

SAP NetWeaver® Identity Management
Connector Development Kit

Implementing the Virtual Directory
Server Connector

Version 7.2 Rev 1

© 2012 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP
AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors.

Microsoft, Windows, Excel, Outlook, PowerPoint, Silverlight, and Visual Studio are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, z10, z/VM, z/OS,
OS/390, zEnterprise, PowerVM, Power Architecture, Power Systems, POWER7, POWER6+, POWER6, POWER, PowerHA,
pureScale, PowerPC, BladeCenter, System Storage, Storwize, XIV, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks,
OS/2, AIX, Intelligent Miner, WebSphere, Tivoli, Informix, and Smarter Planet are trademarks or registered trademarks of IBM
Corporation.

Linux is the registered trademark of Linus Torvalds in the United States and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are trademarks or registered trademarks of Adobe Systems Incorporated in
the United States and other countries.

Oracle and Java are registered trademarks of Oracle and its affiliates.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems Inc.

HTML, XML, XHTML, and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Apple, App Store, iBooks, iPad, iPhone, iPhoto, iPod, iTunes, Multi-Touch, Objective-C, Retina, Safari, Siri, and Xcode are
trademarks or registered trademarks of Apple Inc.

IOS is a registered trademark of Cisco Systems Inc.

RIM, BlackBerry, BBM, BlackBerry Curve, BlackBerry Bold, BlackBerry Pearl, BlackBerry Torch, BlackBerry Storm, BlackBerry
Storm2, BlackBerry PlayBook, and BlackBerry App World are trademarks or registered trademarks of Research in Motion Limited.

Google App Engine, Google Apps, Google Checkout, Google Data API, Google Maps, Google Mobile Ads, Google Mobile Updater,
Google Mobile, Google Store, Google Sync, Google Updater, Google Voice, Google Mail, Gmail, YouTube, Dalvik and Android are
trademarks or registered trademarks of Google Inc.

INTERMEC is a registered trademark of Intermec Technologies Corporation.

Wi-Fi is a registered trademark of Wi-Fi Alliance.

Bluetooth is a registered trademark of Bluetooth SIG Inc.

Motorola is a registered trademark of Motorola Trademark Holdings LLC.

Computop is a registered trademark of Computop Wirtschaftsinformatik GmbH.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer, StreamWork, SAP HANA, and other
SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius,
and other Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Business Objects Software Ltd. Business Objects is an SAP company.

Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and services mentioned herein as
well as their respective logos are trademarks or registered trademarks of Sybase Inc. Sybase is an SAP company.

Crossgate, m@gic EDDY, B2B 360°, and B2B 360° Services are registered trademarks of Crossgate AG in Germany and other
countries. Crossgate is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document
serves informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for
errors or omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth
in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.

i

© Copyright 2012 SAP AG. All rights reserved.

Preface

The product
The SAP NetWeaver Identity Management Connector Development Kit enables independent
software vendors (ISVs) or SAP partners to create an Identity Management connector for their
application, and to integrate the application into the Identity Management landscape.

The Connector Development Kit contains information necessary for development of an Identity
Management connector – criteria, guidelines, templates, test tool, certification guide, etc.

The reader
This manual is written for people who wish to implement the Virtual Directory Server
connector/Identity Management connector for their application.

Prerequisites
To get the most benefit from this manual, you should have the following knowledge:

 Thorough knowledge of the Identity Center.

 Thorough knowledge of the Virtual Directory Server.

 Java programming skills.

 Basic knowledge of LDAP.

 Knowledge and understanding of the target application.

The following software is required:

 SAP NetWeaver Identity Management Virtual Directory Server version 7.1 SP2 or newer,
or version 7.2 or newer installed and licensed.

 SAP NetWeaver Identity Management Identity Center version 7.1 SP2 or newer, or version
7.2 or newer installed and licensed (including the Identity Management User Interface
installed and configured). At least one dispatcher has been configured and is running.

 SAP Provisioning Framework (the provisioning framework for SAP systems).

 A Java development environment. This can be downloaded from http://java.sun.com
(version 1.4/1.5).

 Access to the target application.

 Access to the target application Java library (API).

The manual
This manual gives an overview of the connector methods, parameters and the Virtual Directory
Server structures and shows how to configure and implement the application integration code
and the application API in the Virtual Directory Server.

http://java.sun.com/

ii

© Copyright 2012 SAP AG. All rights reserved.

Related documents
You can find useful information in the following documents:

 SAP NetWeaver Identity Management Security Guide.

 SAP NetWeaver Identity Management Operations Guide.

 Help files for the Virtual Directory Server.

 Java Help for the Virtual Directory Server Connector API.

 SAP NetWeaver Identity Management Connector Development Kit Overview.

 SAP NetWeaver Identity Management Connector Development Kit Virtual Directory Server
Connector Testing Tool.

 SAP NetWeaver Identity Management Connector Development Kit Certification.

Virtual Directory Server tutorials:

 SAP NetWeaver Identity Management Virtual Directory Server Tutorial Accessing
databases.

 SAP NetWeaver Identity Management Virtual Directory Server Tutorial Accessing LDAP
servers.

 SAP NetWeaver Identity Management Virtual Directory Server Tutorial Joining data
sources.

 SAP NetWeaver Identity Management Virtual Directory Server Tutorial Performing
dynamic add operations.

iii

© Copyright 2012 SAP AG. All rights reserved.

