unit ’StreamlQO’

18.1 Used units

Table 18.1: Used units by unit ’StreamlIO’

Name Page
Classes 2?
sysutils 7?

18.2 Overview

The StreamIO unit implements a call to reroute the input or output of a text file to a descendents of
TStream (??).

This allows to use the standard pascal Read (??) and Write (??) functions (with all their possibilities),
on streams.

18.3 Procedures and functions

18.3.1 AssignStream

Synopsis: Assign a text file to a stream.
Declaration: procedure AssignStream(var F: Textfile;Stream: TStream)
Visibility: default

Description: AssignStream assigns the stream St ream to file F. The file can subsequently be used to write
to the stream, using the standard Write (??) calls.

Before writing, call Rewrite (??) on the stream. Before reading, call Reset (2?).
Errors: if St ream is Ni1, an exception will be raised.

See also: #rtl.classes. TStream (??), GetStream (181)

180

CHAPTER 18. REFERENCE FOR UNIT 'STREAMIO’

18.3.2 GetStream

Synopsis: Return the stream, associated with a file.
Declaration: function GetStream(var F: TTextRec) : TStream
Visibility: default

Description: Get St ream returns the instance of the stream that was associated with the file F using Assign-
Stream (180).

Errors: An invalid class reference will be returned if the file was not associated with a stream.

See also: AssignStream (180), #rtl.classes. TStream (??)

181

Chapter 19

Reference for unit ’zstream’

19.1 Used units

Table 19.1: Used units by unit ’zstream’

Name Page
Classes 2?
paszlib 182
sysutils ??
zbase 182

19.2 Overview

The ZStream unit implements a TStream (??) descendent (TCompressionStream (183)) which uses
the deflate algorithm to compress everything that is written to it. The compressed data is written to
the output stream, which is specified when the compressor class is created.

Likewise, a TSt ream descendent is implemented which reads data from an input stream (TDecom-
pressionStream (186)) and decompresses it with the inflate algorithm.

19.3 Constants, types and variables

19.3.1 Types

TCompressionLevel = (clNone,clFastest,clDefault, clMax)
Compression level for the deflate algorithm
TGZOpenMode = (gzOpenRead, gzOpenWrite)

Open mode for gzip file.

182

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

Table 19.2: Enumeration values for type TCompressionLevel

Value Explanation

clDefault Use default compression

clFastest Use fast (but less) compression.

clMax Use maximum compression

cINone Do not use compression, just copy data.

Table 19.3: Enumeration values for type TGZOpenMode

Value Explanation
gzOpenRead Open file for reading
gzOpenWrite Open file for writing

19.4 ECompressionError

19.4.1 Description

ECompressionError is the exception class used by the TCompressionStream (183) class.

19.5 EDecompressionError

19.5.1 Description

EDecompressionError is the exception class used by the TDeCompressionStream (186) class.

19.6 EZlibError
19.6.1 Description

Errors which occur in the zstream unit are signaled by raising an EZLibError exception descen-
dent.

19.7 TCompressionStream

19.7.1 Description

TCompressionStream

19.7.2 Method overview
Page Property Description

184 Create Create a new instance of the compression stream.

184 Destroy Flushe data to the output stream and destroys the compression stream.
184 Read Overridden to raise an exception.

185 Seek Overrides seek to raise an exception.

185 Write Write data to the stream

183

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.7.3 Property overview

Page Property Access Description
185 CompressionRate r Running compression rate of compression stream
185 OnProgress Progress handler

19.7.4 TCompressionStream.Create

Synopsis: Create a new instance of the compression stream.

Declaration: constructor Create (CompressionLevel: TCompressionLevel;Dest: TStream;
ASkipHeader: Boolean)

Visibility: public

Description: Create creates a new instance of the compression stream. It merely calls the inherited constructor
with the destination stream De st and stores the compression level.

If ASkipHeader is set to True, the method will not write the block header to the stream. This is
required for deflated data in a zip file.

