C/C++-Precompiler User
Manual

Version 7.4

SADdS

SAP AG April 2003

Copyright
© Copyright 2003 SAP AG.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation.

For more information on the GNU Free Documentaton License see
http://www.gnu.org/copyleft/fdl.htmI#SECA4.

C/C++-Precompiler User Manual SAPDB 7.4 2

SAP AG April 2003
Ilcons

Icon Meaning

A Caution

l:? Example

é:] Note

Recommendation

@]}’ Syntax

Typographic Conventions

Type Style

Description

Example text

Example text
EXAMPLE TEXT

Example text

EXAMPLE TEXT

Example text

<Example text>

Words or characters that appear on the screen. These include field
names, screen titles, pushbuttons as well as menu names, paths and
options.

Cross-references to other documentation.
Emphasized words or phrases in body text, titles of graphics and tables.

Names of elements in the system. These include report names,
program names, transaction codes, table names, and individual key
words of a programming language, when surrounded by body text, for
example, SELECT and INCLUDE.

Screen output. This includes file and directory names and their paths,
messages, source code, names of variables and parameters as well as
names of installation, upgrade and database tools.

Keys on the keyboard, for example, function keys (such as £2) or the
ENTER key.

Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

Variable user entry. Pointed brackets indicate that you replace these
words and characters with appropriate entries.

C/C++-Precompiler User Manual

SAP DB 7.4 3

SAP AG April 2003

C/C++ Precompiler User Manual: SAP DB 7.4 ... 9
Embedding SQL Statements in C/CH+ ... e 9
GENEIAI RUIES. ...ttt ettt b et st b e e eabe e e bt e e saneeens 9
Conventions for the Order of SQL Statements...........cocoiiiiiiiiini 10
Rules for the Declare SECHON.........c.c.iiiiiiiiii e 11
Syntax of the Declare SECHON ..o 12
HOSE Var@bIES ..ot 15
Conventions for Host Variables ... 16
Structures as Host Variables ... 16
Arrays as HOSt Variablesouuooiiiiii e 17
Simplified Notation for Structure and Array Variablesccccoiiiiiiiinee e, 17
INAICALOr Vari@bIEs.coiiiiiie e 18
Rules for Indicator Variables.............ccooiiiiiiiiiiii e 19
INAICATON VAIUES ..ottt 20
Permitted Data TYPeS. it a e e e a e s 20
e Ry (ol D= | = T N o= T PR 20
Predefined Data TYPESuuviiiiiee ittt e e e et r e e e e e et aee s 21
VARGCHAR ..ttt b ettt ettt eb e sa e 21
Examples for Permitted VARCHAR Declarationsccccooieiiiiiiiiieeeiee, 22
SQLFILE.... ettt ettt ettt ettt ettt r ettt e e e e teeeteeeneeenneeneeas 22
SQLLONGDESC ...ttt ettt n e eea s 23
Special Features when Using Data Type SQLLONGDESCcocovviiieeiiiieeeennne 24
UNICODE Data TYPES ...ceeiiiiiieeiiiiie ettt ettt e e sbee e e e s aabeeeeeanee 24
ConVerting Data TYPESccoiiiiiie it 25
Generating Structure DefinitionNscceiiiiiiiiii e 26
Working with UNICODE Data.........cc.cuiviiiiiiieiiiiiie ettt nnnee e e 27
Working With LONG COIUMNSocoiiiiiiiiiiiiee ettt e st e e e enee e e e nnsaee e e ennneas 28
Transferring NULL Values to the Database Instanceccccoeeeeeiiiiicciiieee e 29
Transferring DEFAULT Values to the Database Instancecccccccooveciiiieieeec i, 29
Connecting to a Database INStaNCecooooiiiiiiiiiie e 30
Overview of Precompiler Statementsooooiiiiiii e 30
Working with Multiple Database SESSIONSccoiiiiiiiiiiiie e 31
DECLARE StatemMentscco.uiiiiiiiiee ettt 32
INCLUDE DECLARE Statementccoooiiiieie e 32
Statements for Connecting to the Database Instancecccoooeiiiiie 33
SET SERVERDB Statement..........cooiiiiiiiieiie e 33
CONNECT Statement.........coiiiiiiiiieie et 34
CONNECT Statement in the SQL Mode INTERNAL.........ccccoiiiiiiiiiiieeeeeieeee, 34
CONNECT Statement in the SQL Mode ORACLEcccciiiiiiiiicie e, 35

C/C++-Precompiler User Manual SAPDB 7.4 4

SAP AG April 2003

Static SQAL StateMENSeeii e 35
Static SQL Statement Without Parametersccccco i 36
Static SQL Statement with Parameters ... 36

Dynamic SQL Statementsoouiiiiiiie e 37
Dynamic SQL Statements Without Parametersccccoiiiiiiin e, 37
Dynamic SQL Statements with Parameters ..., 38

USING the DESCIIPION.eeiiiieiiie e 39
Structure of the DesCriptOr. 39
sqlvar [i] Entries in the Descriptor.............cooo o 40

SAP DB Data Types in sglvar ENfries..........ccoviiiiiiiiiiieeiiie e 42
C/C++ Data Types in sqlvar ENtriesccccveviiiiiiiiiiie e 43
Example for Using a DeSCrPIOr........cc.uuviiiiiieii e 44

PREPARE Statement..........oociiiiiiii e 45

DESCRIBE Statementoveiiiiiiiee ettt 45

EXECUTE Statementccoo ittt e 46

OPEN CURSOR StatemMent...........cccoieiiiriieieeie e see et see e 46

USING ClAUSE...... ettt ettt e et e e bt e e e aab e e e e aabeeeeeaae 47

Array SEatEMENT ... e 48

INCLUDE FILE Statement.........ccooiieiieiiiei ettt e 49

PUTVAL Statement ..ottt 49

GETVAL StatemMeNnt.......cooiiiiiiieiiee ettt st e nnnee e 50

WHENEVER Statementsc.cooiiiiiiii e 51
Handling Errors with WHENEVER Statementscccooeeiiiiiiiicee e, 52
Actions for the WHENEVER Statementcccoo i 53
Example for Using WHENEVER Statementsccccoiiiiiiiiiiicceeee e, 53

CANGCEL Statementot e e 54

EXEC COMMAND Stat@mMeNntcooiiiiieiie ettt e sneeeneeens 54

VERSION Statement.........eeiiiiiiiie e e e 54

TRACE Statementscoouuiiiiiiiie e 55

Database System MESSAGEScooiiiiiiiiiiiiie e 55
Warning Messages in the Structure SqlCa...........oooiiiiiiiiiiiii e 57
Programming NOTESooiiiiiiie et e e e e e s e e e e e e e e s e 58
Compeatibility with Other Database Systems..........ccooiiiiiiiii e 59
Special Features in SQL Mode ORACLEoooiiiiiiii e 59
Special Features in SQL Mode ANSI.......ooo i 60
Functions of the C/C++ PreCoOmMPiler.............uviiiiiiiiiiiieeee et 60

Running the PreCompiler.............eeiiiiiii e 61
Call Options for the Precompiler LINKETooiiiiiiiiiie e 62

Precompiler OPtIONSooi et e e 62

e =TeloT 0 qT o)1 [=T g e T OO PRPR PR 64

C/C++-Precompiler User Manual SAPDB 7.4 5

SAP AG April 2003

Example: Compiling a SAP DB Application Programcccocccciiiiiieeeeiecciiieeeee e 65
Functions of the Precompiler Runtime Environmentcccccoiiiiiiiiiciiieeee e, 65
Connection Options at RUNLIMEooiiiiiii e 66
LI O] o] 1] 1 PSPPSR 66
USING IRTRAGCEottt ettt ettt eeste e et e st e sneesneeenteeseesseesneeaneeenneens 68
Displaying the Current Trace Setting..........ccuieiiiiiiiiiiii e 68
Changing the Trace Settingoccueiiiiiiie e 68
Example of @ Trace File ..ot a e 69
Example: Executing an Application Program ... 69
RETUMN COAES ...ttt b et st e sab e st e e eaee e eneeenns 70
USIiNG the IRCONF TOO......coiiiiiiiie et sete e sttt ettt e e e sttt e e e e snte e e e e sntaeeessnseeeeesraeeaeans 70
Options FOr IRCONF ... e e e e e ee e e e e e e e e ennreeeeeas 71
Specifying the Installation Path: -p ... 71
Displaying Registered Versions of the Runtime Library: =Scccccviiiiiiiniiiinen. 72
Deleting the Registration of the Runtime Library: -r........cccocooiiiiie, 72
Overriding the Driver Name: —0.........coooiiiiiiiii e 72
Registering the Version of the Runtime Library: -i..........cccooiiiie, 73
Overriding the Version ChecCk: —V.........ooiiiiiii e 73
Specifying an Additional KeY: -Kooiuiiiiiiii e 74
Displaying Options and Help: =Nooiiiiiie e 74
IRCONF EITOr IMESSAJESeeeieiiiiiieiiiiiee ettt e e etee e e sttt e e st e e sensteeesanteeeeanteeaesanneeeeeennes 75
L= VGl X1 S SR 75
QS _ClAUSE oot e e e e e e —a e e e e e e e ——raaaeeaaaaraaraaaaaan 78
aIraY_STAtEMENT ... 78
(or= g Lot IET=T 1] (o] o U UPPPPR 78
CaNCEl_StatEMENT ... e 78
o300 101 2T (o] o I PSP 78
CRAI_NOSE VA ... ittt e e et e e nt e e e s enteee e 79
Close_StatemMENto a e 79
LoTo] 101 10 = o [o H PP PSP PPP PP OTPRRTN 79
(oo 1 0 1=Tex S o 1o o [79
CONNECE_STAtEMENT ... 79
connect_statement INternal.............eueeeiie 79
connect _StatemMENT_OraCIEcoo i 80
(o10 | ¢To) gl 4= .11 T PRSPPI 80
database NAME........ooiii e 80
AtADASE _SEIVET ...t e e e e 80
ADPrOC_CIAUSE ...ttt et e e s bt e e e rneeee e e 80
o[o] o]y o Yol g = 10 1 =TSPTSRO 80
ddl_statement ... e e e ea e 81

C/C++-Precompiler User Manual SAPDB 7.4 6

SAP AG April 2003

ECIAME _CIAUSE ...ttt e e e e e e e e e e e e e st e e e e e e e e e earaaaeeeaens 81
declare _cursor_StatemMEeNt..........ooooiiiiiiii e 81
declare_statemeEnt.... ... e 81
describe_statement..........ooo e 82
Lo Lo Yoty o] (o] S 0= 11 1T PP UPPTPPRR 82
(o 0 01 IE=] €= 1 (=T 0 0 =T o S 82
Lo Y7 F= T o =T = 1o 4 1= (= SR 82
dyna_parameter _liSt. e 82
embedded _Sql_StatemMeENnt........ .. e e 82
exec_command_StatemeEnt e e 83
execute_immediate_statementeueeiii s 83
eXECULE _STAtEMENTcoi i 83
(1001 g TE] o1 o2 TSP STPR 83
fetCh_statement e s 83
fIle_NOSE VAN ... s 83
L1 ST £ =101 T 3 PRI 84
L0 T= LA o] A= | S 84
L0 = LU S 84
getval_statemento 84
NOSE VariADIE ...ttt ——— e —————————————————————— 84
NOSTVAIPIETIX ...t e e e e e e e e e e e e e et abe e e aaaaan 84
include_declare_statementoooriiiiiiiiii e ———————————— 84
include_file Statement...........oooii oo 85
include_sqlca_statement..........oooiiiiiiiiiiiieee e 85
INClUdE_STatEMENT ... a e 85
gL e F= T U T RSP 85
gl [ez=) (o] g 0 F=T 4 (= PP RT 85
INAICAtOr_Variableooiiiiiei e 85
ind_variable_decClarator......... ... 85
1 G 015 V7= | SRR 86
K Y ettt e e e e e e e e e e e e e e anes 86
JADE ... e 86
[oTo] o T o= 1= 10 41=] (=] (O 86
OPEN_CUISOr_StAtEMENT.......uiiiiiii i e e e e e e e rareeeae s 86
(o ST 7o) .41 1 4= 1 Lo TP 86
(o T 7o) 0211 4 F= 1o o JE=T5 3/ Lo RS 87
OS_COMMEANA_SYNC ..eeiitiieeeitiiee e atteee e sttt e e e sttt e e e s bteee e s aabeee e s anbeeeeeanbeeeesanbeeeesanbeeeeeanbneeanans 87
(0221 =11 0 1= (T OO PP PP PO PPPPPPRP 87
PArAMELET ISt . i e e 87
(22T = 10 0 L= L= g 1 F= Ty =Y SRR 87