Table of contents
Introduction .. 1
Overview .. 2

Connector methods ... 2
Connector parameters ... 3
Virtual Directory Server structures .. 4
Request processing ... 9

Preparations .. 12
Preparing the Virtual Directory Server configuration ... 12
Create sample code ... 15

Developing the code .. 19
Using Virtual Directory Server.. 19
Using SAP NetWeaver Developer Studio .. 26

Iterative debugging and testing .. 29
Virtual Directory Server .. 29
SAP NetWeaver Developer Studio .. 30
Testing using the internal LDAP browser .. 31
Testing using an external tool (LDP) ... 32

Deliverables ... 38
Creating the Virtual Directory Server configuration as template .. 39
Creating the Data Source configuration as template ... 45

Sample code: FileBrowserConnector ... 47
Search method .. 47

Operational parameters (for each operation) .. 50
Search operation ... 50
Modify operation .. 51
Add operation ... 51
Delete operation .. 51

iv

© Copyright 2012 SAP AG. All rights reserved.

1
Introduction
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Introduction
The SAP NetWeaver Identity Management is a general purpose identity management
application which provides the functions and services needed to integrate distributed identity
data in the system landscape to efficient, heterogeneous identity lifecycle management.

The purpose of the Connector Development Kit (CDK) is to enable the independent software
vendors (ISVs) or SAP partners to create an Identity Management connector for their
application, and to integrate the application in the Identity Management landscape.

The processes described in the documentation are valid for both SAP NetWeaver Identity
Management 7.1 and 7.2. Most of the screen shots are taken from the 7.2 version. There are
separate descriptions in cases where the two versions differ from each other.

2
Overview

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Overview
In this section an overview is given over connector methods, parameters and the SAP
NetWeaver Identity Management Virtual Directory Server (VDS) structures. Also request
processing is explained in details. Parts of the code from the sample connector are used to
illustrate and explain the desired concept (full sample code is given in section Sample code:
FileBrowserConnector on page 47).

Connector methods
The application integration code, extending the core VDS code, is implemented as a Java class
with predefined interface – which ensures that the VDS core can invoke appropriate connector
method when needed (see example of an empty class – without specific target implementation
of the methods below).

The AbstractOperation class (the Java class that is extended) contains several methods – but
only search, modify, add and delete methods must be implemented. The other methods (bind,
compare, initialize, terminate) may also be invoked by the core VDS code, but their invocation
is optional.

// --- This is an example of a Java data class
import com.sap.idm.vds.*;

public class EmptyClass extends com.sap.idm.vds.AbstractOperation {

 public MVDOperationResult bind (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDSearchResults search (MVDHashMap param) {
 MVDSearchResults result = new MVDSearchResults();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult modify (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult add (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult delete (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult compare (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult initialize (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }
 public MVDOperationResult terminate (MVDHashMap param) {
 MVDOperationResult result = new MVDOperationResult();
 // --- Place your java implementation here
 return result;
 }

3
Overview
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Connector parameters
The core VDS code passes the information to the extending integration code using the Java
HashMap that is a parameter of all connector methods (see the Java class above).

The HashMap parameter contains multiple key/value pairs. There are two main sources of the
information that the core VDS code may pass to the integration code:

1. Properties of the requested operation:

a) The starting point for the operation.

b) Filter.

c) The attributes to be modified, etc.

2. The Virtual Directory Server configuration file. The connector-relevant information may
typically be configured in three different places:

a) Data Source object – contains the connection properties to the target application but
also useful values and hints that help the integration code to create a proper target
request.

b) Node object in the Virtual Directory Server virtual tree – the one that is tied to the data
source mentioned above (see tutorials for the basic concepts about SAP NW Identity
Management Virtual Directory Server).

c) Constants – i.e. the Virtual Directory Server global values.

4
Overview

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Each of the relevant values is added to the HashMap parameter and is passed to the integration
code. Each of the values is associated with specific parameter name. In order to distinguish
between (potentially) overlapping names, the VDS prefixes the parameter names in the
following way:

Source Prefix Example (passed key)

Operation properties LDAP_ LDAP_STARTINGPOINT, LDAP_SIZELIMIT

Data Source properties DS_ DS_ADDITIONALFILTER

Node properties NODE_ NODE_OBJECTCLASS

Constants GLOBAL_ GLOBAL_SYSNAME

The full list of all operation properties is given in section Operational parameters (for each
operation) on page 50.

Virtual Directory Server structures
Since the core VDS code cannot handle the various data structures returned by the target
application, the integration code (together with the target application API) is responsible for
preparing and converting of the low-level results to well defined VDS structures. This section
presents these structures.

MVDOperationResult
This object is used for returning of the operation result. It contains three important properties:

 Operation result code

 Operation additional info message

 The state of the operation (success/failure)

The core VDS code will act based on the operation state found in this structure, and in most
cases return the code and message to the caller application.

In the context of the add/modify/delete operations it is the only object that is returned from the
connector. In the context of the search operation, this object is part of the MVDSearchResults
object (described on page 7). It is the responsibility of the integration code (together with the
target application API) to set proper values for the object.

The object is initiated with a specific error code and the operation state set to "fail", so returning
the object back to the core VDS code without explicitly setting the operation result code and the
state will be treated by the core VDS code as an unsuccessful operation execution.

There are several methods for setting (and reading) the properties of this object.

Setting the properties of this object

 public void setOK() – sets the state to "success", code to "0" and no additional message.

 public void setOK(int code, java.lang.String mess) – sets the state to "success", code to
<code>, and sets the additional message (e.g. when returning error code 4 – Size Limit
Exceeded).

 public void setError(int code, java.lang.String mess) – sets the state to "fail", code to
<code>, and sets the additional message.

5
Overview
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

MVDSearchResultEntry
This object exists only in the context of the search operation. An entry contains:

 A distinguished name – unique identifier of the entry.

 An attribute set – i.e. the entry's attributes and their values. The attribute set is implemented
as Java HashMap where keys are attribute names (keys) and their values are implemented
using Java Vector (thus giving possibility for returning multiple values for each of the
attributes).