Note that the compressed data is only completely written after the compression stream is destroyed.

See also: TCompressionStream.Destroy (184)

19.7.5 TCompressionStream.Destroy

Synopsis: Flushe data to the output stream and destroys the compression stream.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes the output stream: any compressed data not yet written to the output stream are
written, and the deflate structures are cleaned up.

Errors: None.

See also: TCompressionStream.Create (184)

19.7.6 TCompressionStream.Read

Synopsis: Overridden to raise an exception.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: The Read method of TSt ream is overridden, and always raises an exception, because TCompressionStream
is write-only.

Errors: An ECompressionError (183) exception is raised.

See also: ECompressionError (183), TCompressionStream. Write (185)

184

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.7.7 TCompressionStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write takes Count bytes from Buf fer and comresseses (deflates) them. The compressed result
is written to the output stream.

Errors: If an error occurs, an ECompressionError (183) exception is raised.

See also: TCompressionStream.Read (184), TCompressionStream.Seek (185)

19.7.8 TCompressionStream.Seek

Synopsis: Overrides seek to raise an exception.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: The Seek method of TSt ream is overridden, and always raises an exception, because TCompressionStream
is write-only, and cannot seek.

Errors: An ECompressionError (183) exception is raised.

See also: ECompressionError (183), TCompressionStream.Read (184), TCompressionStream.Write (185)

19.7.9 TCompressionStream.CompressionRate

Synopsis: Running compression rate of compression stream
Declaration: Property CompressionRate : extended
Visibility: public
Access: Read

Description: The Compressionrate is updated as more data is written to the stream and represents the ratio
of outputted data versus written data.

See also: TCompressionStream. Write (185)

19.7.10 TCompressionStream.OnProgress
Synopsis: Progress handler

Declaration: Property OnProgress
Visibility: public
Access:

Description: onProgress is called whenever output data is written to the output stream. It can be used to
update a progress bar or so. The Sender argument to the progress handler is the compression
stream instance.

185

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.8 TCustomZlibStream

19.8.1 Description

TCustomZlibStream serves as the ancestor class for the TCompressionStream (183) and TDe-
CompressionStream (186) classes.

It introduces support for a progess handler, and stores the input or output stream.

19.8.2 Method overview

Page Property Description
186 Create Create a new instance of TCustomZlibStream

19.8.3 TCustomZlibStream.Create

Synopsis: Create a new instance of TCustomZlibStream
Declaration: constructor Create (Strm: TStream)
Visibility: public

Description: Create creates a new instance of TCustomz1ibSt ream. It stores a reference to the input/output
stream, and initializes the deflate compression mechanism so they can be used by the descendents.

See also: TCompressionStream (183), TDecompressionStream (186)

19.9 TDecompressionStream

19.9.1 Description

TDecompressionStream performs the inverse operation of TCompressionStream (183). A read
operation reads data from an input stream and decompresses (inflates) the data it as it goes along.

The decompression stream reads it’s compressed data from a stream with deflated data. This data
can be created e.g. with a TCompressionStream (183) compression stream.

19.9.2 Method overview
Page Property Description

187 Create Creates a new instance of the TDecompressionStream stream
187 Destroy Destroys the TDecompressionStream instance

187 Read Read data from the compressed stream

188 Seek Move stream position to a certain location in the stream.

187 Write Write data to the stream

19.9.3 Property overview

Page Property Access Description
188 OnProgress Progress handler

186

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.9.4 TDecompressionStream.Create
Synopsis: Creates a new instance of the TDecompressionStream stream
Declaration: constructor Create (ASource: TStream;ASkipHeader: Boolean)
Visibility: public
Description: Create creates and initializes a new instance of the TDecompressionStream class. It calls

the inherited Create and passes it the Source stream. The source stream is the stream from which
the compressed (deflated) data is read.