C/C++-Precompiler User Manual SAPDB 7.4 7

SAP AG April 2003

o1 g=ToTo] 0 g TRY/=T 671] o PRI 87
prepare_StatemMENt ... e 87
PULVAL_STAtEMENT ... e 88
(=T o =T = 1o SRR 88
G =T 67T o [PPSR 88
=115 (o] o [=1 0 TR 88
ES1=1S1S (o) o T 0 100] o T S 88
=TT (o] o 1] 1= oSS 88
set_serverdb_statement......... ... e 88
S0 | (o F= TV 2= T =1 o] L= 89
5121 =Y 0 L= oL =0 = 89
SEALEMENT SOUICEeeiiiie et e e e e e e e e e e e e e e reaeeeae s 89
SHHNG_ CONSTANT ..o e e e e e e s e e e e e e e e s aaraeeeeaae s 89
SITUCTUIE 0. e e a s 89
tADIE_CIAUSE ... 89
BrACE_INE .. e e e n 89
IrACE _StAtE ... 90
trace_statement... ... 90
1877 0TS Te [o1 F=1 = | (o) S 90
U1 o] o)V ISR 90
(U g 1ot =T o a1 1Sy A= | PSPPSR 90
(U oo [o F= 10T T PP 90
(U 0o [=4 o) SO PR 90
variable _deCIarator............oiiiiiiiiiie e 91
(V21 A L= o (Y o= 10 1 1= PR 91
VErSION_StatemMeNt s 91
WHhENEVEI_ACHON ...t 9
Whenever_CONAItIONc.eiiiii e 91
whenever_statemento e 91

C/C++-Precompiler User Manual SAPDB 7.4 8

SAP AG April 2003

m
000 C/C++ Precompiler User Manual: SAP DB 7.4

The interface between the SAP DB database system and SAP DB application programs is the
database language SQL (Structured Query Language). SQL statements embedded [Page 9]
in the application program (Embedded SQL) are used for communication with the database
instance. Parameter values are exchanged in special program variables, called host variables

[Page 15].

The C/C++ Precompiler [Page 60] prepares C/C++ source code with embedded SQL
statements for translation into an executable application program. The compiler checks the
syntax and semantics of the embedded statements, converts them to procedure calls in the
precompiler runtime environment [Page 65], and generates a C/C++ file, which can then be
compiled.

This user manual describes how to embed SQL statements for the SAP DB database system
in the programming language C/C++, and how to work with the precompiler.

.
This manual requires a sound working knowledge of the meaning of elementary
SQL statements. For a description of the syntax and semantics of database

statements, and the conventions for syntax notation [See SAP DB Library], see
the Reference Manual: SAP DB 7.4 [See SAP DB Library].

For general information on the SAP DB database system, see the
documentation The SAP DB Database System on the SAP DB Homepage
http://www.sapdb.org under Documentation.

% Embedding SQL Statements in C/C++

When you embed database statements in the source code of an application program, observe
the following points as well as the general rules [Page 9]:

e Conventions for the Order of Embedded SQL Statements [Page 10]

Rules for the Declaration Segment [Page 11]

e Conventions for Host Variables [Page 16]

e Using Indicator Variables [Page 18]
o Permitted Data Types [Page 20]

e Connecting to a Database Instance [Page 30]

e Overview of Precompiler Statements [Page 30]

o Database System Messages [Page 55]

e Programming Notes [Page 58]

% General Rules

Observe the following general rules when you embed SQL statements [Page 9].

e Precede each embedded SQL statement with the key words EXEC SQL to delimit it
from the programming language statements. These key words must be on the same
line, and can only be split with a blank character.

e Finish each embedded SQL statement with a semicolon.

¢ You can write embedded SQL statements that run over multiple lines.

C/C++-Precompiler User Manual SAPDB 7.4 9

http://aiokeh.wdf.sap-ag.de:1080/SAPIKS/~S~e1b966cf40d34560baca8761911d234d/KW/KW/IWB_EXTHLP~97026B3AE886616AE10000000A114084/

SAP AG April 2003

e You can interrupt embedded SQL statements with comments. Place the comments
between the characters /* and */.

e You can place comments about SQL statements at the end of the line. Precede
comments at the end of a line with two dashes, --.

o Precede the names of host variables [Page 15] and indicator variables [Page 18] within
embedded SQL statements with a colon :

¢ No other names used in an application program are allowed to start with a colon :

o Names used in an application program must not start with the characters sq. This
combination of characters is also reserved by the precompiler.

e The program parts analyzed by the precompiler must not be elements of the
preprocessor include statements (#define, #include).

.
See also: Overview of Precompiler Statements [Page 30]

=

EXEC SQL BEGIN DECLARE SECTION;
char addr [6];

char fname [8], lname [8];

EXEC SQL END DECLARE SECTION;

/* Generate table ,customer™ */

EXEC SQL CREATE TABLE customer

(cno FIXED (4) KEY, address CHAR (5),
firstname CHAR (7), lastname CHAR (7));
/* Get values */

/* Add values to database */

EXEC SQL INSERT INTO customer
(cno, address, first name, last name)
VALUES (100, :addr, :fname, :lname);

/* Message in event of error */

if (sglca.sglcode != 0)
printf ("%d ",sqglca.sqglcode) ;

% Conventions for the Order of SQL Statements

When the precompiler runs [Page 61] with the precompiler option [Page 62] check, it runs
once, sequentially, through the source code of the application program, and sends any static
SQL statements [Page 35] that it finds to the database kernel . So that the check can run
correctly, the embedded SQL statements must appear in an executable order in the source
code.

Observe the following conventions when you embed SQL statements [Page 9].

e CREATE TABLE comes before INSERT, UPDATE, DELETE, and SELECT.
e INSERT, UPDATE, DELETE, and SELECT come before DROP TABLE.

e SELECT comes before FETCH. It must be possible to make a unique assignment
between the SELECT statement and the FETCH statement.

e DECLARE CURSOR comes before OPEN.

e OPEN comes before FETCH.

C/C++-Precompiler User Manual SAPDB 74 10

SAP AG April 2003

FETCH comes before CLOSE.

A

The process flow of the program solely is responsible for the order in which the
SQL statements are actually executed at runtime of the program.

The precompiler does not send dynamic SQL statements [Page 37] to the
database, since their content is unknown before runtime.

% Rules for the Declare Section

In the declare section, you declare all host variables [Page 15] and indicator variables [Page
18] that are exchanged between the database instance and the application program in
embedded SQL statements [Page 9]. You can use multiple declaration sections within an

application program.

Observe the following rules:

Start the declare section with EXEC SQL BEGIN DECLARE SECTION;.
End the declare section with EXEC SQL BEGIN DECLARE SECTION;.

Follow the permitted syntax for the declaration section [Page 12].

Observe the conventions for host variables [Page 16] and the rules for indicator

variables [Page 19].
Use the data types [Page 20] permitted for the precompiler.

You can use the memory classes typedef, static, extern or auto.
You can specify declarations both outside of and within functions.

As well as variable declarations, you can specify type definitions and parameter-free
constant definitions (#define) for positive whole numbers in the declare section.

S

#define n(a) (a+10) is not permitted.

#define n 7 is permitted.

You can, for example, use n as the length of an array variable:
int array [n]

Also specify array lengths for the memory class extern. These lengths must lie within
the range of the corresponding external definitions.

.
To improve efficiency, only declare those variables in EXEC SQL declare

sections that you are actually using as host variables in embedded SQL
statements.

C/C++-Precompiler User Manual SAPDB 74 11

SAP AG

April 2003

=

EXEC SQL BEGIN DECLARE SECTION;

char no [6];

char fname [8], lname [8];

EXEC SQL END DECLARE SECTION;

il Syntax of the Declare Section

This syntax list shows you the syntax of the declaration section. The syntax notation [See

SAP DB Library] used is BNF.

<arrdim> ::=
<identifier>
| <unsigned integer>

<chardecspec> ::=
<storclspec>
| <chartype>

| <chardecspec> [<storclspec>]

| <chardecspec> <typespec>

<chartype> ::=
char

| VARCHAR

| varchar

<constant> ::=
<identifier>
| <unsigned integer>

<decimaldef> ::=

DECIMAL [<decimaltag>] [(<decimalscale>)]

<decimaldigits> ::=
<identifier>
| <unsigned integer>

<decimalfract> ::=
<identifier>
| <unsigned integer>

<decimalref> ::=
DECIMAL <identifier>

<decimalscale> ::=
decimaldigits
| decimaldigits,decimalfract

C/C++-Precompiler User Manual

SAP DB 7.4

12

SAP AG

April 2003

<decimaltag>
<identifier>

<decimaltype>
<decimaldef>
| <decimalref>

<declaration> ::=
<decspec> <declist>;

<declarator> ::=
<identifier>

| * <identifier>

| <declarator> [<arrdim>]

<declist> ::=
<possinitdec>
| <declist>,<possinitdec>

<decspec> ::=
<typespec>

| <chardecspec>

| <intdecspec>

| <filedecspec>

| <floatdecspec>

| decimaltype

| <decspec> [<storclspec>]

| <decspec> <typespec>

| <longdescdecspec>

<expression>
<basexpr>
| <basexpr> (<expression>) <basexpr>

<fieldlist> ::=
<typespec> <declist>;
| <fieldlist> <typespec> <declist>;

<filedecspec> ::=
<storclspec>

| <filetype>

| <chardecspec> [<storclspec>]

| <filedecspec> <typespec>

<filetype> ::=
SQLFILE
| sglfile

<floatdecspec> ::=
<storclspec>
| <floattype>

C/C++-Precompiler User Manual SAPDB 74

13

SAP AG

April 2003

| <chardecspec> [<storclspec>]
| <floatdecspec> <typespec>

<floattype>
float

| long

| double

<initializer>
<expression>
{<initlist>}

<initlist> ::=
<initializer>
| <initlist>,<initializer>

<intdecspec> ::=
<storclspec>
| <inttype>
| <chardecspec> [<storclspec>]
| <intdecspec> <typespec>

<inttype> ::=
short

| long

| int

| unsigned

<longdescdecspec> ::=
<storclspec>

| <longdesctype>

| <longdescdecspec> [<storclspec>]

| <longdescdecspec> <typespec>

<longdesctype> ::=
SQLLongDesc
| sgllongdesc

<possinitdec> ::=
<declarator>
| <declarator> = <initializer>

<prepcomline> ::=
#define <identifier constant>

<statement> ::=
<prepcomline>
| <declaration>

C/C++-Precompiler User Manual SAPDB 74

14

SAP AG April 2003

<storclspec> ::=
external

| static

| auto

| typedef

<structdef> ::=
struct [<structag>] {<fieldlist>}

<structref> ::=
struct <identifier>

<structag> ::=
<identifier>

<structype> ::=
<structdef>
| <structref>

<typespec> ::=
<inttype>

| <floatptye>

| <chartype>

| <floattype>

| <decimaltype>

| <longdesctype>

| <structype>

| <identifier>

| const

| volatile

<unichardecspec> ::=
<storclspec>

| <unichartype>

| <unichardecspec> [<storclspec>]

| <unichardecspec> <typespec>

<unichartype>
SQLUCS2

| SQLUTF16

| TCHAR (only available for use with Unicode applications)

% Host Variables

Host variables are variables that are used in embedded SQL statements [Page 9] to
exchange values between the application program and the database instance .