+--+

| DN +-------------+-----------------+ |

| String | | +-------------+ | |

| | attr name | | attr value | | |

| | String | | byte[] | | |

| | | +-------------+ | |

| | | | attr value | | |

| | | +-------------+ | |

| | | | ... | | |

| | | +-------------+ | |

| +-------------+-----------------+ |

| | ... | ... | |

| +-------------+-----------------+ |

+--+

There are a number of methods for updating/reading information from this object.

Note:
The byte array containing a value is stored as UTF-8 (important for non-ASCII characters).

Setting and getting the entry identifier (distinguished name)

 public void setDn(String aDn)

 public String getDn()

Operation on whole attribute set

Setting and getting the whole
attribute set at once:

 public void setAttrAndValues(HashMap aHash)

 public HashMap getAttrAndValues()

Merging the whole attribute
set with other:

 public void appendAttrAndValues(HashMap aHash)

6
Overview

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Operations on "single" attributes in the attribute set

Appending new
attribute to the set:

 Comments

 public void setAttrValue(String
aAttrName, boolean aAppend,
byte[] aAttrValue)

First parameter is the attribute
name to be added to the attribute
set.

Second parameter influence the
way the attribute is added to the
attribute set if it already exists:
1. If true, the new value(s) will be
appended, thus creating a multi
valued attribute.
2. If false, the old value(s) will be
overwritten.

It is possible to add:
1. Single attribute value (either
String or byte[] (binary)).
2. Multiple values (all elements in
Vector).
3. Multiple values (String with
multiple values separated by the
specified delimiter).

 public void setAttrValue(String
aAttrName, boolean aAppend,
String aAttrValue)

 public void setAttrValue(String
aAttrName, boolean aAppend,
Vector aAttrValue)

 public void setAttrValue(String
aAttrName, boolean aAppend,
String aMultiAttrValue,String
aSeparator)

Reading the values for
a specific attribute:

 Comments

 public Vector
getAttrValues(String aAttrName)

The Vector is always returned
(each attribute is potentially a
multi-valued attribute).

 public String
getFirstAttrValue(String
aAttrName)

Returns the first value in the
Vector (useful when we know
that the attribute is actually
single-valued so we avoid
going through getAttrValues
first).

Other Comments

 public void
replaceAttrValue(String
aAttrName, String aOldValue,
String aNewValue)

Replaces the old value of the
attribute with the new one.

 public void
replaceAttrValue(String
aAttrName, HashMap aTheValues)

Replaces all value pairs in the
given hash map for the given
attribute.

 public void
constructAttrValue(String
aAttrName, Vector aAttrToUse,
String aDelimiter)

Constructs a new attribute
using the values of the listed
attributes using the specified
delimiter as a separator.

Note:
The removal of the attributes from the attribute set is done using Java HashMap's remove
method. For example, if "temp" is MVDSearchResultEntry then the following removes the
attribute "attr_to_be_removed": (temp.getAttrValues()).remove("attr_to_be_removed").

7
Overview
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

MVDSearchResults
This object exists only in the context of search operation. It is a list of entries that are the result
of the search operation. This object extends a Java Vector. It contains:

 None or more MVDSearchResultEntry objects (described on page 5).

 Exactly one MVDOperationResult object (described on page 4).

Typical operations on this object are:

 Adding an entry to the entry list.

 Carrying out identical attribute operation on all entries in the list (e.g. adding/removing the
same attribute).

 Setting the operational state.

Adding an entry to the entry list
As stated above, this object extends Java Vector, so Java Vector's range of add() method(s) are
sufficient (add(), addAll()).

Carrying out identical attribute operation on all entries in the list
Adding the same attribute to
all entries:

 See MVDSearchResultEntry methods for adding single
attributes – all methods are applicable on MVDSearchResult
and will be executed on all its members.

Removing the same attribute
from all entries:

 Comment

 public void
removeAttribute(String
aAttrToRemove)

Removes the attribute from
all entries in this
MVDSearchResult object.

Listing all entries in the list
(simple Vector browsing):

 Example:
for (int ix = 0;ix < result.size(); ix ++) {
MVDSearchResultEntry entry = MVDSearchResultEntry)
result.elementAt(ix);
// do something with entry
}

Setting the operational state

The methods for manipulating the result code are inherited from MVDOperationResult object
described on page 4.

8
Overview

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

MVDModAttrValue
This object exists only in the context of modify operation. It describes how one attribute should
be modified. Normally, the core VDS code passes a Vector of such objects to the integration
code, describing all changes to be carried out on a single entry. It contains:

 The attribute name of the attribute to be modified.

 The modification mode: 0=add value,1=delete value, 2=replace value.

 The list of the values that are used for modification.
+-----------------------------+

| +-------------+ |

| attr name | attr value | |

| String | byte[] | |

| +-------------+ |

| mod type | attr value | |

| int +-------------+ |

| | ... | |

| +-------------+ |

+-----------------------------+

Setting/getting the object properties

Simple gets and sets:

 public String getAttrName()

 public void setAttrName(String attrName)

 public int getModType()

 public void setModType(int m)

Obtaining modification values
The object extends Java Vector – any Java Vector method can be used.

9
Overview
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Request processing
Typically, the integration code's (together with the target application API) processing of a
request handed by the core VDS code can be divided in several phases. The phases are:

1. Getting the needed data from input HashMap

2. Pre-processing of data (optional)

3. Executing the target application API

4. Converting the results to the VDS structures

5. Post-processing of data (optional)

6. Returning the result to the core VDS code

Obtaining necessary data
Normally, the amount of information sent (in the HashMap) to the integration code (together
with the target application API) is larger than needed. It is the integration code's responsibility
to extract the information that is necessary for successful execution of the requested operation
on the target application.

The Virtual Directory Server implements several methods for extracting values from input
HashMap. Basically, all of them are just variants of Java HashMap's get method. Even if it is
always possible to use the get method to obtain values from the HashMap, it is recommended to
use the Virtual Directory Server's methods in the connector context.