If ASkipHeader is true, then the gzip data header is skipped, allowing TDecompressionStream
to read deflated data in a .zip file. (this data does not have the gzip header record prepended to it).

Note that the source stream is by default not owned by the decompression stream, and is not freed
when the decompression stream is destroyed.

See also: TDecompressionStream.Destroy (187)

19.9.5 TDecompressionStream.Destroy
Synopsis: Destroys the TDecompressionStreamn instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy cleans up the inflate structure, and then simply calls the inherited destroy.
By default the source stream is not freed when calling Destroy.

See also: TDecompressionStream.Create (187)

19.9.6 TDecompressionStream.Read
Synopsis: Read data from the compressed stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read will read data from the compressed stream until the decompressed data size is Count or there

is no more compressed data available. The decompressed data is written in Buf fer. The function
returns the number of bytes written in the buffer.

Errors: If an error occurs, an EDeCompressionError (183) exception is raised.

See also: TCompressionStream. Write (185)

19.9.7 TDecompressionStream.Write
Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Write will raise a EDeCompressionError (183) exception, because the TDecompressionStream
class is read-only.

Errors: An EDeCompressionError (183) exception is always raised.

See also: TDeCompressionStream.Read (187), EDeCompressionError (183)

187

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.9.8 TDecompressionStream.Seek
Synopsis: Move stream position to a certain location in the stream.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public
Description: seek overrides the standard Seek implementation. Normally, pipe streams stderr are not seekable.

The TDecompressionStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then

Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EPipeSeek exception.

Errors: An EDecompressionError (183) exception is raised if the stream does not allow the requested seek
operation.

See also: TDecompressionStream.Read (187)

19.9.9 TDecompressionStream.OnProgress
Synopsis: Progress handler

Declaration: Property OnProgress
Visibility: public
Access:

Description: OnProgress is called whenever input data is read from the source stream. It can be used to update

a progress bar or so. The Sender argument to the progress handler is the decompression stream
instance.

19.10 TGZFileStream

19.10.1 Description

TGZFileStream can be used to read data from a gzip file, or to write data to a gzip file.

19.10.2 Method overview

Page Property Description

189 Create Create a new instance of TGZFileStream
189 Destroy Removes TGZFileStream instance

189 Read Read data from the compressed file

190 Seek Set the position in the compressed stream.
190 Write Write data to be compressed

188

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.10.3 TGZFileStream.Create

Synopsis: Create a new instance of TGZFileStream
Declaration: constructor Create (FileName: String;FileMode: TGZOpenMode)
Visibility: public

Description: Create creates a new instance of the TGZFileStream class. It opens FileName for reading
or writing, depending on the Fi leMode parameter. It is not possible to open the file read-write. If
the file is opened for reading, it must exist.

If the file is opened for reading, the TGZFileStream.Read (189) method can be used for reading the
data in uncompressed form.

If the file is opened for writing, any data written using the TGZFileStream.Write (190) method will
be stored in the file in compressed (deflated) form.

Errors: If the file is not found, an EZIibError (183) exception is raised.

See also: TGZFileStream.Destroy (189), TGZOpenMode (182)

19.10.4 TGZFileStream.Destroy

Synopsis: Removes TGZFileSt ream instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy closes the file and releases the TGZFi1leSt ream instance from memory.

See also: TGZFileStream.Create (189)

19.10.5 TGZFileStream.Read

Synopsis: Read data from the compressed file
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read overrides the Read method of TStream to read the data from the compressed file. The
Buf fer parameter indicates where the read data should be stored. The Count parameter specifies
the number of bytes (uncompressed) that should be read from the compressed file. Note that it is not
possible to read from the stream if it was opened in write mode.

The function returns the number of uncompressed bytes actually read.

Errors: If Buf fer points to an invalid location, or does not have enough room for Count bytes, an excep-
tion will be raised.