Observe the following points when you use host variables:

o Declare the host variables in the declare section [Page 11]. When you do this you can
use data types predefined [Page 21] by the precompiler, as well as C/C++ basic data

types.

C/C++-Precompiler User Manual SAPDB 74 15

SAP AG April 2003

é]

See also: Permitted Data Types [Page 20]

Observe the conventions for host variables [Page 16]. You can also use structures
Page 16] and arrays [Page 17] in host variables. You can generate structure
definitions [Page 26] from database tables and database procedures.

% Conventions for Host Variables

Observe the following conventions for host variables [Page 15].

The name of a host variable can have a maximum of 32 characters.
The name of a host variable cannot start with the characters sq.

A host variable can be a structure [Page 16] or an array [Page 17]. A structure can
contain arrays, and arrays of structures are also possible.

A host variable can be a pointer variable of permitted data types [Page 20]. Pointer to
Pointer and Pointer to Array are not permitted.

In each declaration, you can specify a maximum of one pointer and arrays with up to
four dimensions. Arrays of pointer variables are permitted, but not Pointer to Array.

The precompiler cannot check the lengths of host variables with the data type char *,
and writes a warning to the precompiler log [Page 64]. At runtime, the character pointer
must point to a NULL-delimited character string.

So that they can include the closing NULL bytes, host variables with the data type
char [n] must be declared with one more field than the corresponding column in the
database table.

When char variables are send to a database table, the variable content is copied up to
the closing NULL byte. Longer table columns are filled up with blank characters.

When char variables are read from a database table, all following blank characters in
the table content are truncated, and the closing NULL byte is set in the variable after
the last character that is not a blank character. If the host variable is shorter than the
table column, then the last character is overwritten.

% Structures as Host Variables

Host variables [Page 15] can be structures. When the precompiler runs [Page 61], it splits the
structure into its individual components, in the order of the component declarations.

.
When you use structures as host variables, you can, for example, specify
multiple values in the INTO clause of a SELECT statement at the same time.

=

EXEC SQL BEGIN DECLARE SECTION;

typedef char string8 [8];

struct {
char addr [6];
struct {
string8 lname, fname [3];
} name;

} person;

EXEC SQL END DECLARE SECTION;

C/C++-Precompiler User Manual SAPDB 74 16

SAP AG April 2003

EXEC SQL SELECT !person INTO :person
FROM customer WHERE cno = 100;

You can use a simplified notation [Page 17] for structures in SQL statements.

You can also specify the corresponding indicator variable [Page 18] as a structure with the
same number of components.

You can generate [Page 26] the structure definition from a database table or a database
procedure.

% Arrays as Host Variables

Host variables [Page 15] can be arrays. In an array statement [Page 48] they cause an SQL
statement to be executed more than once.

In multi-dimensional arrays, the last dimension is run first.

=

EXEC SQL BEGIN DECLARE SECTION;

float pl3]11[2];

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE TABLE KOORD (x float, y float):;

p[0][0] = 0.0;
p[0][1] = 0.1;
p[1l][0] = 1.0;
pll][1] = 1.1;
pl2][0] = 2.0;

pl2][1] = 2.1;
EXEC SQL INSERT INTO KOORD VALUES (:p);

/* insert generates following content */

/* x |y */
s */
/* 0.0 | 0.1 */
/* 1.0 | 1.1 */
/* 2.0 | 2.2 */

Also specify the corresponding indicator variable [Page 18] as an array, with the same length
and dimension.

éj

You can use a simplified notation [Page 17] for array variables in SQL
statements.

% Simplified Notation for Structure and Array
Variables

Use

In SQL statements, you can use a simplified notation for structure variables [Page 16] and
array variables [Page 17], so avoiding the need to list the columns of the database table that
are addressed explicitly.

C/C++-Precompiler User Manual SAPDB 74 17

SAP AG April 2003

Procedure

¢ Specify the name of a structure variable or array variable as !<var>, for example, in
the <select_list> of the SELECT statement.

e You can use the tilde character (~<var>) instead of an exclamation mark.

e The precompiler derives the column names from the names of the structure
components or array elements. The column names can have a maximum of 18
characters.

e You can specify <[owner.] tablename. > before !<var>. This information is then
inserted in front of each column name.

¢ Instead of the complete variable !<var>, you can specify a structured component of
var of your choice, for example, !var.x.y. In this case, the appropriate subset of
column names is generated.

=

EXEC SQL BEGIN DECLARE SECTION;

typedef char string8 [8];
struct {char addr [6];
struct {string8 lname, fname [3];} name;} person;

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE TABLE customer
(cno FIXED(4) key, addr CHAR(5),
name lname CHAR(7), name_fnamel CHAR(7),
name fname2 CHAR(7), name_ fname3 CHAR(7));

/* Get values */

EXEC SQL INSERT INTO customer
(cno, !person)
VALUES (100, :person);

/* Has same effect as: */

EXEC SQL INSERT INTO customer
(cno, addr, name_ lname,
name fnamel, name fname2, name fname3)
VALUES (100, :person.addr,
:person.name.lname, :person.name.fname[0],
:person.name.fname[1l],
:person.name.fname[2]);

% Indicator Variables

If you want your application program to process NULL values or DEFAULT values, or if
values might be truncated when they are exchanged between host variables [Page 15] and
the database, then you must specify an indicator variable as well as the host variable in the
embedded SQL statement [Page 9].

Observe the rules for indicator variables [Page 19].

The value of an indicator variable is called an indicator value [Page 20], and performs the
following tasks:

¢ |t provides information on whether the corresponding host variables have been
processed correctly. For this reason, query the indicator value after the SQL statement
has been processed.

o ltis used to transfer NULL values to the database instance [Page 29].

C/C++-Precompiler User Manual SAPDB 74 18

SAP AG April 2003

e |tis used to transfer DEFAULT values to the database instance [Page 29].

o |tis usedin GETVAL statements [Page 50] and PUTVAL statements [Page 49] to
ignore individual LONG columns.

A

If a SELECT statement or a FETCH statement specifies that values are
transferred from columns in which NULL values can appear, then you must
specify an indicator variable. Otherwise the C/C++ precompiler writes a warning
when the precompiler runs [Page 61] with the precompiler option [Page 62]
check, and you see an error message when you select a NULL value at runtime
(sglcode = -809).

&
In dynamic SQL statements with a descriptor [Page 39], the host i ndi cat or

component of an salvar entry [Page 40] performs the same task as an indicator
variable.

% Rules for Indicator Variables

Note the following points when you use indicator variables [Page 18]:

o Declare each indicator variable as a data type 1ong int, int or short int inthe
declaration segment [Page 11].

¢ Specify the indicator variable behind the corresponding host variable [Page 15] in the
embedded SQL statement [Page 9], divided by a blank character.

e Observe the same conventions as for host variables [Page 16].

=

EXEC SQL BEGIN DECLARE SECTION;

char fname [8], lname [8];
int fnameind, lnameind;

EXEC SQL END DECLARE SECTION;
/* Insert NULL value */
fnameind = -1;

strcpy (lname, "COMPANY X");
lnameind = 0;

EXEC SQL INSERT INTO customer (firstname, lastname)
VALUES (:fname :fnameind, :lname :lnameind);

/* Test for truncation */

EXEC SQL SELECT lastname
INTO :lname :lnameind
FROM customer

WHERE lname = "COMPANY X";

if (lnameind > 0)
printf ("&%d ", lnameind);

C/C++-Precompiler User Manual SAPDB 74 19

SAP AG April 2003

% Indicator Values

The table shows the possible indicator values that can be taken by an indicator variable [Page
18] of the hostindicator component or an sglvar entry in the descriptor [Page 40].

Indicator Value Meaning

0 A value has been transferred between the database and the
application program without errors. The value sent to the table
column or host variable [Page 15] is a defined value.

-1 The value of the host variables or of the corresponding table entry
is the NULL value.

-2 An error occurred (overflow, or division by zero).
The value of the host variables or of the corresponding table
entry is not defined.

> 0 A truncated value has been sent to the host variable or to the
corresponding table column.
The indicator value specifies the actual length of the value.

SQL DEFAULT PARAM Used to transfer DEFAULT values to the database instance [Page
29].
SQL IGNORE Used to ignore LONG columns in GETVAL statements [Page 50]

and PUTVAL statements [Page 49]

See also: Database System Messages (sent through the sqglca structure) [Page 55]

% Permitted Data Types

You can use the following data types for host variables [Page 15] in the declaration section

[Page 11]:
e All basic data types [Page 20]

e The data type struct

e The data types predefined [Page 21] by the precompiler (VARCHAR, SQLFILE and
SQLLongDesc), and UNICODE data types [Page 24]

¢ Any data types you have defined yourself previously in a declaration section

% Basic Data Types

In the declare section [Page 11], you can use the C/C++ basic data types to declare host
variables [Page 15]. A corresponding SAP DB data type exists for each basic data type [See
SAP DB Library].

The precompiler performs the following tasks:

e When the precompiler runs [Page 61], it checks whether the memory of the host
variables and the corresponding table column is large enough for the maximum
possible value to be sent between the database instance and the application program.
If this is not the case, the precompiler writes a warning in the precompiler log [Page
64].

e If necessary, the precompiler converts the data types [Page 25] at runtime.

The following table shows the corresponding SAP DB data types for the basic data types:

Description C/C++ Data Type SAP DB Data Type

C/C++-Precompiler User Manual SAPDB 74 20

SAP AG April 2003
Alphanumeric character char CHAR (1)
Character string with closing | char* CHAR (n)
NULL byte char [n+l1], n < 8000 VARCHAR (n)
char [n+1], n > 8000 LONG
Integer [unsigned] int, SMALLINT, INTEGER (2
short int, long int or 4 bytes),
FIXED (5), FIXED (10)
Fixed point number float, double FIXED (n,m)
Floating point number float FLOAT (6)
double FLOAT (15)
Date char [9] DATE
Time char [9] TIME
Timestamp with closing NULL | char [21] TIMESTAMP
byte
Boolean All numeric data types (null or | BOOLEAN
not null)
Byte char [n], n < 8000 [VAR]CHAR (n) BYTE

char [n], n > 8000

LONG BYTE

A

When you specify dates, times, and timestamps, stick to the correct date and
time format [See SAP DB Library].

% Predefined Data Types

The C/C++ precompiler predefines the following permitted data types [Page 20] to make it
easier to handle database tables. You can use them to declare host variables [Page 15] in the

declaration section [Page 11].
¢ VARCHAR [Page 21]
e SQLFILE [Page 22]

e UNICODE data types [Page 24]

@ VARCHAR

Use

You can use the predefined data type [Page 21] VARCHAR to declare host variables [Page

15] to which you want to assign character strings with variable lengths.

The C/C++ precompiler converts the VARCHAR declaration into a structure declaration with a
two-byte length and an array or pointer. The current length of a VARCHAR variable is
determined by the length field. NULL bytes do not contribute to the calculation of the length.
In a VARCHAR declaration with pointer declarer, the application program is responsible for

assigning memory at runtime.

i

VARCHAR v

[n];

C/C++-Precompiler User Manual

SAP DB 7.4

21

SAP AG April 2003

is replaced by

struct {unsigned short len; unsigned char arr [n];} v;

where the current length of the character string is assigned to 1en and the
characters themselves are assigned to arr.

VARCHAR *v;
is replaced by
struct {unsigned short len; unsigned char arr [1];} *v;

See also: Examples for Permitted VARCHAR Declarations [Page 22]

l:? Examples for Permitted VARCHAR Declarations

Examples for permitted VARCHAR [Page 21] declarations:
VARCHAR a [21], b [100] [133];

typedef VARCHAR longstring [65534 1;
longstring c, d;

typedef VARCHAR *PVC;
PVC p;

You can assign memory for p:

n = 100; /* Maximum length of VARCHAR variables*/
p = (PVC) malloc (sizeof (p->len) + n * sizeof (p->arr));

You can declare VARCHAR pointers with fixed maximum lengths as follows:

typedef VARCHAR VC30 [30];
VC30 *qg;

g is a pointer to a VARCHAR with a maximum length of 30.
Memory is assigned to g with the following statement:
g = (VC30*) malloc (sizeof (VC30));

@ SQLFILE

Use

You can enable the direct transfer of file content in and out of LONG columns [Page 28] by
using the predefined data type [Page 21] SQLFILE to declare host variables [Page 15].