Mandatory parameters
In order to carry out the operation on the target application, the connector may require a certain
set of parameters, i.e. some of the parameters are mandatory for the requested operation. For
instance, all operation parameters are mandatory – without them the integration code cannot
construct the proper target operation and execute appropriate application API method.

Extracting of such parameters from the HashMap is carried out using one of the following
methods:

 public Object get<Prefix>MandatoryParameter(String parameterName) throws Runtime

Exception, where <Prefix> is one of Ldap/DS/Node/Global and parameterName does not
contain prefix (the full HashMap key is constructed by the method, by concatenating prefix,
"_" and the parameterName).

 public Object getMandatoryParameter(String key) throws Runtime Exception, where key is
fully constructed (prefix + "_" + parameterName). If the constructed key is not present in
the HashMap, the method throws Java runtime and the processing of the request is
abandoned, returning the error to the client application.

Non-mandatory parameters

Non-mandatory parameters are retrieved using the following methods:

 public Object get<Prefix>Parameter(String parameterName, Object defaultValue) throws
Runtime Exception

 public Object getParameter(String key, Object defaultValue) throws Runtime Exception
Same <prefix> values and rule for key construction as for mandatory values. If the constructed
key is not present in the HashMap, the method returns the specified defaultValue.

10
Overview

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Examples

Integer scope = (Integer) param.getLdapMandatoryParameter("OPSUBTYPE");
String startingpoint = (String)
param.getMandatoryParameter("LDAP_STARTINGPOINT");Vector attrNamesAndModValues =
(Vector)param.getLdapMandatoryParameter("DATA");
String parSzLimit = (String) param.getDSParameter("SIZELIMITTYPE", "TOP");
// --- if DS_DZLIMITTYPE not present in the HashMap, “TOP” is returned

Data preparation (optional)
This is an optional phase.

Typically, the format and/or type of the values obtained from the input HashMap, does not
satisfy the needs of the "low-level" API.

During the data preparation the following will typically happen:

 Pre-processing of the obtained values so they can be used together with the API. The typical
operation may be:

 Type conversions.

 Pre-processing the incoming filter (in case of the search operation).

 Constructing of new values based on those obtained from HashMap.

Executing the target application API methods
The pre-processed parameters and values are passed to the target API methods and results are
achieved.

Result conversion
The core VDS code expects the results from the integration code's (and the target application
API's) execution in the specific format. The results obtained from the target API execution
cannot be returned directly to the core VDS code. In this phase, the API results need to be
converted to the VDS structures expected by the core VDS code. Depending on the requested
operation, the following VDS structures are valid responses:

 MVDSearchResults

 MVDSearchResultEntry

 MVDOperationResult

Details about these structures and API for their manipulation are shown in section Virtual
Directory Server structures on page 4.

Post-processing the data (optional)
This is an optional phase.

Sometimes it may be needed to post-process the results (now stored in the VDS structures)
before they are returned to the core VDS code. Typically it may involve the following:

 Removing some entries from the result set.

 Adding artificial attributes to the entries in the result set.

11
Overview
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Note:
The post-processing of the target results could also be executed before conversion of the results
to VDS structures (while the data is still in the target result format).But since the VDS
structures are quite generic (standard Java objects), they are easily manipulated using the
standard Java API calls. In addition, the new (complex) methods that are created for their
manipulation may be re-used in another connector as well.

12
Preparations

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Preparations
Before developing the connector a few preparations must be completed in the Virtual Directory
Server.

Preparing the Virtual Directory Server configuration
To prepare the configuration, do the following:

1. Start the Virtual Directory Server console
(Start/All Programs/SAP NetWeaver Identity Management/Virtual Directory Server).

2. Select "File and then "New…" to open a "New configuration" dialog box.

 Select "Generic" in the "Group" pane.

 Identity Management 7.2
Select the generic template "Generic Data Source.xml" in the "Template" pane to create an
empty configuration as container for your connector.

 Identity Management 7.1
Select the generic connector template "Generic Connector.xml" in the "Template" pane to
create an empty configuration as container for your connector.

3. Choose "OK".

13
Preparations
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

 The dialog box for the template appears – Generic Data Source template for Identity
Management 7.2 and Generic Connector template for Identity Management 7.1:

 Enter a port number the Virtual Directory Server should listen on and a display name for

your data source (here 4389 as the port number, and the default name Generic data source).

14
Preparations

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

4. Choose "OK" and save the new configuration in the configurations folder (here saved as
connector_example.xml).

This creates a configuration with the following sample entries:

 LDAP deployments: a listener on the port you previously entered.

 A generic data source with the name you entered previously.

 A set of rules:

 Full access, which includes ADD/MODIFY/DELETE/COMPARE and SEARCH
operations.

 Full read access, which includes COMPARE and SEARCH operations.

 A set of user groups:

 Group "Anonymous" with a user named "[Anonymous]" for anonymous LDAP
requests.

 Group "Authenticated" with a user named "admin" and the password "admin" for
authenticated LDAP requests.

 A sample virtual tree

15
Preparations
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Create sample code
To create a sample code, do the following:

1. View the properties of your data source, either by double-clicking or selecting
"Properties…" from the context menu.

16
Preparations

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

2. Select the "Connectors" tab and choose "New…":

 Select "Empty class" template.

17
Preparations
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

3. This will create a new empty class:

 Enter the name of the class (e.g. "SampleIntegrationCode" or "MyConnector" etc). The

class names cannot contain spaces. Here we give the class name FileBrowserConnector, as
an example (our sample code).

18
Preparations

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

4. Choose "OK". The class editor opens with the generated implementation stub of the Virtual
Directory Server AbstractOperation class.