See also: TGZFileStream.Create (189), TGZFileStream.Write (190), TGZFileStream.Seek (190)

189

CHAPTER 19. REFERENCE FOR UNIT "ZSTREAM’

19.10.6 TGZFileStream.Write
Synopsis: Write data to be compressed

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write writes Count bytes from Buffer to the compressed file. The data is compressed as it is
written, so ideally, less than Count bytes end up in the compressed file. Note that it is not possible
to write to the stream if it was opened in read mode.

The function returns the number of (uncompressed) bytes that were actually written.
Errors: In case of an error, an EZlibError (183) exception is raised.

See also: TGZFileStream.Create (189), TGZFileStream.Read (189), TGZFileStream.Seek (190)

19.10.7 TGZFileStream.Seek

Synopsis: Set the position in the compressed stream.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek sets the position to Of £ set bytes, starting from Origin. Not all combinations are possible,
see TDecompressionStream.Seek (188) for a list of possibilities.

Errors: In case an impossible combination is asked, an EZlibError (183) exception is raised.

See also: TDecompressionStream.Seek (188)

190

	Overview
	Reference for unit 'base64'
	Used units
	Overview
	Constants, types and variables
	Types

	EBase64DecodingException
	Description

	TBase64DecodingStream
	Description
	Method overview
	Property overview
	TBase64DecodingStream.Create
	TBase64DecodingStream.Reset
	TBase64DecodingStream.Read
	TBase64DecodingStream.Write
	TBase64DecodingStream.Seek
	TBase64DecodingStream.EOF
	TBase64DecodingStream.Mode

	TBase64EncodingStream
	Description
	Method overview
	TBase64EncodingStream.Create
	TBase64EncodingStream.Destroy
	TBase64EncodingStream.Read
	TBase64EncodingStream.Write
	TBase64EncodingStream.Seek

	Reference for unit 'bufstream'
	Used units
	Overview
	Constants, types and variables
	Constants

	TBufStream
	Description
	Method overview
	Property overview
	TBufStream.Create
	TBufStream.Destroy
	TBufStream.Buffer
	TBufStream.Capacity
	TBufStream.BufferPos
	TBufStream.BufferSize

	TReadBufStream
	Description
	Method overview
	TReadBufStream.Seek
	TReadBufStream.Read
	TReadBufStream.Write

	TWriteBufStream
	Description
	Method overview
	TWriteBufStream.Destroy
	TWriteBufStream.Seek
	TWriteBufStream.Read
	TWriteBufStream.Write

	Reference for unit 'CacheCls'
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Types

	ECacheError
	Description

	TCache
	Description
	Method overview
	Property overview
	TCache.Create
	TCache.Destroy
	TCache.Add
	TCache.AddNew
	TCache.FindSlot
	TCache.IndexOf
	TCache.Remove
	TCache.Data
	TCache.MRUSlot
	TCache.LRUSlot
	TCache.SlotCount
	TCache.Slots
	TCache.OnIsDataEqual
	TCache.OnFreeSlot

	Reference for unit 'contnrs'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	RSHash

	EDuplicate
	Description

	EKeyNotFound
	Description

	TClassList
	Description
	Method overview
	Property overview
	TClassList.Add
	TClassList.Extract
	TClassList.Remove
	TClassList.IndexOf
	TClassList.First
	TClassList.Last
	TClassList.Insert
	TClassList.Items

	TComponentList
	Description
	Method overview
	Property overview
	TComponentList.Destroy
	TComponentList.Add
	TComponentList.Extract
	TComponentList.Remove
	TComponentList.IndexOf
	TComponentList.First
	TComponentList.Last
	TComponentList.Insert
	TComponentList.Items