Procedure
Assign the name of a file to the value of the host variable. Note the following:

o If this file already exists, then its content must be a character string (of any length). The
SQL statements INSERT and UPDATE write the content of the file to the LONG
column.

o |[f this file does not already exist, the SELECT statements of a LONG column generate
it with the specified file name. The column content becomes the content of the file.

o [f this file already exists when a SELECT statement is executed, then the content of the
LONG column is appended to its existing content. If you want to avoid this, you must
delete the existing file before the SELECT statement is executed, for example, with an
EXEC COMMAND statement [Page 54].

C/C++-Precompiler User Manual SAPDB 74 22

SAP AG

April 2003

e Any errors in the processing of the file terminate the SQL statement and trigger a
database error message [Page 55] sqlcode < O.

=

EXEC SQL BEGIN DECLARE SECTION;
SQLFILE f1[30] = "document.doc";
char title[41] = "Manual";

SQLFILE £2[301;
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE TABLE documents (title CHAR (40) KEY,
document LONG BYTE) ;

EXEC SQL INSERT INTO documents VALUES (:title, :fl);
strcpy (f2, "tempdocument.doc");

EXEC SQL SELECT document INTO :f2 FROM documents
WHERE title = :title;

% SQLLongDesc

You can make working with LONG columns [Page 28] easier by using the predefined data
type [Page 21] SQLLongDesc to declare host variables [Page 15]. In a FETCH statement, for
example, this gives you information on the total length of the LONG column.

The data type SQLLongDesc is declared as a structure in the header file cpc.h:

typedef struct sgllongdesc {
char *szBuf;
int cbCollen;
int cbBuflen;
int cbBufMax;
} sgllongdesc;

typedef sgllongdesc SQLLongDesc;

The components of this structure declaration have the following meaning:

szBuf: Pointer to a memory area that includes the LONG data

e cbColLen: Total length of the corresponding LONG column in the table

e cbBufLen: Length of the data currently saved in szBuf

e cbBufMax: Size (in bytes) of the memory area to which szBuf points

&
When a FETCH or GETVAL [Page 50] statement is executed, the precompiler
enters the length of the LONG column in the component cbColLen.

You must assign values to the other components before SQL statements. See
also: Special Features when Using Data Type SQLLongDesc [Page 24]

C/C++-Precompiler User Manual SAPDB 74 23

SAP AG April 2003

% Special Features when Using Data Type
SQLLongDesc
Note the following points when you use the data type SQLLongDesc:

o |f you want to execute INSERT statements or PUTVAL statements [Page 49] with host
variables [Page 15] of data type SQLLongDesc [Page 23], you must first assign values
to the structure components szBuf, cbBufMax and cbBufLen of this data type.

¢ |f you want to execute FETCH statements or GETVAL statements [Page 50] with host
variables [Page 15] of data type SQLLongDesc [Page 23], you must first assign values
to the structure components szBuf and cbBufMax of this data type.

=

SQLLongDesc ldesc;

#define LONGLEN 100000

#define FILLLEN 80000

/* Assign memory for including data */
ldesc.szBuf = (char *) malloc (LONGLEN) ;
/* Fill memory with values */

memset (ldesc.szBuf, ‘X’, FILLLEN);

/* Specify size of memory area */
ldesc.cbBufMax = LONGLEN;

/* Specify length of data in buffer */
Ldesc.cbBuflen = FILLLEN;

EXEC SQL INSERT INTO LONGTEST VALUES (:il1, :ldata :il11, :12
:112);

% UNICODE Data Types

The C/C++ precompiler provides predefined data types [Page 21] for working with UNICODE
data [Page 27].

The table gives you an overview of these UNICODE data types:

Description C/C++ Data Type SAP DB Data Type

Unicode character string with | SQLUCS2*

closing NULL byte SQLUCS2 [n+2], n < CHAR (n) UNICODE,
4000 VARCHAR (n) UNICODE

The basic C/C++ data type is | SQLUSC2 [n+2], n 2> LONG UNICODE

unsigned short. 4000

In UCS 2, the characters are
coded in a platform-specific
byte configuration.

Unicode character string with | SOLUTE16*
closing NULL byte SQLUTF16 [n+2], n < | CHAR (n) UNICODE,

4000 VARCHAR (n) UNICODE

C/C++-Precompiler User Manual SAPDB 74 24

SAP AG April 2003

The basic C/C++ data type is | SQLUTF16 [n+2], n > | LONG UNICODE

unsigned short. 4000

In UTF 16 without surrogate,

the characters are coded in a

platform-specific byte

configuration.

Generic data type TCHAR* CHAR (n) UNICODE,
TCHAR [n+1], n < VARCHAR (n) UNICODE

CHAR or SQLUCS?2 data type, | 4000 LONG UNICODE

depending on the precompiler | TCHAR [n+1], n 2

option [Page 62] - 4000

G unicode.

é}

See also: Converting Data Types [Page 25]

% Converting Data Types

If, in an embedded SQL statement [Page 9], the C/C++ basic data type [Page 20] or the

UNICODE data type [Page 24] of a parameter does not correspond to the SAP DB data type

of the corresponding table column, but can be converted, then the precompiler runtime
environment [Page 65] converts the data types at runtime of the application program.

The following table shows the possible conversions, and the errors that can occur:

C/C++ Basic Data

SAP DB Data Types

Types FIXED | FLOAT | BOOLEAN | LONG CHAR | VARCHAR | DATE/TIME

short int, 1,2 1b,2 6 Not 4.5 Not Not

int, permitted permitted permitted

long int

float, double, 1a,2 2 6 Not 4.5 Not Not

long float permitted permitted permitted

char [n] 4,5 4,5 Not 3 3 3 3
permitted

char 4,5 4,5 Not Not 3 3 3
permitted | permitted

UNICODE Data SAP DB Data Types

Types FIXED FLOAT BOOLEAN | LONG | CHAR | VARCHAR | DATE/TIME

SQLUCS2 [n], 45,7 45,7 Not 3,7 3,7 3,7 3,7

SQLUTF16 [n], permitted

TCHAR [n]

SQLUCS2, 4,57 457 Not 3,7 3,7 3,7 3,7

SQLUTF16, permitted

TCHAR

1 Anoverflow can occur (sglcode < 0).

C/C++-Precompiler User Manual SAPDB 74 25

SAP AG April 2003

1a An overflow can occur when a value is transferred to the database table.

1a An overflow can occur when a value is transferred to the host variable [Page 15].

2 Some decimal places may be cut off (indicator value [Page 20] > 0).

3 Some characters may be cut off. The warning message [Page 57] sqlwarnl is set. The
indicator value specifies the actual length of the character string.

4 An overflow can occur when numerical values are converted into character strings
(sglcode < 0).

5 An overflow or invalid number can occur when character strings are converted into
numerical values (sqlcode < 0).

6 The value 0 is mapped to false. All values other than 0 are mapped to true.

7 An error message is written when UNICODE values are converted that cannot be
translated to 8 bit ASCIl (sglcode < 0).

é]

See also: Database System Messages [Page 55]

% Generating Structure Definitions

Use

You can use the INCLUDE DECLARE statement [Page 32] to generate a file <file name>
from a database table or database procedure. This file derives a corresponding structure
definition from the structure of the database table. You can use this structure definition to
declare host variables [Page 15] and the corresponding indicator variables [Page 18].

=

A table has been defined as follows:

CREATE TABLE example (
A FIXED (5),
B FIXED (8),
C FIXED (5, 2),
D FLOAT (5),
E CHAR (80))

The application program can then contain the following statements:
EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL INCLUDE "example.h" TABLE example AS STRUCT IND;
struct example s, sal[l0], *sp;

struct iexample indi;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT * FROM example;

EXEC SQL FETCH INTO :s :indi;

EXEC SQL FETCH INTO :saf[4] :indi;

sp = &sal9];

EXEC SQL FETCH INTO :sp :indi;

C/C++-Precompiler User Manual SAPDB 74 26

SAP AG April 2003

The include statement generates the following declarations:

struct example {short A;long B;float C,D;char E [81];};
and

struct iexample {short IA, IB, IC, ID, IE;}:;

% Working with UNICODE Data

Use

The C/C++ Precompiler supports the use of UNICODE [See SAP DB Library] data in SAP DB
application programs. The only permitted coding formats are UCS2 or UTF-16 (without
surrogate), both with a platform-specific byte configuration. All output in the trace file is in UTF

8.

You can use UNICODE character strings in the following locations in host variables [Page 15]

only:

As user name and password in the CONNECT statement [Page 34]

As a statement name in dynamic SQL statements [Page 37]

As a result table name in OPEN CURSOR statements [Page 46]

As an SQL statement

As parameters for SQL statements

A

You cannot use UNICODE application programs with ASCII database instances.

Prerequisite
You have installed a UNICODE-compliant database instance [See SAP DB Library].

&
After a CONNECT statement, the precompiler can recognize automatically
whether it is connected to a UNICODE-compliant database instance.

Procedure

Use suitable host variables with the appropriate predefined UNICODE data types [Page
24] for your UNICODE character strings.

If the user name or password contains UNICODE characters, then also use UNICODE
host variables.

If host variables contain complete SQL statements, then these statements are sent as
ASCII or UNICODE character strings, depending on the type of the host variables. For
performance reasons, only use UNICODE host variables for an SQL statement if the
statement actually contains UNICODE characters.

Run the precompiler [Page 61] with the precompiler option [Page 62] -G unicode.

=

EXEC SQL BEGIN DECLARE SECTION;

C/C++-Precompiler User Manual SAPDB 74 27

SAP AG

April 2003

/* "SELECT TABLENAME FROM DOMAIN.TABLES " encoded in UCS2
*/

SQLUCSZ sglstmt[36] = {0x0053, 0x0045, 0x004C, 0x0045,
0x0043,

0x0054, 0x0020, 0x0054, 0x0041, 0x0042,
0x004C, 0x0045, 0x004E, 0x0041, 0x004D,
0x0045, 0x0020, 0x0046, 0x0052, 0x004F,
0x004D, 0x0020, 0x0044, 0x004F, 0x004D,
0x0041, 0x0049, 0x004E, 0x002E, 0x0054,
0x0041, 0x0042, 0x004C, 0x0045, 0x0053,
0x0000};

SQLUCS2 resultstring[64];

EXEC SQL END DECLARE SECTION;

/* connect ... */

/* parse a unicode sgl command and give it a statement name

*/

EXEC SQL PREPARE stmtl FROM :sglstmt;
EXEC SQL DECLARE cursl CURSOR FOR stmtl;
EXEC SQL OPEN cursl;

/* loop over resultset */

while (sglca.sglcode != 100)

{

EXEC SQL FETCH cursl INTO :resultstring;
/* oo K/

}

EXEC SQL CLOSE cursl;

% Working with LONG Columns

To make it easier to work with LONG columns, the C/C++ Precompiler offers the predefined
data types SQLFILE [Page 22] and SQLLongDesc [Page 23], as well as the GETVAL
statement [Page 50] and the PUTVAL statement [Page 49], for step-by-step processing of the

columns.

However, you can also declare host variables [Page 15] for LONG columns as char arrays or
VARCHAR [Page 21] data types.