5. Choose the "Save" button () to store the class code in the current Virtual Directory
Server configuration.

19
Developing the code
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Developing the code
It is possible to create a connector class and add/modify and compile the code in SAP
NetWeaver Identity Management Virtual Directory Server. Even if not recommended for
development of a complex integration code, it is quite useful when small improvements of an
existing code are needed.

Normal way of creating the application integration code is through defining a Java project in
one of the Java Development Environments (SAP NetWeaver Developer Studio). This gives the
code developer a better flexibility, better code editor and the debugging possibilities.

This section describes both the abovementioned methods of creating an application integration
code.

Using Virtual Directory Server

Set up run-time environment
For successful compilation of the code, all target jar files have to be in the Virtual Directory
Server classpath. To set the VDS Classpath, do the following:

1. Choose Tools/Options… from the main menu.

2. Select the "Claspath" tab.

 Add necessary jar files. Here we have (in addition to the driver jar file) added

fileBrowser.jar for our sample code FileBrowserConnector.

3. Choose "OK".

20
Developing the code

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Developing the class code
In the Virtual Directory Server console, edit/extend and save the code in the new Java class:

21
Developing the code
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Compiling the class code
You can compile the code from the Virtual Directory Server console by choosing the "Compile"
button as shown below:

22
Developing the code

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

The compilation status is displayed:

In case of success, a confirmation dialog appears and the information is displayed in the
"Console" tab.

23
Developing the code
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

In addition, the information can also be viewed in the "Output" tab.

24
Developing the code

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

In case of compilation errors the list of errors is displayed in the "Output" tab:

25
Developing the code
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

The reported compilation errors contain the decisive line which can be reached in the "Source"
tab by choosing Tools/Goto line (Ctrl-G):

Upon a successful compilation, the class file is created in the work area of the Virtual Directory
Server configuration. For details about the work area, how to start the Virtual Directory Server
and utilize the code you are creating, see the Virtual Directory Server documentation and
tutorials.

26
Developing the code

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Using SAP NetWeaver Developer Studio
Using the SAP NetWeaver Developer Studio for code development is a preferred way of
developing your integration code. It is assumed that you have a basic knowledge about the SAP
NetWeaver Developer Studio.

Creating new project
In the SAP NetWeaver Developer Studio select File/New/Java Project to create new project:

Select the project name (here ExampleConnector), select "Use a project specific JRE" and "JRE
1.4" to keep the compatibility with the Virtual Directory Server.

27
Developing the code
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Setting up run-time environment
In order to get access to the Virtual Directory Server structures, the following Virtual Directory
Server JAR files have to be in the classpath (see Project properties/Libraries):

 mvd.jar

 vdstools.jar

 vdsverifier.jar

These files are available in directory:
<VDS installation directory>\lib

In addition, all necessary target application JAR files have to be in the classpath too.

28
Developing the code

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Creating the sample class
To create the sample class in the SAP NetWeaver Developer Studio, do the following:

1. Open the Virtual Directory Server configuration you created in the previous section (section
Preparations on page 12).

2. Expand the "Extension classes" node and the "Connectors" node.

3. Open the created Java class (in our example, the class FileBrowserConnector) and copy its
content.

4. Create a new class in the project (New/Class) and paste the copied content above.

5. Save the class.

29
Iterative debugging and testing
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Iterative debugging and testing
In order to test the code you are developing, you have to execute the proper operation towards
the Virtual Directory Server. For simple connectivity tests and simple searches you can use the
built-in LDAP browser (see section Testing using the internal LDAP browser on page 31).

But since the code has to be tested with the ADD/MODIFY and the DELETE operation as well,
it is recommended to use some standard LDAP client (see section Testing using an external tool
(LDP) on page 32).

As example we use the sample code FileBrowserConnector (see section Sample code:
FileBrowserConnector on page 47). Load the file FileBrowserConnector.xml into the Virtual
Directory Server, add the file lib/fileBrowserAPI.jar and the directory "src" to the Virtual
Directory Server classpath. Start the server (note that you may have to compile the extension
class before you can start the server).

See the Virtual Directory Server tutorials for details about authentication, authorization,
operation executions, LDAP etc.

Virtual Directory Server
Virtual Directory Server does not provide the code debugging possibility. But it is possible to
trace the connector behavior by inspecting the log files generated by the application integration
code.

The following method can be used to generate log lines:
MVDLogger.Debug(String aMessage)

In order to enable logging create a file standalonelog.prop in the work area of the Virtual
Directory Server configuration and enter the following:

LEVEL=DEBUG
EXTENSIONLEVEL=DEBUG

You will need the SAP Standalone Log Viewer. You can read more about logging in the
document SAP NetWeaver Identity Management Operations Guide.

30
Iterative debugging and testing

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

SAP NetWeaver Developer Studio
Create a debugging configuration for your project in the SAP NetWeaver Developer Studio.

In the "Main" tab enter the following:

 Main Class: com.sap.idm.vds.MVDServer

In the "Arguments" tab enter the following:

 Program Arguments: Full path to the Virtual Directory Server configuration you created.

 VM Arguments: -DMX_SERVER_HOME=<path to the VDS installation directory>.
Installation directory by default is C:\Program Files\SAP\IdM\Virtual Directory Server for
SAP NetWeaver Identity Management 7.1 and C:\usr\sap\IdM\Virtual Directory Server for
SAP NetWeaver Identity Management 7.2.

Now set your break points in the source code and start debugging the Virtual Directory Server.
The console output will show the messages of the Virtual Directory Server (e.g. "Server started
on port 7777").

31
Iterative debugging and testing
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Testing using the internal LDAP browser
The Virtual Directory Server's internal LDAP browser provides the possibility to search through
your connected backend. Select the "LDAP browser" tab:

To expand the node, double-click the node or select it and select "Do one-level search on this
node" from the context menu. This will show all nodes below the selected one.