	TFPCustomHashTable
	Description
	Method overview
	Property overview
	TFPCustomHashTable.Create
	TFPCustomHashTable.CreateWith
	TFPCustomHashTable.Destroy
	TFPCustomHashTable.ChangeTableSize
	TFPCustomHashTable.Clear
	TFPCustomHashTable.Delete
	TFPCustomHashTable.Find
	TFPCustomHashTable.IsEmpty
	TFPCustomHashTable.HashFunction
	TFPCustomHashTable.Count
	TFPCustomHashTable.HashTableSize
	TFPCustomHashTable.HashTable
	TFPCustomHashTable.VoidSlots
	TFPCustomHashTable.LoadFactor
	TFPCustomHashTable.AVGChainLen
	TFPCustomHashTable.MaxChainLength
	TFPCustomHashTable.NumberOfCollisions
	TFPCustomHashTable.Density

	TFPDataHashTable
	Description
	Method overview
	Property overview
	TFPDataHashTable.Add
	TFPDataHashTable.Items

	TFPHashList
	Description
	Method overview
	Property overview
	TFPHashList.Create
	TFPHashList.Destroy
	TFPHashList.Add
	TFPHashList.Clear
	TFPHashList.NameOfIndex
	TFPHashList.HashOfIndex
	TFPHashList.Delete
	TFPHashList.Error
	TFPHashList.Expand
	TFPHashList.Extract
	TFPHashList.IndexOf
	TFPHashList.Find
	TFPHashList.FindIndexOf
	TFPHashList.FindWithHash
	TFPHashList.Rename
	TFPHashList.Remove
	TFPHashList.Pack
	TFPHashList.ShowStatistics
	TFPHashList.ForEachCall
	TFPHashList.Capacity
	TFPHashList.Count
	TFPHashList.Items
	TFPHashList.List
	TFPHashList.Strs

	TFPHashObject
	Description
	Method overview
	Property overview
	TFPHashObject.CreateNotOwned
	TFPHashObject.Create
	TFPHashObject.ChangeOwner
	TFPHashObject.ChangeOwnerAndName
	TFPHashObject.Rename
	TFPHashObject.Name
	TFPHashObject.Hash

	TFPHashObjectList
	Method overview
	Property overview
	TFPHashObjectList.Create
	TFPHashObjectList.Destroy
	TFPHashObjectList.Clear
	TFPHashObjectList.Add
	TFPHashObjectList.NameOfIndex
	TFPHashObjectList.HashOfIndex
	TFPHashObjectList.Delete
	TFPHashObjectList.Expand
	TFPHashObjectList.Extract
	TFPHashObjectList.Remove
	TFPHashObjectList.IndexOf
	TFPHashObjectList.Find
	TFPHashObjectList.FindIndexOf
	TFPHashObjectList.FindWithHash
	TFPHashObjectList.Rename
	TFPHashObjectList.FindInstanceOf
	TFPHashObjectList.Pack
	TFPHashObjectList.ShowStatistics
	TFPHashObjectList.ForEachCall
	TFPHashObjectList.Capacity
	TFPHashObjectList.Count
	TFPHashObjectList.OwnsObjects
	TFPHashObjectList.Items
	TFPHashObjectList.List

	TFPObjectHashTable
	Description
	Method overview
	Property overview
	TFPObjectHashTable.Create
	TFPObjectHashTable.CreateWith
	TFPObjectHashTable.Add
	TFPObjectHashTable.Items
	TFPObjectHashTable.OwnsObjects

	TFPObjectList
	Description
	Method overview
	Property overview
	TFPObjectList.Create
	TFPObjectList.Destroy
	TFPObjectList.Clear
	TFPObjectList.Add
	TFPObjectList.Delete
	TFPObjectList.Exchange
	TFPObjectList.Expand
	TFPObjectList.Extract
	TFPObjectList.Remove
	TFPObjectList.IndexOf
	TFPObjectList.FindInstanceOf
	TFPObjectList.Insert
	TFPObjectList.First
	TFPObjectList.Last
	TFPObjectList.Move
	TFPObjectList.Assign
	TFPObjectList.Pack
	TFPObjectList.Sort
	TFPObjectList.ForEachCall
	TFPObjectList.Capacity
	TFPObjectList.Count
	TFPObjectList.OwnsObjects
	TFPObjectList.Items
	TFPObjectList.List