=

EXEC SQL CREATE TABLE LONGTEST
(I1 INTEGER, L1 LONG BYTE, L2 LONG BYTE);

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR 11[1000], 12[50];

int i1, il1, il2;

EXEC SQL END DECLARE SECTION;

C/C++-Precompiler User Manual SAPDB 74 28

SAP AG April 2003

EXEC SQL INSERT INTO LONGTEST VALUES
(:4i1, :11 4111, :12 :112);

=

Example for using a descriptor [Page 39I:

sglvartype *actvar;
EXEC SQL BEGIN DECLARE SECTION;

char *insert = "INSERT INTO LONGTEST VALUES (:I1, :L1,
L2)";

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE ins from :insert;
EXEC SQL DECLARE :Cl CURSOR FOR ins;
EXEC SQL DESCRIBE ins;

VA

actvar = &sglda.sqglvar[l];

(*actvar) .hostvartype = sqglvchar;
VA

EXEC SQL OPEN :Cl USING DESCRIPTOR;

% Transferring NULL Values to the Database
Instance

Use

In the application program, you can use indicator values [Page 20] to transfer a NULL value to
a database table, for example, in an INSERT or UPDATE statement.

Procedure

Before calling the embedded SQL statement [Page 9], set the indicator value to -1. The
database instance ignores the value of the corresponding host variable, and enters the NULL
value in the table that is being addressed.

é]

You can also use indicator values for transferring DEFAULT values to the
database instance [Page 29].

% Transferring DEFAULT Values to the Database
Instance

Use

In the application program, you can use indicator values [Page 20] to transfer a DEFAULT
value to a database table, for example, in an INSERT or UPDATE statement.

C/C++-Precompiler User Manual SAPDB 74 29

SAP AG April 2003

Procedure

Before calling the embedded SQL statement [Page 9], set the indicator value to the
predefined constant SQL. DEFAULT PARAM. The database instance ignores the value of the
corresponding host variable, and enters the DEFAULT value in the table that is being
addressed.

éj

This procedure is not permitted for LONG columns.

You can also use indicator values for transferring NULL values to the database

instance [Page 29].

% Connecting to a Database Instance

Before your application program can execute SQL statements, the program must connect to
the database instance and open a database session.

Use the statements for connecting to the database instance [Page 33]. Note the following:

e The statements for connecting to the database instance must be the first SQL
statements executed by the application program. However, they do not have to be the
first SQL statements in the source code.

é]

For the correct order of the SQL statements in the source code, see
Conventions for the Order of SQL Statements [Page 10].

¢ One application program can have multiple sessions with one or more database
instances. The database instance handles each session as an independent
transaction. In the SQL mode [See SAP DB Library] INTERNAL, there can be a
maximum of eight parallel sessions with different SAP DB database instances.

% Overview of Precompiler Statements

You have the following options when you embed SQL statements [Page 9] in the source code
of an application program:

e Static SQL statements [Page 35]
¢ Dynamic SQL statements [Page 37]
o ARRAY statements [Page 48]

The embedded statements consist of statements to the precompiler, and the actual statement
that is sent to the database.

=

The key words EXEC SQL form the simplest precompiler statement. The static
SQL statement EXEC SQL <statement> specifies that the database kernel
executes the database statement <statement>.

This table gives you an overview of the precompiler statements and how they are used:

CANCEL statement [Page 54] Cancels a running SQL statement

CONNECT statement [Page 34] Statement for connecting to the database
instance [Page 33]

C/C++-Precompiler User Manual SAPDB 74 30

SAP AG

April 2003

DECLARE statements [Page 32]

Indicate declaration sections

DESCRIBE statement [Page 45]

Initializes a descriptor structure for a dynamic
SQL statement

EXEC COMMAND statement [Page 54]

Executes an operating system command

EXECUTE statement [Page 46]

Executes a dynamic SQL statement

EXECUTE IMMEDIATE-statement [Page 37]

Calls a dynamic SQL statement without
parameters

GETVAL statement [Page 50]

Reads LONG columns piecewise

INCLUDE DECLARE statement [Page 32]

Generates structure definitions

INCLUDE FILE statement [Page 49]

Inserts file content in the source text

OPEN CURSOR statement [Page 46]

Executes a dynamic SQL statement with
named result table

PREPARE statement [Page 45]

Prepares a dynamic SQL statement

PUTVAL statement [Page 49]

Inserts values in LONG columns piecewise

SET SERVERDB statement [Page 33]

Statement for connecting to the database
instance

TRACE statements [Page 55]

Activates logging in a trace file

USING clause [Page 47]

Assigns parameter values in a dynamic SQL
statement

VERSION statement [Page 54]

Displays the software version

WHENEVER statements [Page 51]

Calls actions with conditions

é]

See also: Syntax Directory [Page 75], Working with Multiple Database Sessions

[Page 31], Compatibility with Other Database Systems [Page 59]

For the syntax of the database statements in the SQL mode INTERNAL, see the
Reference Manual: SAP DB [See SAP DB Library].

% Working with Multiple Database Sessions

When you work with multiple database connections [Page 33] in parallel, you must specify the

relevant database session in your embedded SQL statements [Page 9]. To do this, specify

the following in <session_spec>:

¢ In SQL mode INTERNAL, specify the session number <session number>.

¢ In SQL mode ORACLE, specify the key word AT and the session name

<session_name>.

éj

See also: CONNECT Statement [Page 34] and Overview of Precompiler

Statements [Page 30]

C/C++-Precompiler User Manual

SAP DB 7.4 31

SAP AG April 2003

% DECLARE Statements

Use

DECLARE statements mark the beginning and end of a declare section [Page 11].

Syntax
EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL END DECLARE SECTION;

% INCLUDE DECLARE Statement

Use
You can use the INCLUDE DECLARE statement to generate structure definitions [Page 26].

Prerequisites

e The precompiler must run [Page 61] with the precompiler option [Page 62] check, so
that the application program gets the information it requires from the database
instance.

e The file <filename> must not exist. If it exists, an INCLUDE FILE statement [Page 49]
is executed instead of the INCLUDE DECLARE statement.

Syntax

EXEC SQL INCLUDE <file name> <declare_clause>
[<as_clause>] [<ind clause>];

<declare clause> ::= <table clause> | <dbproc clause>
<table clause> ::= TABLE <table name>

<dbproc clause> ::= DBPROC <dbproc name>

<as clause> ::= AS VAR [<variable declarator>]

| AS TYPE [<type declarator>]
| AS STRUCT [<structure tag>]

<ind clause> ::= IND [<ind variable declarator>] [<structure tag>]

e AS VAR generates a variable declaration. AS TYPE generates a type declaration. AS
STRUCT generates a structure declaration.

¢ |f you do not specify an AS clause, the INCLUDE DECLARE generates a variable
declaration by default.

e The default name of the structure definition is the name of the database table or
procedure. However, you can also choose another name in the AS clause.

e The names of the structure components are derived from the column names of the
table. The data types of the structure components are compatible with the data types of
the corresponding table columns.

¢ You use the IND clause to generate another structure definition that you can specify as
a type definition when you declare the indicator variables [Page 18].

¢ If you do not specify a name in <structure_tag>, then, by default, the name of the
structure definition for the indicator variable is generated from the table name and
preceded by an I.

C/C++-Precompiler User Manual SAPDB 74 32

SAP AG April 2003

e The names of the structure components for the indicator variable are, by default,
derived from the table name and the column names, preceded by an i.

e The data types of the structure components are short int.

o If the table contains columns with the data type 1ong, then the precompiler generates,
as a structure component, a character string with 32767 characters for each of these
columns, and displays a warning on the screen. You can then redefine or modify these
structure components in the source code.

% Statements for Connecting to the Database
Instance

Use

Use these embedded SQL statements to connect to a database instance [Page 30] and open
a database session.

Procedure

1. Inthe SQL mode [See SAP DB Library] INTERNAL, use the SET SERVERDB
statement [Page 33] to specify the name of the database instance to which you want to
connect, and the name of the server on which the database instance is running.

éj

In the SQL mode ORACLE, enter the name and server of the database instance
in the USING clause of the CONNECT statement.

2. Use the CONNECT statement [Page 34] to specify the user name and password and
open the database session. At the same time, you can choose options for the database
connection.

% SET SERVERDB Statement

Use

You use the SET SERVERDB statement to specify information on connecting to the database
instance [Page 33] in the SQL mode [See SAP DB Library] INTERNAL. This includes defining
which database instance on which server you want the application program to connect to.

Syntax

EXEC SQL [<session number>] SET SERVERDB <database name>
[ON <database server>];

¢ You can also specify the name of the database instance <database name> and the
server <database_server> on which it runs in a host variable [Page 15] with the
data type char.

e Enter <session_number> as the session number if you want your application
program to open multiple database sessions in parallel. In the SQL mode INTERNAL,

there can be a maximum of eight parallel sessions with different SAP DB database
instances.

$’
You can override the information from the SET SERVERDB statement with the
KEY in the CONNECT statement [Page 34].

C/C++-Precompiler User Manual SAPDB 74 33

SAP AG April 2003

When you run the precompiler [Page 61], you can also override the information
from the SET SERVERDB statement for all database sessions with the
precompiler options [Page 62] -d and -n.

% CONNECT Statement

Use

Use the CONNECT statement to connect to the database instance [Page 33], and specify the
user name and password for the database session.

Prerequisite

In the SQL mode INTERNAL, you have specified the name of the chosen database instance
and server in the SET SERVERDB [Page 33] statement.

é]

You can do without the SET SERVERDB statement if you choose the database
instance and server by specifying a KEY in the CONNECT statement.

Syntax
CONNECT Statement in the SQL Mode INTERNAL [Page 34]
CONNECT Statement in the SQL Mode ORACLE [Page 35]

o When you run the precompiler [Page 61], you can use the precompiler option
Page 62] —u to override the user name and password specified in the CONNECT
statement for the first database session. The values for all subsequent database
sessions of the application program are, if possible, taken from the source code
when the precompiler runs. A warning appears if these values are missing, and the
embedded SQL statements of the subsequent database sessions are not checked.

e When you run the precompiler, you can use the precompiler option —U to override
the KEY specified in the CONNECT statement of the first database session.

% CONNECT Statement in the SQL Mode INTERNAL

Use

Use the CONNECT statement [Page 34] to connect to the database instance [Page 33], and
specify the user name, password, and options for the database session.

Syntax

EXEC SQL [<session_number>] CONNECT
[<user_name> IDENTIFIED BY <password> | <uidpwd>]
[<connect_option>...] [KEY <key>];

<uidpwd> ::= <user_ name>/<password>

<connect_option> ::= [ISOLATION LEVEL <unsigned integer>]
[TIMEOUT <unsigned integer>]

e Enter <session_number> as the session number if you want your application
program to open multiple database sessions in parallel. In the SQL mode INTERNAL,
there can be a maximum of eight parallel sessions with different SAP DB database
instances.

C/C++-Precompiler User Manual SAPDB 74 34

SAP AG April 2003

e The user name <user_name> and password <password> can also be specified as a
character string in a host variable [Page 15] (character or UNICODE data types [Page
24)).

e In <connect_option> you can specify an isolation level [See SAP DB Library]
and timeout value [See SAP DB Library].

® You can specify the <key> in a host variable with data type char. You
can specify an XUSER user key [See SAP DB Library], DEFAULT or the
environment variable SQLOPT. For information on setting the connection
options at runtime [Page 66] in this environment variable, See your operating
system documentation.

e The values of the <key> complete or override the values from the SET SERVERDB
statement [Page 33], as well as the explicitly specified user name, password, and
CONNECT options.

% CONNECT Statement in the SQL Mode ORACLE

Use

Use the CONNECT statement [Page 34] to connect to the database instance [Page 33], and
specify the user name, password, and options for the database session.

Syntax

EXEC SQL CONNECT
[<user_name> IDENTIFIED BY <password> | <uidpwd>]
AT <session_name>
USING <database_server-database_name>
[<connect_option>...] [KEY <key>];

<uidpwd> ::= <user_ name>/<password>

<connect_option> ::= [ISOLATION LEVEL <unsigned_ integer>]
[TIMEOUT <unsigned_integer>]

e Choose a name for the database name in <session_name>. The only limit on the
possible number of parallel database sessions in the SQL mode ORACLE is the
maximum possible number of database sessions of the database instances.

e The user name <user_name> and password <password> can also be specified as a
character string in a host variable [Page 15] (character or UNICODE data types [Page
24)).

e In <connect_option> you can specify an isolation level [See SAP DB Library]
and timeout value [See SAP DB Library].