For displaying properties of the node, select "Do base search on this node" from the context
menu.

32
Iterative debugging and testing

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Testing using an external tool (LDP)
Using an external tool is recommended for testing add, modify and delete tasks.

Searching using LDP
To perform a search, do the following:

1. Select Browse/Search.

2. As base DN use dir=testFBC,root=c, where "testFBC" is a directory on your C: drive.

3. Choose "Run".

This will display the search result in the window.

33
Iterative debugging and testing
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Adding using LDP
To perform add, do the following:

1. Select "Add child" in the "Browse" menu to create files and/or directories.

2. Create a directory with e.g. DN dir=newDirAdded,dir=dir1_Level1,dir=testFBC,root=c.

3. Choose "Run".

It is displayed that the add operation is called, and the new directory added.

34
Iterative debugging and testing

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

To check if the file was created, make a search with dir=testFBC,root=c as starting point.

35
Iterative debugging and testing
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Example – Creating a new file with content:
Use DN file=example.txt,dir=newDirAdded,dir=dir1_Level1,dir=testFBC,root=c and add an
attribute named "content" with the value "First example. This is the content".

36
Iterative debugging and testing

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Modifying using LDP
To modify using LDP, do the following:

1. Select Browse/Modify to modify the existing files and/or directories, e.g. overwrite the
content of the previously created file.

2. Enter the following values:

 As the DN use
file=example.txt,dir=newDirAdded,dir=dir1_Level1,dir=testFBC,root=c.

 Add an attribute named "content" with the value "New Content".

 Select the operation "Replace" to overwrite the existing content.

3. Choose "Run".

The modify operation is called and the file modified.

37
Iterative debugging and testing
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Deleting using LDP
To delete using LDP, do the following:

1. Select Browse/Delete to delete the existing files and/or empty the directories.

2. Delete e.g. the previously created file with the DN
file=example.txt,dir=newDirAdded,dir=dir1_Level1,dir=testFBC,root=c.

3. Choose "Run".

The delete operation is called and the file deleted. You may verify that the file is deleted by
performing a search for the given file.

38
Deliverables

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Deliverables
The partner responsible for the target application integration is also responsible for providing a
set of deliverables:

 Necessary target application Java libraries.

 An initial data set needs to be provided by the partner (the number of entries has to be at
least 300). It is a partner's responsibility also to provide the necessary documentation for the
correct installation of the initial data set.

 Identity Center, including the Identity Management User Interface, deliverables:

 Job and the connector tasks in the Identity Center necessary for the certification process,
with installation and configuration documentation (a repository definition, a job which
reads entries from the target application and a search job, a job for creating of account
privilege, tasks for adding, modifying and deleting a user, and a User Interface task for
editing of a user) as described in SAP NetWeaver Identity Management Connector
Development Kit Certification.

 (Optional) Identity store schema extension: if the connector requires any identity store
schema extensions, these need to be provided for import (an exported .mcc file). Store
the exported schema file the folder IC files in the connector certification package as
described in SAP NetWeaver Identity Management Connector Development Kit
Certification.

 Virtual Directory Server deliverables (Optional, not to be delivered if vendor specific
(connector) module is used instead of Virtual Directory Server):

 Virtual Directory Server (VDS) configuration (as template) explained in the section
Creating the Virtual Directory Server configuration as template below.

 (Optional) Data Source configuration (as template) explained in the section Creating the
Data Source configuration as template on page 45.

 Connector class (compiled for JDK 1.4 or 1.5) or as source file (stored in the Virtual
Directory Server configuration file). The class is stored in <VDS_dir>\configurations in
a map with the same name as your configuration file.

Note:
Whether the class should be compiled for JDK 1.4 or 1.5 will depend on which AS Java
version the connector class is to be deployed on. Compiling the class for JDK 1.4, the
Virtual Directory Server configuration that utilizes this class will be deployable on AS Java
versions 7.0, EHP 1 for SAP NW CE 7.1, SAP NW CE 7.2 and SAP NW 7.3. Compiling for
JDK 1.5 will result in connector not being deployable on AS Java 7.0 versions.

 Vendor specific (connector) module (Optional, only delivered if used instead of Virtual
Directory Server).

 Documentation deliverables:

 Functionality description sheet which documents the purpose of the connector, which
features are supported, as well as entry types and attributes. Also installation
job/description for the connector tasks in the Identity Center and the repository
definitions and installation job/description for the VDS connector (configuration with
the code and the API) need to be included in the documentation. The documentation
must be submitted in English only. See SAP NetWeaver Identity Management
Connector Development Kit Certification for details.

39
Deliverables
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Creating the Virtual Directory Server configuration as
template
The server configuration is stored in an XML file. When creating a server configuration, you
specify a file name that is used to store the configuration. This file is normally stored in
<installation directory for Virtual Directory Server>\configurations. Before the configuration
file can be used as template, some constants should be defined. What constants are useful to
define will vary from time to time, but usually the following is of interest:

 VDS server port number

 Data source parameters (the parameters will depend on the data source type, e.g. LDAP,
data base etc.):

 Name used to identify the data source (display name)

 Server (server's host name or IP address)

 Port number

 Directory server's starting point

 User name to access the server

 Password to access the server

 Database (JDBC URL to access the database)

40
Deliverables

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Creating the constants
To create a constant for the Virtual Directory Server parameter port number in your Virtual
Directory Server configuration, do the following:

1. Navigate to and select the node "main_listener" in the configuration tree, then view the
properties either by double-clicking the node or selecting "Properties…" from the context
menu.

 This will open the properties dialog box.

41
Deliverables
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

2. Select the parameter value and select "Create constant" from the context menu.

 This opens the "Define constant" dialog box:

 Enter a name for the constant.