	TFPStringHashTable
	Description
	Method overview
	Property overview
	TFPStringHashTable.Add
	TFPStringHashTable.Items

	THTCustomNode
	Description
	Method overview
	Property overview
	THTCustomNode.CreateWith
	THTCustomNode.HasKey
	THTCustomNode.Key

	THTDataNode
	Description
	Property overview
	THTDataNode.Data

	THTObjectNode
	Description
	Property overview
	THTObjectNode.Data

	THTOwnedObjectNode
	Description
	Method overview
	THTOwnedObjectNode.Destroy

	THTStringNode
	Description
	Property overview
	THTStringNode.Data

	TObjectList
	Description
	Method overview
	Property overview
	TObjectList.create
	TObjectList.Add
	TObjectList.Extract
	TObjectList.Remove
	TObjectList.IndexOf
	TObjectList.FindInstanceOf
	TObjectList.Insert
	TObjectList.First
	TObjectList.Last
	TObjectList.OwnsObjects
	TObjectList.Items

	TObjectQueue
	Method overview
	TObjectQueue.Push
	TObjectQueue.Pop
	TObjectQueue.Peek

	TObjectStack
	Description
	Method overview
	TObjectStack.Push
	TObjectStack.Pop
	TObjectStack.Peek

	TOrderedList
	Description
	Method overview
	TOrderedList.Create
	TOrderedList.Destroy
	TOrderedList.Count
	TOrderedList.AtLeast
	TOrderedList.Push
	TOrderedList.Pop
	TOrderedList.Peek

	TQueue
	Description

	TStack
	Description

	Reference for unit 'dbugintf'
	Writing a debug server
	Overview
	Constants, types and variables
	Resource strings
	Constants
	Types

	Procedures and functions
	GetDebuggingEnabled
	InitDebugClient
	SendBoolean
	SendDateTime
	SendDebug
	SendDebugEx
	SendDebugFmt
	SendDebugFmtEx
	SendInteger
	SendMethodEnter
	SendMethodExit
	SendPointer
	SendSeparator
	SetDebuggingEnabled
	StartDebugServer

	Reference for unit 'dbugmsg'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	DebugMessageName
	ReadDebugMessageFromStream
	WriteDebugMessageToStream

	Reference for unit 'eventlog'
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Types

	ELogError
	Description

	TEventLog
	Description
	Method overview
	Property overview
	TEventLog.Destroy
	TEventLog.EventTypeToString
	TEventLog.RegisterMessageFile
	TEventLog.Log
	TEventLog.Warning
	TEventLog.Error
	TEventLog.Debug
	TEventLog.Info
	TEventLog.Identification
	TEventLog.LogType
	TEventLog.Active
	TEventLog.DefaultEventType
	TEventLog.FileName
	TEventLog.TimeStampFormat
	TEventLog.CustomLogType
	TEventLog.EventIDOffset
	TEventLog.OnGetCustomCategory
	TEventLog.OnGetCustomEventID
	TEventLog.OnGetCustomEvent

	Reference for unit 'ezcgi'
	Used units
	Overview
	Constants, types and variables
	Constants

	ECGIException
	Description

	TEZcgi
	Description
	Method overview
	Property overview
	TEZcgi.Create
	TEZcgi.Destroy
	TEZcgi.Run
	TEZcgi.WriteContent
	TEZcgi.PutLine
	TEZcgi.GetValue
	TEZcgi.DoPost
	TEZcgi.DoGet
	TEZcgi.Values
	TEZcgi.Names
	TEZcgi.Variables
	TEZcgi.VariableCount
	TEZcgi.Name
	TEZcgi.Email

	Reference for unit 'gettext'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	GetLanguageIDs
	TranslateResourceStrings
	TranslateUnitResourceStrings

	EMOFileError
	Description

	TMOFile
	Description
	Method overview
	TMOFile.Create
	TMOFile.Destroy
	TMOFile.Translate