® You can specify the <key> in a host variable with data type char. You
can specify an XUSER user key [See SAP DB Library], DEFAULT or the
environment variable SQLOPT. For information on setting the connection
options at runtime [Page 66] in this environment variable, See your operating
system documentation.

e The <key> values complete or override the explicitly specified user name, password,
and CONNECT options.

% Static SQL Statements

Use dynamic SQL statements particularly if you already know the structures of the database
tables during the programming phase, and the embedded SQL statements [Page 9] do not
change at runtime of the application program. The C/C++ precompiler checks the syntax of

C/C++-Precompiler User Manual SAPDB 74 35

SAP AG April 2003

static SQL statements by sending them to the database kernel when you run the precompiler
[Page 61] with the precompiler option [Page 62] check.

.
If the SQL statements or the structures of the database tables change at runtime
of the program, use dynamic SQL statements [Page 37].

You can formulate the following types of static SQL statements:

e Static SQL statement without parameters [Page 36]

o Static SQL statement with parameters [Page 36]

% Static SQL Statement Without Parameters

Use

One example of static SQL statements [Page 35] without parameters are DDL statements
such as the CREATE TABLE statement. However, you can also formulate INSERTS,
UPDATESs, DELETEsS, and other statements.

Syntax

EXEC SQL [<session_spec>] <statement>;
&
Specify <session_spec>, when you are working with multiple database

sessions [Page 31].

=

EXEC SQL CREATE TABLE hotel

(hno FIXED (4,0) KEY CONSTRAINT hno BETWEEN 1 AND 9999,
name CHAR(15) NOT NULL, zip FIXED (5,0) NOT NULL, loc
CHAR (20), price FIXED(6,2));

EXEC SQL INSERT INTO hotel VALUES (10, 'Excelsior',
79000, "Atlanta', 135.00);

EXEC SQL INSERT INTO hotel VALUES (20, 'Flora',
44000, 'Philadelphia', 45.00);

EXEC SQL COMMIT WORK;

% Static SQL Statement with Parameters

Use

The most common use of parameters in a static SQL statement [Page 35] is the use of host
variables [Page 15] as parameters in a WHERE condition.

The host variables must be declared in the declaration section [Page 11].

A

You can use host variables in static SQL statements only in positions where the
SQL syntax allows a parameter. For example, you cannot specify table names
with host variables.

C/C++-Precompiler User Manual SAPDB 74 36

SAP AG April 2003

Syntax

EXEC SQL [<sessionispec>] <statement>;

&
Specify <session_spec>, when you are working with multiple database

sessions [Page 31].

=

EXEC SQL BEGIN DECLARE SECTION;

char name[1l6];

EXEC SQL END DECLARE SECTION;

sprintf (name, "Excelsior");

EXEC SQL SELECT name FROM hotel WHERE name = :name;
EXEC SQL FETCH INTO :name;

% Dynamic SQL Statements

Use dynamic SQL statements if you do not know the structures of the database tables during
the programming phase, and the embedded SQL statements [Page 9] can change at runtime
of the application program.

&
If the SQL statements and table structures do not change at runtime, use static

SQL statements [Page 35].

You can formulate the following types of dynamic SQL statements:

¢ Dynamic SQL statements without parameters [Page 37]

¢ Dynamic SQL statements with parameters [Page 38]

% Dynamic SQL Statements Without Parameters

Use

Specify dynamic SQL statements [Page 37] without parameters as a character string
<statement_source> in a host variable [Page 15] in the application program. The character
string itself cannot contain any other host variable.

Call the dynamic SQL statement with the EXECUTE IMMEDIATE statement.

Syntax
EXEC SQL [<session_spec>] EXECUTE IMMEDIATE <statement source>;
&
Specify <session_spec>, when you are working with multiple database

sessions [Page 31].

C/C++-Precompiler User Manual SAPDB 74 37

SAP AG April 2003

=

EXEC SQL BEGIN DECLARE SECTION;
char statement [40];
EXEC SQL END DECLARE SECTION;

strcpy (statement, "INSERT HOTEL VALUES (80, 'Royal Plaza',
2000, \'Denver', 90.00)"™);

EXEC SQL EXECUTE IMMEDIATE :statement;

EXEC SQL EXECUTE IMMEDIATE 'COMMIT WORK';

% Dynamic SQL Statements with Parameters

Use

You can set parameters for dynamic SQL statements [Page 37], so that any values unknown
during the programming phase can be exchanged between the application program and the
database instance.

Procedure

1. Replace the values that need to be exchanged with the placeholder ? in the
statement.

2. Use the PREPARE statement [Page 45] to prepare the dynamic SQL statement for
execution, and assign it a statement name.

3. Execute the dynamic SQL statement with the EXECUTE statement [Page 46] or
OPEN CURSOR [Page 46] statement.
Use the USING clause [Page 47] to assign values to the previously unknown
parameters at runtime, for example, from a program variable of your choice. This
does not have to be a host variable.
You can execute a prepared SQL statement as often as you want, specifying new
values as parameters each time.

&
If, during the programming phase, you do not know the table columns

addressed by a dynamic SQL statement, and, therefore, the required
parameters, then also use a descriptor [Page 39].

=

EXEC SQL BEGIN DECLARE SECTION;

int hno;

char name[l6];

float price;

char cmd[100];

char *stmt;

EXEC SQL END DECLARE SECTION;

strcpy (cmd, "INSERT (INTO???) hotel VALUES (10,
'Excelsior', \
79000, 'Atlanta', 135.00)");

EXEC SQL PREPARE STMT1 FROM :cmd;

C/C++-Precompiler User Manual SAPDB 74 38

SAP AG April 2003

EXEC SQL EXECUTE STMT1;
hno = 10;

strcpy (cmd, "SELECT name, price INTO 2?2, ? \
FROM hotel WHERE hno=?");

stmt = "STMT2";
EXEC SQL PREPARE :stmt FROM :cmd;

EXEC SQL EXECUTE :stmt USING :name, :price, :hno;

% Using the Descriptor

Use

If, during the programming phase, you do not know the table columns addressed by a
dynamic SQL statement with parameters [Page 38], and, therefore, the required parameters,
then use a descriptor.

At runtime, the application program determines the number, data types, and lengths of the
table columns addressed by an SQL statement, and saves this information in the structure
sqglda [Page 39] (SQL Descriptor Area, descriptor for short).

You can then use this information to assign the appropriate program variables to the
parameters in the SQL statement.

=

See also: Example for Using a Descriptor [Page 44]

Prerequisite
You have used the PREPARE statement [Page 45] to prepare the dynamic SQL statement.

Procedure
1. Initialize the descriptor with the DESCRIBE statement [Page 45].

2. Use the information in the descriptor to assign appropriate program variables to the
parameters in the dynamic SQL statement. To do this, enter the addresses of these
program variables in the descriptor structure as well.

A

Make sure that the program variables contain valid values at runtime.

3. Use the EXECUTE statement [Page 46] or the OPEN CURSOR statement [Page 46]
with the USING clause [Page 47].

.
If you use the SQL mode [See SAP DB Library] INTERNAL, the C/C++
precompiler defines an initial descriptor called sqlda automatically. In other

modes, and if you want to use other descriptors, declare them as variables with
the data type sglda. This data type is defined in the header file cpc.h.

% Structure of the Descriptor

This table describes the structure of the descriptor (the data structure sgqlda) that you can
use in dynamic SQL statements with parameters [Page 38] in the SQL mode [See SAP DB
Library] INTERNAL.

C/C++-Precompiler User Manual SAPDB 74 39

SAP AG April 2003

The C/C++ precompiler also supports ORACLE sglda data structures (see Compatibility with
Other Database Systems [Page 59]).

sqldaid Contains the character string sgqlda for finding
the structure in a memory dump

sqlmax Maximum number of sqlvar entries

The C/C++ precompiler specifies the constant
sgqlmax = 300 for this value, however, you
can change it.

sqln Number of sgqlvar entries currently allocated
sqld Number of output parameters used in the SQL
statement

Any parameters that can be both input and
output parameters are also counted as output
parameters.

sqlvar array [sqglmax] of sglvar entries [Page 40]

For each parameter, an entry sqlvar [1i]is
generated according to the order in which the
parameter appears in the SQL statement. This
entry contains information on the data type and
the length of the addressed table column.

.
All constants used in the descriptor are declared in the header file cpc.h.

If you do not want to use the standard descriptor, you can declare the descriptor
<descriptor_ name> as a variable of the type sqldatype or struct sqlda
(in SQL mode ORACLE, sQLDA only). However, the descriptor must always
have the same type within a program.

% sglvar [i] Entries in the Descriptor

Each sqlvar [i] entryin the descriptor structure [Page 39] describes the properties of a
parameter in the dynamic SQL statement [Page 37], as well as the properties of the required
or assigned program variables.

Each sgqlvar [i] entry consists of the following components:

colname Contains the name of the table column for a
FETCH statement.

For all other SQL statements, colname
contains the entry columnx, where x is a
sequential number.

colio Specifies whether the parameter is an input or
output parameter.

sqglinppar: Input parameter
sqloutpar: Output parameter
sqlinoutpar: Input and output parameter

colmode Specifies whether NULL values are permitted
for the parameter.

colmode is a byte whose four low-order bits
are interpreted as a bit mask.

C/C++-Precompiler User Manual SAPDB 74 40

SAP AG

April 2003

Bit 0: Mandatory

Bit 1: Optional (NULL permitted)
Bit 2: Default

Bit 3: Escape Character

coltype

Specifies the SAP DB data type of the
parameter.

See: SAP DB Data Types in sqlvar Entries
[Page 42]

collength

Specifies the length of the parameter or table
column.

For numerical data types, collength
specifies the number of digits.

For all other data types, collength specifies
the number of characters.

You can modify the value of collength, for
example, if the closing NULL byte increases
the number of characters in a character string
by 1.

colfrac

Specifies the number of decimal places for
numerical parameters or table columns.

For the data type FLOAT/REAL colfrac = -
1.

hostindicator

Contains the indicator value [Page 20],
so performing the same task as an
indicator variable [Page 18].

For input parameters, the user can set
hostindicator.

For output parameters, query
hostindicator. If the table column
contains a NULL value, the value of the
program variable is not overwritten.

hostvartype

In hostvartype, specify the C/C++ data type
of the program variable assigned to the
parameter (see C/C++ Data Types in salvar

Entries [Page 43]).

&

If necessary, modify the values of
collength and colfrac.

The DESCRIBE statement initializes
hostvartype with the value -1
(undefined).

hostcolsize

In hostcolsize, specify the size of an array
element (in bytes) for array statements [Page
48].

hostvaraddr

In hostvaraddr, specify the address of the
program variable assigned to the parameter.

For array statements, specify the
address of the first array element.

C/C++-Precompiler User Manual

SAP DB 7.4 41

SAP AG

April 2003

The DESCRIBE statement initializes
hostvaraddr with the NULL value.

hostindaddr

Contains the address of hostindicator.

Instead of this, you can also specify the
address of an indicator variable. The indicator
value is then written to this variable, and the
content of hostindicator is undefined.

For array statements, specify the address of
the first array element of the indicator variable.

If you do not want to use an indicator value,
specify NULL.

colinfo

Used for internal information on converting
program variables.

Do not change this value.