3. Choose "OK" to close the dialog box and add the constant.

42
Deliverables

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

The constant is now added:

4. Choose "OK" to confirm and close the properties dialog box.

5. Now repeat the previous steps for all the parameters you wish to crate constants for.

Editing the template data
The template data can be edited. To edit, do the following:

1. In the Virtual Directory Server console, select Tools/Edit template data… from the main
menu. This will open "Edit template data" dialog box:

 Fill in the fields:

 Caption:
This will be displayed in th e title bar of the wizard dialog box.

 Width/Height:
This will define the width and the height of the wizard dialog box.

43
Deliverables
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

 Group:
The configuration templates are grouped to facilitate locating the correct template. Enter the
name of the group that the template should belong to, e.g. LDAP, Database, Generic, etc. If
nothing is specified in the field, the template will be placed in the Generic group.

 Help:
Here you enter a text that describes the necessary steps to complete the wizard. This can be
prerequisites and/or information about how to fill in the fields in the wizard. The text can be
in HTML syntax.

 Controls:
The list contains all constants that were defined. You can change the order of the controls
by selecting a control and choosing "Move up" or "Move down". You can also add layout
elements (separator, label, filler, group, tab) by choosing "Insert layout". The columns are:

 Include:
 Select the check box to include the control in the wizard.

 Name:
 This is the name of the constant (or in the case of layout elements "Layout").

 Prompt:
 If defined, this will be displayed in the wizard instead of the constant name.

 Default:
 The default value of the constant can be entered here.

 Type:
 Select a type for the control (String, Boolean, FileName, JDBCURL, Password).

 Tooltip:
 Enter here the text that is used as a tooltip for the field.

Replace:
 Select to specify that the constant should be replaced with the constant value,
removing the reference to the constant.

Remove:
 Select to specify that this constant also should be replaced from the list of constants.
Should be used with the "Replace" option.

Hidden:
 Select to specify that the control should not be displayed in the template wizard. A
default value should be specified for the controls that are not displayed.

2. Choose "OK" to confirm and to close the dialog box.

44
Deliverables

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

The template wizard might look something like this:

45
Deliverables
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Creating the Data Source configuration as template
To create the Data Source configuration as a template, do the following:

1. Create the constants for the parameters you wish (if not already created).

2. Select the data source in the configuration tree and select "Save as template…" from the
context menu.

 This opens up a "Save as template" dialog box:

 Enter the name for the data source template and the short description.

3. Choose "OK" to confirm and to close the dialog box.

46
Deliverables

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

 The data source template is stored under "Custom" template group in the template wizard
for the data source (to open, navigate to and select Data sources/Singles and select "New…"
from the context menu):

47
Sample code: FileBrowserConnector
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Sample code: FileBrowserConnector
All operations/methods described in section Virtual Directory Server structures on page 4 are
implemented in the FileBrowserConnector sample, which uses fileBrowserAPI.jar as the target
library. This jar file exposes the low-level API for listing/adding and (limited) manipulation of
the text files.

It acts as an LDAP File Browser – i.e. executing the valid LDAP operations makes it possible to
list/add/modify/remove text files on the disk.

Only search and add method are shown here. The additional comments (sample comments) are
added here – they are correlating the code with the previously discussed development phases.

Full sample code listing is given as a Java file in the sample package.

Search method
 /**
 * Realizes the search operation according to one of the next options:
 * - Base search -> Gives a set of attributes of a file

 * - One level search -> Gives the set of adjoining files and directories
 * under a directory

 * - Subtree search -> Gives the complete subtree of files and directories
 * under a directory

 * @param param -> set of LDAP parameters
 * @return -> The result indicating success, or indicating error if some

 * error occurred
 */

public MVDSearchResults search (MVDHashMap param) {

// --- Sample Comment
// --- Create resulting VDS structure

MVDSearchResults result = new MVDSearchResults();

// --- Sample Comment: Fetching necessary parameters from the HashMap.
// --- Some of the parameters are configured on
// --- Data Source (prefix DS_, see the sample VDS configuration file) while
// --- others are coming from the inbound operation (prefix LDAP_).
// --- This phase is important and quite common for each of the connectors.

 /* Gets the name to refer directories in DN */
 String dn_dir = (String)param.getDSMandatoryParameter("DN_DIRECTORY");

 /* Gets the name to refer normal files in DN */
 String dn_file = (String)param.getDSMandatoryParameter("DN_FILE");

 /* Gets the starting point parameter */
 String aSp = (String)param.getLdapMandatoryParameter("STARTINGPOINT");

 /* Gets the search type */
 int searchOpt = ((Integer)
param.getLdapMandatoryParameter("OPSUBTYPE")).intValue();

 /* Gets the filter */
 String filter = (String)param.getLdapMandatoryParameter("URLFILTER");

// --- Sample Comment: Pre-processing input data.
// --- It is very connector specific information here.

 /* Checks if the filter syntax is correct */
 String checkFilter = GenericOperations.cleanTrailingAndLeadingSpaces(filter);
 if (checkFilter.endsWith(")")==false || checkFilter.startsWith("(")==false ||
 checkFilter.indexOf("=")<0) {

// --- Sample Comment Sending result back.
// --- In this case – no results are fetched and the result code is set to
specific code

48
Sample code: FileBrowserConnector

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

 result.setError(87, "Invalid filter format");
 return result;
 }

 /* Transforms the starting point in LDAP format to a understandable format for
the operating system */
 Vector v = this.DNtoOS(aSp,true,dn_dir,dn_file);
 if (v==null) {
 result.setError(34, "Error in DN format for this operation");
 return result;
 }
 /* Gets the complete path where to do the search from */
 String path = (String)v.get(PATH);
 /* If path is null means that something was not correct in the DN syntax */
 if (path==null) {
 result.setError(21, "Null Path");
 return result;
 }