	Reference for unit 'idea'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	CipherIdea
	DeKeyIdea
	EnKeyIdea

	EIDEAError
	Description

	TIDEADeCryptStream
	Description
	Method overview
	TIDEADeCryptStream.Read
	TIDEADeCryptStream.Write
	TIDEADeCryptStream.Seek

	TIDEAEncryptStream
	Description
	Method overview
	TIDEAEncryptStream.Destroy
	TIDEAEncryptStream.Read
	TIDEAEncryptStream.Write
	TIDEAEncryptStream.Seek
	TIDEAEncryptStream.Flush

	TIDEAStream
	Description
	Method overview
	Property overview
	TIDEAStream.Create
	TIDEAStream.Key

	Reference for unit 'inicol'
	Used units
	Overview
	Constants, types and variables
	Constants

	EIniCol
	Description

	TIniCollection
	Description
	Method overview
	Property overview
	TIniCollection.Load
	TIniCollection.Save
	TIniCollection.SaveToIni
	TIniCollection.SaveToFile
	TIniCollection.LoadFromIni
	TIniCollection.LoadFromFile
	TIniCollection.Prefix
	TIniCollection.SectionPrefix
	TIniCollection.FileName
	TIniCollection.GlobalSection

	TIniCollectionItem
	Description
	Method overview
	Property overview
	TIniCollectionItem.SaveToIni
	TIniCollectionItem.LoadFromIni
	TIniCollectionItem.SaveToFile
	TIniCollectionItem.LoadFromFile
	TIniCollectionItem.SectionName

	TNamedIniCollection
	Method overview
	Property overview
	TNamedIniCollection.IndexOfUserData
	TNamedIniCollection.IndexOfName
	TNamedIniCollection.FindByName
	TNamedIniCollection.FindByUserData
	TNamedIniCollection.NamedItems

	TNamedIniCollectionItem
	Property overview
	TNamedIniCollectionItem.UserData
	TNamedIniCollectionItem.Name

	Reference for unit 'iostream'
	Used units
	Overview
	Constants, types and variables
	Types

	EIOStreamError
	Description

	TIOStream
	Description
	Method overview
	TIOStream.Create
	TIOStream.Read
	TIOStream.Write
	TIOStream.SetSize
	TIOStream.Seek

	Reference for unit 'Pipes'
	Used units
	Overview
	Constants, types and variables
	Constants

	Procedures and functions
	CreatePipeHandles
	CreatePipeStreams

	ENoReadPipe
	Description

	ENoWritePipe
	Description

	EPipeCreation
	Description

	EPipeError
	Description

	EPipeSeek
	Description

	TInputPipeStream
	Description
	Method overview
	Property overview
	TInputPipeStream.Write
	TInputPipeStream.Seek
	TInputPipeStream.Read
	TInputPipeStream.NumBytesAvailable

	TOutputPipeStream
	Description
	Method overview
	TOutputPipeStream.Seek
	TOutputPipeStream.Read

	Reference for unit 'pooledmm'
	Used units
	Overview
	Constants, types and variables
	Types

	TNonFreePooledMemManager
	Description
	Method overview
	Property overview
	TNonFreePooledMemManager.Clear
	TNonFreePooledMemManager.Create
	TNonFreePooledMemManager.Destroy
	TNonFreePooledMemManager.NewItem
	TNonFreePooledMemManager.EnumerateItems
	TNonFreePooledMemManager.ItemSize

	TPooledMemManager
	Description
	Method overview
	Property overview
	TPooledMemManager.Clear
	TPooledMemManager.Create
	TPooledMemManager.Destroy
	TPooledMemManager.MinimumFreeCount
	TPooledMemManager.MaximumFreeCountRatio
	TPooledMemManager.Count
	TPooledMemManager.FreeCount
	TPooledMemManager.AllocatedCount
	TPooledMemManager.FreedCount