% SAP DB Data Types in sqlvar Entries

This table shows the possible sqglvar entries [Page 40] coltype and the corresponding SAP

DB data types [See SAP DB Library].

coltype SAP DB Data Type
sqlfixed FIXED

sqlfloat FLOAT

sqlchar CHAR

sglbyte CHAR (n) BYTE
sgldate DATE

sgltime TIME

sqlexpr FLOAT
sgltimestamp TIMESTAMP
sgllong LONG
sqllongbyte LONG BYTE
sglboolean BOOLEAN
sglunicode CHAR UNICODE
sglsmallint SMALLINT
sglinteger INTEGER
sglvarchar VARCHAR
sqlvarbyte VARCHAR BYTE
sgllongunicode LONG UNICODE
sglvarunicode VARCHAR UNICODE

C/C++-Precompiler User Manual

SAP DB 7.4 42

SAP AG April 2003

% C/C++ Data Types in sqlvar Entries

This table shows the possible salvar entries [Page 40] hostvartype and the corresponding
C/C++ data types.

hostvartype C/C++ Data Type

sglvintl integer (1 byte)

sglvint?2 integer (2 bytes)

sqlvint4 integer (4 bytes)

sqlvint8 integer (8 bytes)

sglvunsl unsigned integer (1 byte)

sqlvuns?2 unsigned integer (2 bytes)

sglvuns4 unsigned integer (4 bytes)

sglvuns8 unsigned integer (8 bytes)

sqglvreald float (4 bytes)

sqlvreal8 float (8 bytes)

sglvchar char array (ends with null byte)
sglvcharp char array (filled up with blank characters)
sgqlvbyte char array (null bytes permitted and filled up

with null bytes)

sqlvstringl String with variable length
struct {len char; char array}

sgqlvstring?2 String with variable length
struct {len short; char array}

sqlvstring4 String with variable length
struct {len int; char array}

sglvfile char array (filled up with blank characters)

The value of this parameter must be a file
name. See also SQLFILE [Page 22]

sglvfilec char array (ends with null byte)

The value of this parameter must be a
file name. See also SQLFILE [Page 22]

sglvlongdesc SQLLongDesc [Page 23]

sglvucs?2 UCS2 array (filled up with blank characters)

sglvutflé6 UTF16 array without surrogate (filled up with
blank characters)

sglvunicode UTF8 array (filled up with blank characters)

sglvunicodec UTF8 array (ends with null byte)

sglvstringunicode UTF8 array with variable length

struct {len short; char array}

sglvstringunicode4 UTF8 array with variable length
struct {len int; char array}

C/C++-Precompiler User Manual SAPDB 74 43

SAP AG April 2003

E? Example for Using a Descriptor

EXEC SQL BEGIN DECLARE SECTION;

char stmnt [255];

EXEC SQL END DECLARE SECTION;

strcpy (stmnt, "select hno, name, price from hotel");
EXEC SQL PREPARE SEL FROM :stmnt;

EXEC SQL EXECUTE SEL;

EXEC SQL PREPARE FET FROM 'FETCH USING DESCRIPTOR';
EXEC SQL DESCRIBE FET;

/* Bind each column to a piece of memory */

for (i=0;i<sqglda.sgln;i++) {
sglvartype *sqglvar = &sqglda.sqglvar[i];

switch (sglvar->coltype) {
case (sqglfixed) : {
if (sglvar->colfrac == 0) {
sglvar->hostvartype = sqglvint4;

sglvar->hostcolsize = sizeof (int);

sglvar->hostvaraddr = malloc (sizeof (int));

}
else {
sglvar->hostvartype = sqglvreald;

sglvar->hostcolsize = sizeof (float);

sglvar->hostvaraddr = malloc(sizeof (float));

}

break;

}

case (sglchar) : {
sglvar->hostvartype = sglvchar;

sqglvar->hostcolsize = sqglda.sqglvar[0].collength;
sqlvar->hostvaraddr = malloc (sizeof (int));
break;

}
default : {
/* TODO: support more datatypes */

}
}
}

/* Process result table */
EXEC SQL EXECUTE FET USING DESCRIPTOR;

while (sglca.sglcode == 0) {
EXEC SQL EXECUTE FET USING DESCRIPTOR;

C/C++-Precompiler User Manual SAP DB 7.4 44

SAP AG April 2003

% PREPARE Statement

Use

Use the PREPARE statement to prepare a dynamic SQL statement with parameters [Page
38] for execution, and assign it a statement name.

Syntax

EXEC SQL [<session_spec>] PREPARE <statement_ name>
[INTO <descriptor_name> [USING <using_clause>]]
FROM <statement_source>;

e Specify<session_spec>, when you are working with multiple database

sessions [Page 31].

¢ In<statement_ name>, specify the statement name either in a host variable [Page 15]
or as a constant character string.

¢ In<statement_ name>, specify the dynamic SQL statement either in a host variable
or as a constant character string.

&
In the PREPARE statement, the <descriptor name> and the

<using_clause> have no meaning in the SQL mode [See SAP DB Library]
INTERNAL. They are used for DB2 compatibility.

% DESCRIBE Statement

Use

Use the DESCRIBE statement to initialize the descriptor structure [Page 39], and to
determine the parameter and table column information needed for a dynamic SQL statement
with descriptor [Page 39].

Prerequisite

You have used the PREPARE statement [Page 45] to prepare the SQL statement for
execution.

Syntax

EXEC SQL [<session_ spec>] DESCRIBE <statement name>
[INTO <descriptor name> [<using clause>]];

e Specify<session_spec>, when you are working with multiple database

sessions [Page 31].

e Ifthe INTO clause is not specified, the precompiler uses the standard descriptor
sglda.

¢ If you do not want to use the standard descriptor, you can declare the descriptor
<descriptor_name> as a variable of the type sqldatype or struct sqglda (in
SQL mode ORACLE, sQLDA only). However, the descriptor must always have the
same type within a program.

Note

In the SQL mode [See SAP DB Library] INTERNAL, the <using clause> has
no meaning in the DESCRIBE statement. It is used for DB2 compatibility.

C/C++-Precompiler User Manual SAPDB 74 45

SAP AG April 2003

% EXECUTE Statement

Use

Use the EXECUTE statement to execute a dynamic SQL statement with parameters [Page
38].

Prerequisites

e You have used the PREPARE statement [Page 45] to prepare the SQL statement for
execution.

e If you are using a descriptor [Page 39], you have initialized it with the DESCRIBE
statement [Page 45].

Syntax

EXEC SQL [<session_spec>] [<for_clause>] EXECUTE <statement name>
[<using clause>];

e Specify<session_spec>, when you are working with multiple database

sessions [Page 31].

o Use the USING clause [Page 47] to assign values to the parameters.

e Use the FOR clause for array statements [Page 48].

% OPEN CURSOR Statement

Use

You can use the OPEN CURSOR statement to execute a dynamic SQL statement with
parameters [Page 38], and generate a named result table (cursor).

Prerequisites

e You have used the PREPARE statement [Page 45] to prepare the SQL statement for
execution.

e If you are using a descriptor [Page 39], you have initialized it with the DESCRIBE
statement [Page 45].

e You have already defined the cursor (the named result table) with a DECLARE
CURSOR statement [See SAP DB Library].

Syntax

EXEC SQL [<session_spec>} [<for clause>] OPEN <cursor name>
[USING <parameter list>

| USING DESCRIPTOR [<descriptor name>] [KEEP]

| INTO <parameter list>

\

INTO DESCRIPTOR [<descriptor name>] [KEEP]]

e If, in the programming phase, you do not know how many different result tables are
processed by your application program, you can specify the result table name
<cursor_name> in a host variable [Page 15] in the OPEN CURSOR statement.

C/C++-Precompiler User Manual SAPDB 74 46

SAP AG

April 2003

e Specify KEEP if you want to follow the OPEN CURSOR statement

with PUTVAL statements [Page 49].

e Here, INTO has the same meaning as specifying USING <parameter_ list>. It

guarantees compatibility with other database systems.

=

EXEC SQL BEGIN DECLARE SECTION;
int hno;

char name[1l6];

float price;

char cmd[100];

char *stmt;

char *cursor;

EXEC SQL END DECLARE SECTION;

strcpy (cmd, "INSERT (INTO???) hotel VALUES (10,

'"Excelsior', \
79000, 'Atlanta', 135.00)");

EXEC SQL PREPARE STMT1 FROM :cmd;

EXEC SQL DECLARE curl CURSOR FOR STMT1;

EXEC SQL OPEN curl;
hno = 10;

strcpy (cmd, "SELECT name, price FROM hotel WHERE hno=?");

stmt = "STMT2";
EXEC SQL PREPARE :stmt FROM :cmd;

cursor = "cur2";

EXEC SQL DECLARE :cursor CURSOR FOR

EXEC SQL OPEN :cursor USING :hno;

EXEC SQL FETCH :cursor INTO :name,

% USING Clause

Use the USING clause for dynamic SQL statements with parameters [Page 38] to assign
values to the parameters in EXECUTE [Page 46] or OPEN CURSOR statements [Page 46].

Prerequisites

e You have used the PREPARE statement [Page 45] to prepare the SQL statement for

execution.

e If you are using a descriptor [Page 39], you have initialized it with the DESCRIBE

statement [Page 45].

Syntax

<using clause> ::=
USING <parameter_ list>
| USING DESCRIPTOR [<descriptor name>]
| INTO <parameter list>
| INTO DESCRIPTOR [<descriptor name>]

C/C++-Precompiler User Manual SAPDB 74

47

SAP AG April 2003

e If you do not specify <descriptor name>, the standard structure sqglda is used.

e Here, INTO has the same meaning as specifying USING. It guarantees compatibility
with other database systems.

% Array Statement

Use

Use array statements to read or change more than one data record in a data table with only a
single embedded SQL statement [Page 30]. An array statement executes an SQL statement
multiple times in a loop, and applies each array element as a parameter in a row of the
database table.

You have the following options when you formulate an array statement:

e You specify all parameters in a static SQL statement [Page 35] in array host variables

Page 17].

e You use the FOR clause together with a descriptor and array program variables in a
dynamic SQL statement [Page 37].

Syntax
EXEC SQL [<Session_speC>J [FOR <loop parameter>] <sql statement>;

® Specify<session_spec>, when you are working with multiple database

sessions [Page 31].

e The value of <loop_parameter> detemines the number of loop repeats. If the array
variable has more or fewer components than specified in <loop_parameter>, a
warning appears in the precompiler log [Page 64] and the statement is executed with
the lowest dimension. This also applies if you use multiple array variables that do not
have the same number of elements.

4

If errors occur in the database kernel while the array statement is being
executed, the statement is terminated, and the number of successfully
processed records is entered under sqlerrd[2] in the structure sqlca [Page
55].

A

The SQL statement SELECT INTO is not permitted for array statements in the
SQL mode [See SAP DB Library] INTERNAL.

Example

Example of a static array statement:

=

/* Array Insert */

EXEC SQL BEGIN DECLARE SECTION;
int hno[3];

int zipl[3];

float price[3];

char *name[3], *loc[3];

EXEC SQL END DECLARE SECTION;

C/C++-Precompiler User Manual SAPDB 74 48

SAP AG April 2003

hno[0] = 10;

name [0] = "Excelsior";
zip[0] = 89073;

loc[0] = "Philadelphia";
price[0] = 135.00;

hno[1] = 30;

name [1] = "Flora";
zip[1] = 48159;

loc[1] = "Atlanta";
price[l] = 45.00;

hno[2] = 20;

name[2] = "Continental";
zip[2] = 86165;

loc[2] = "Cincinnati";
price([2] = 70.00;

EXEC SQL INSERT INTO HOTEL VALUES (:hno, :name, :zip, :loc,
:price);

% INCLUDE FILE Statement

Use

You can use the INCLUDE FILE statement to include source code from a file <file_name>
in your application program. The precompiler places this text at the location of the INCLUDE
FILE statement in the source code. The text itself cannot contain an INCLUDE FILE or
INCLUDE DECLARE Statement [Page 32].

Syntax

EXEC SQL INCLUDE <file_ name>;

.

If necessary, you can use EXEC SQL INCLUDE sqlca to select the position in
the source code at which you want the precompiler to declare the structure sqlca
Page 55]. This statement ensures compatibility with other embedded SQL

compilers. If you do not select a position, the precompiler places the declaration
at the start of the program.

% PUTVAL Statement

Use
You can use PUTVAL statements to insert data in a LONG column [Page 28] piecewise.

The PUTVAL statements must follow a INSERT statement [See SAP DB Library]. Each
PUTVAL statement that follows this INSERT statement appends the current content of the
corresponding host variable [Page 15] to the LONG column of the database table.