 /* Checks if it is expected a directory as starting point */
 boolean isDNDirectory =
(((String)v.get(FILE_TYPE)).equalsIgnoreCase(dn_file))==false;

 /* Memorizes name of the root of the DN */
 String root_name = (String)v.get(ROOT_NAME);

// --- Sample Comment
// --- Finally, the API from the target JAR file is executed

 /* Does the search */
 FileSearch fs = new FileSearch();
 int resCode = fs.search(path, filter, searchOpt, isDNDirectory);
 if (resCode!=FileConstants.SUCCESS) {
 result.setError(FileConstants.LDAP_CODES[resCode],
FileConstants.MESSAGES[resCode]);
 return result;
 }

 if (isDNDirectory==false && searchOpt!=FileConstants.BASE_SEARCH) {
 result.setError(21, "This search operation is only possible for
directories");
 return result;
 }

 HashMap res = fs.getSearchResult();

// --- Sample Comment
// --- The returned structures do not fit into the VDS results - they have to
converted

 /* If the option is base search then ... */
 if (searchOpt==BASE_SEARCH) {
 if (res.size()>0) {
 /* ... the entry is a file attribute and one of its values */

// --- Sample Comment
// --- Creating a VDS entry object that will be filled in with obtained

 MVDSearchResultEntry e = new MVDSearchResultEntry();
 e.setDn(aSp);
 /* Adds to the entry the set of attributes and values received from the
call to the search method of the API file browser connector */
 for (Iterator it=res.keySet().iterator(); it.hasNext();) {
 String key = (String)it.next();
 String val = (String)res.get(key);
 e.setAttrValue(key,true,val);
 }
 /* Adds the entry to the result */
 result.add(e);
 }
 }
 else {
 /* Creates the result to be returned */
 for (Iterator it = res.keySet().iterator(); it.hasNext();) {

49
Sample code: FileBrowserConnector
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

 String key = (String)it.next();
 HashMap aType = (HashMap)res.get(key);
 MVDSearchResultEntry e = new MVDSearchResultEntry();
 String fileType = (String)aType.get("objectclass");
 /* ... the entry is a DN indicating a path file or
directory */

 e.setDn(this.OStoDN(key,fileType,root_name,dn_dir,dn_file));

e.setAttrValue("objectclass",true,(String)aType.get("objectclass"));
 e.setAttrValue("name",true,(String)aType.get("name"));
 result.add(e);
 }
 }

 result.setOK();
 return result;
 }

50
Operational parameters (for each operation)

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Operational parameters (for each operation)

Search operation
Key Value Type

LDAP_STARTINGPOINT The effective starting point for
this node operation of this search
request.
(Note! One search to the VDS
could result in several back-end
searches, each with its own
starting point).

String, DN format

LDAP_SZLIMIT The size limit for this request. Integer

LDAP_TMLIMIT The time limit for this request. Integer

LDAP_OPSUBTYPE The search operation type for this
node:

0 for BASE-Level
1 for ONE-Level
2 for SUB-Level

Integer

LDAP_ATTRS A list of requested attributes (after
the cleaning and conversion
executed by the core VDS code).
First element contains
"ALLATTRIBUTESCLEANED",
if all attributes were cleaned in
the process mentioned above.

 Vector

LDAP_DBFILTER The requested filter in the SQL
format (WHERE ...).

String

LDAP_URLFILTER The requested LDAP filter in the
URL format (after the cleaning
and conversion).
"(IGNOREDFILTER)" - if all of
the filter attributes are in the list
of ignored attributes.

String

LDAP__ORIGINALSTARTINGPOINT The original starting point of the
request (rarely used – the
LDAP_STARTINGPOINT is
more important one).

String

LDAP__ORIGINALSEARCHTYPE The original search operation type
of the request.

Integer

51
Operational parameters (for each operation)
SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

Modify operation
Operational parameters for the Modify operation are:

Key Value Type

LDAP_DN The Distinguished Name of
the entry on which to perform
the modify operation.

String, DN Fornat

LDAP_DATA The list of attributes to be
modified, as well as values
and desired modification
mode.

Vector of MVDModAttrValues

Add operation
Key Value Type
LDAP_DN The Distinguished Name of

the new entry.
String, DN format

LDAP_DATA The attributes of the new
entry.

HashMap

Delete operation
Key Value Type

LDAP_DN The Distinguished Name of
the entry to be deleted.

String

52
Operational parameters (for each operation)

SAP NetWeaver Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector

© Copyright 2012 SAP AG. All rights reserved.

	SAP NetWeaver® Identity Management Connector Development Kit Implementing the Virtual Directory Server Connector
	Preface
	Table of contents
	Introduction
	Overview
	Connector methods
	Connector parameters
	Virtual Directory Server structures
	MVDOperationResult
	MVDSearchResultEntry
	MVDSearchResults
	MVDModAttrValue

	Request processing
	Data preparation (optional)
	Executing the target application API methods
	Result conversion
	Post-processing the data (optional)

	Preparations
	Preparing the Virtual Directory Server configuration
	Create sample code

	Developing the code
	Using Virtual Directory Server
	Set up run-time environment
	Developing the class code
	Compiling the class code

	Using SAP NetWeaver Developer Studio
	Creating new project
	Setting up run-time environment
	Creating the sample class

	Iterative debugging and testing
	Virtual Directory Server
	SAP NetWeaver Developer Studio
	Testing using the internal LDAP browser
	Testing using an external tool (LDP)
	Searching using LDP
	Adding using LDP
	Example – Creating a new file with content:

	Modifying using LDP
	Deleting using LDP

	Deliverables
	Creating the Virtual Directory Server configuration as template
	Creating the constants
	Editing the template data

	Creating the Data Source configuration as template

	Sample code: FileBrowserConnector
	Search method

	Operational parameters (for each operation)
	Search operation
	Modify operation
	Add operation
	Delete operation