	Reference for unit 'process'
	Used units
	Overview
	Constants, types and variables
	Types

	EProcess
	Description

	TProcess
	Description
	Method overview
	Property overview
	TProcess.Create
	TProcess.Destroy
	TProcess.Execute
	TProcess.CloseInput
	TProcess.CloseOutput
	TProcess.CloseStderr
	TProcess.Resume
	TProcess.Suspend
	TProcess.Terminate
	TProcess.WaitOnExit
	TProcess.WindowRect
	TProcess.Handle
	TProcess.ProcessHandle
	TProcess.ThreadHandle
	TProcess.ProcessID
	TProcess.ThreadID
	TProcess.Input
	TProcess.Output
	TProcess.Stderr
	TProcess.ExitStatus
	TProcess.InheritHandles
	TProcess.Active
	TProcess.ApplicationName
	TProcess.CommandLine
	TProcess.ConsoleTitle
	TProcess.CurrentDirectory
	TProcess.Desktop
	TProcess.Environment
	TProcess.Options
	TProcess.Priority
	TProcess.StartupOptions
	TProcess.Running
	TProcess.ShowWindow
	TProcess.WindowColumns
	TProcess.WindowHeight
	TProcess.WindowLeft
	TProcess.WindowRows
	TProcess.WindowTop
	TProcess.WindowWidth
	TProcess.FillAttribute

	Reference for unit 'streamcoll'
	Used units
	Overview
	Procedures and functions
	ColReadBoolean
	ColReadCurrency
	ColReadDateTime
	ColReadFloat
	ColReadInteger
	ColReadString
	ColWriteBoolean
	ColWriteCurrency
	ColWriteDateTime
	ColWriteFloat
	ColWriteInteger
	ColWriteString

	EStreamColl
	Description

	TStreamCollection
	Description
	Method overview
	Property overview
	TStreamCollection.LoadFromStream
	TStreamCollection.SaveToStream
	TStreamCollection.Streaming

	TStreamCollectionItem
	Description

	Reference for unit 'streamex'
	Used units
	Overview
	TBidirBinaryObjectReader
	Description
	Property overview
	TBidirBinaryObjectReader.Position

	TBidirBinaryObjectWriter
	Description
	Property overview
	TBidirBinaryObjectWriter.Position

	TDelphiReader
	Description
	Method overview
	Property overview
	TDelphiReader.GetDriver
	TDelphiReader.ReadStr
	TDelphiReader.Read
	TDelphiReader.Position

	TDelphiWriter
	Description
	Method overview
	Property overview
	TDelphiWriter.GetDriver
	TDelphiWriter.FlushBuffer
	TDelphiWriter.Write
	TDelphiWriter.WriteStr
	TDelphiWriter.WriteValue
	TDelphiWriter.Position

	Reference for unit 'StreamIO'
	Used units
	Overview
	Procedures and functions
	AssignStream
	GetStream

	Reference for unit 'zstream'
	Used units
	Overview
	Constants, types and variables
	Types

	ECompressionError
	Description

	EDecompressionError
	Description

	EZlibError
	Description

	TCompressionStream
	Description
	Method overview
	Property overview
	TCompressionStream.Create
	TCompressionStream.Destroy
	TCompressionStream.Read
	TCompressionStream.Write
	TCompressionStream.Seek
	TCompressionStream.CompressionRate
	TCompressionStream.OnProgress

	TCustomZlibStream
	Description
	Method overview
	TCustomZlibStream.Create

	TDecompressionStream
	Description
	Method overview
	Property overview
	TDecompressionStream.Create
	TDecompressionStream.Destroy
	TDecompressionStream.Read
	TDecompressionStream.Write
	TDecompressionStream.Seek
	TDecompressionStream.OnProgress

	TGZFileStream
	Description
	Method overview
	TGZFileStream.Create
	TGZFileStream.Destroy
	TGZFileStream.Read
	TGZFileStream.Write
	TGZFileStream.Seek