C/C++-Precompiler User Manual SAPDB 74 49

SAP AG April 2003

Prerequisite
You have started to insert the data in the LONG column with an INSERT statement.

Syntax

EXEC SQL [<session_spec>] PUTVAL INTO <table name>
[(kcolumn name>,...)] VALUES (<parameter list>)

e Apart from the key word PUTVAL, the PUTVAL statement must be the same as the
preceding INSERT statement. For example, the order and number of the parameters in
the parameter list must be the same as the parameter list <parameter list> of the
INSERT statement.

o Before each PUTVAL statement, assign the new data to the host variable for the LONG
column.

e The PUTVAL statement ignores any values in the parameter list that refer to table
columns other than the LONG column.

¢ You cannot execute any other SQL statements between the INSERT statement and the
subsequent PUTVAL statement, or between the PUTVAL statements themselves.

A

Every other SQL statement closes the LONG column in the database table, so
that no more data can be appended.

¢ Inform yourself about the special features when using the data type SQLLongDesc

Page 24].
e If you want to insert more than one row in a table, use an array statement [Page 48].

=

EXEC SQL CREATE TABLE LONGTEST
(I1 INTEGER, L1 LONG BYTE, L2 LONG BYTE);

EXEC SQL BEGIN DECLARE SECTION;
int array size;
VARCHAR 11[100][500], 12[100]([50];
int 11[100];

EXEC SQL END DECLARE SECTION;

array size = 100;

EXEC SQL FOR :arrayisize INSERT INTO LONGTEST VALUES
(:4i1, :11 :4i11, :12 :i12);

¢ |If you do not want a PUTVAL statement to insert any data in a certain LONG column,
then assign the predefined constant SO, IGNORE to the appropriate indicator value
Page 20] in this statement.

A

You cannot insert LONG data with the length NULL.

% GETVAL Statement

Use

You can use the GETVAL statement to read data piecewise from a LONG column [Page 28].

C/C++-Precompiler User Manual SAPDB 74 50

SAP AG April 2003

The GETVAL statements must follow a FETCH statement [See SAP DB Library]. Each
GETVAL statement that follows this FETCH statement reads the next part of the content from
the LONG column of the database table from the current position.

Prerequisite
You have started to read the data from the LONG column with a FETCH statement.

Syntax
EXEC SQL [<session_spec>] GETVAL INTO (<parameter list>)

e Apart from the key word GETVAL, the GETVAL statement must be the same as the
preceding FETCH statement. For example, the order and number of the parameters
in the parameter list must be the same as the parameter list <parameter list> of
the FETCH statement.

e You cannot execute any other SQL statements between the FETCH statement and
the subsequent GETVAL statement, or between the GETVAL statements themselves.

e |f the host variable [Page 15] that corresponds to the LONG column has the data type
SQLLongDesc [Page 23], then you can read the total length of the LONG column in
the corresponding structure component cbColLen after the GETVAL statement has
been executed.

e You can determine how often you need to execute the GETVAL statement by
querying the warning message [Page 57] sqlwarnl. If sglwarnl has the value W,
then the LONG column has not yet been read completely.

=

After the FETCH statement has been executed, the remaining content of
the LONG column is read by the following statement:

while (sglca.sglwarn[l] == 'W'")
EXEC SQL GETVAL INTO :il, :11, :12;

e If you do not want a GETVAL statement to read the data of a certain LONG column,
then assign the predefined constant SO, IGNORE to the appropriate indicator value
Page 20] in this statement.

% WHENEVER Statements

Use

You can use WHENEVER statements to program actions that you want to be executed for
each subsequent embedded SQL statement [Page 9].

You have the following options:
¢ You program actions that are executed before or after each SQL statement.

e You program error handling [Page 52] actions.

The WHENEVER statement must be located in the source code of the application program in
front of the SQL statements that it handles. This is so that the C/C++ precompiler [Page 60]
can generate the appropriate individual statements when the precompiler runs [Page 61]. The
WHENEVER statement is valid for all subsequent SQL statements in the source code until
another WHENEVER statement for the same condition takes over, or until the program ends.

Syntax

EXEC SQL WHENEVER <condition> <action>;

C/C++-Precompiler User Manual SAPDB 74 51

SAP AG April 2003

Where <condition> is an error (see Handling Errors with WHENEVER Statements), or one
of the following conditions:

SQLBEGIN The specified <action> is executed before
each SQL statement.

SQLEND The specified <action> is executed after
each SQL statement.

For <action>, specify one of the possible actions for the WHENEVER statement.

Example
Example for Using WHENEVER Statements [Page 53]

% Handling Errors with WHENEVER Statements

Use

You can use WHENEVER statements to program standard error handling procedures for
errors and exceptions that can occur when embedded SQL statements [Page 9] are
executed. You can check four different types of database system messages [Page 55], and
choose from four standard reactions to these messages.

&
Use a WHENEVER statement if, for example, the application program does not

query the values of the messages sglcode or sqlwarn0 after an SQL
statement.

Syntax
EXEC SQL WHENEVER <condition> <action>;

Where <condition> is one of the following cases:

SQLWARNING sglwarnO has the value W.
At least one warning exists.
SQLERROR saglcode has a negative value.
An error has occurred.
NOT FOUND sglcode has the value 100 (ROW NOT

FOUND). No table row found.

SQLEXCEPTION sglcode has a positive value greater than
100. An exception has occurred.

For <action>, specify one of the possible actions for WHENEVER statements [Page 53].

A

If SQLERROR occurs, the application program must terminate, and the error must
be analyzed.

If you call an error handling function <action> that also contains SQL
statements, and these SQL statements can send error messages, then start the
function with a WHENEVER CONTINUE statement to avoid endless loops.

Example
EXEC SQL WHENEVER SQLEND CALL CheckSQLCode (&sglca);

EXEC SQL SELECT DIRECT NAME, LOC
INTO :name, :loc FROM HOTEL KEY HNO = :hno;

C/C++-Precompiler User Manual SAPDB 74 52

SAP AG April 2003

void CheckSQLCode (sglcatype *sqglca)
{
if (sglca->sglcode != 0) {
code = sqglca->sqglcode;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL INSERT INTO ERROR VALUES (:code);
}
}

% Actions for the WHENEVER Statement

Use WHENEVER statements [Page 51] to call the following actions <action>:

STOP Resets the running transaction correctly, ends
the database connection with the RELEASE
statement [See SAP DB Library] COMMIT

WORK RELEASE and terminates the program

CONTINUE Continues to run the application program. Use
CONTINUE to deactivate a previous
WHENEVER action for this condition.

GOTO <label> The application program jumps to the label
<label>.
<label> can have a maximum of 45
characters.

CALL <function> The application program calls the function

<function>. The function call can have a
maximum of 50 characters, including the
parameters used.

E? Example for Using WHENEVER Statements

The following examples show the usage of different WHENEVER [Page 51]
statements.

EXEC SQL WHENEVER SQLWARNING CALL warnproc();
EXEC SQL SELECT * FROM dual;

/* receives a warning and calls warnproc */

EXEC SQL WHENEVER SQLERROR CALL errproc();
EXEC SQL DELETE FROM unknowntable;

/* receives an error and calls errorproc */

EXEC SQL WHENEVER SQLERROR STOP;
/* receives also an error but stops execution */

EXEC SQL DELETE FROM unknowntable;

C/C++-Precompiler User Manual SAPDB 74 53

SAP AG April 2003

% CANCEL Statement

Use

Use the CANCEL statement to cancel the processing of an SQL statement by the database
kernel. This means that the SQL statement has no effect. If successful, the CANCEL
statement has the return code sqlcode 0. The canceled statement has the sqlcode —102.
Syntax

EXEC SQL CANCEL [<cancel_session>];

<cancel session> ::= <session_number> | <session_name> | CURRENT

% EXEC COMMAND Statement

Use

You can use the EXEC COMMAND statement to execute operating system commands, for
example, to delete files or call the Database Manager CLI [See SAP DB Library].

The same general rules [Page 9] apply to EXEC COMMAND statements as to SQL
statements. Precede each system call with the key words EXEC COMMAND .

Syntax

EXEC COMMAND SYNC <command> RESULT <result_ parameter>
| EXEC COMMAND ASYNC <command>;

<command> ::= <string_ constant> | <host variable>

<result parameter> ::= <host_variable>

e Declare <result parameter> as a host variable [Page 15] with the type int (2
bytes).

e |n SYNC mode, the application program stops until the operating system command has
been completed.

e In ASYNC mode, the operating system command is executed in the background.

e Forinformation on the correct syntax of the operating system command, see your
operating system documentation.

% VERSION Statement

Use
You can use the VERSION statement to display the versions of the general SAP DB runtime
environment and the precompiler runtime environment.

Syntax

EXEC SQL VERSION <runtime version>, <precompiler version>;

You can specify <runtime version>and <precompiler version> as host variables
Page 15] with the data type char and a length of 40 bytes.

C/C++-Precompiler User Manual SAPDB 74 54

SAP AG April 2003

% TRACE Statements

Use

You can use the TRACE statements to specify that the precompiler runtime environment
[Page 65] logs the execution of individual embedded SQL statements in the trace file
<filename>.pct at runtime of the application program.

Procedure

Include the SQL statements that you want to log in the statements SET TRACE ON or
SET TRACE LONG and SET TRACE OFF.

Any SQL statements that appear in external subroutines or modules called by the included
SQL statements are also logged.

&
To activate logging for the whole application program, set your chosen trace

option [Page 66] when you run the precompiler or call the program. The trace
option then overrides the individual TRACE statements.

Syntax

EXEC SQL SET TRACE ON; Activates logging with the trace option TRACE
SHORT

Every executed SQL statements is logged,
including the messages sglcode und
sqlerrd[2].

EXEC SQL SET TRACE LONG; Activates logging with the trace option TRACE
LONG

Every executed SQL statements is logged,
including the messages sglcode und
sglerrd[2] and all parameter values.

EXEC SQL SET TRACE OFF; Deactivates logging

EXEC SQL SET TRACE LINE <trace line>; The content of <trace 1line> is written to the
trace file as a comment.

You can specify <trace line>asa
character string or in a host variable [Page 15].

% Database System Messages

Database system messages and warnings are sent using the global structure sqlca (SQL
Communication Area) The precompiler [Page 60] includes this structure automatically in
every SAP DB application program. At runtime of the application program, the database
saves information on the execution of the last embedded SQL statement [Page 9] in the
structure components, for example, information on any errors that occurred.

éj

Query the structure component sqlcode after every SQL statement.

The sglca components have the following meaning:

sqlcaid char [8]

Contains the character string sqlca and is used

C/C++-Precompiler User Manual SAPDB 74 55

SAP AG

April 2003

to find the sglca when analyzing a memory
dump

sqlcabc

integer (4 byte)
Specifies the length of the sglca in bytes

sqlcode

integer (4 byte)

Contains the message code of the database
system message

sglcode = 0 indicates that a statement was
executed successfully.

sglcode > 0 indicates problems that must be
handled in the program.

sglcode < 0 indicates errors that terminated
the program.

For descriptions of all the messages, see
Messages: SAP DB [See SAP DB Library]..

sqlerrml

integer (2 byte)

Specifies the current length of sqlerrmc

sqlerrmc

char [70]

Contains an explanation of the message if
sglcode has a value other than 0

sqlerrd

Array of six 4 byte integer numbers

sglerrd [2] specifies how many table rows
were processed by the SQL statement. -1
indicates that the number of processed rows is
unknown.

If there are errors in array statements [Page 48],
sglerrd [2] contains the number of the last
row that was processed without errors.

sglerrd [5] specifies the runtime of the
statement in the database kernel (in seconds).

sglerrd [6] specifies the position in the SQL
statement at which a syntax error was found.
This value is undefined for array statements. If
the SQL statement did not have any errors, then
sglerrd [6] = O.

sqlwarn0

char [1]

sqlwarn0 = W specifies that the SQL
statement generated at least one of the
warnings sqlwarnl. .sglwarnc

If no warning exists, then sqlwarn0 contains a
blank character.

sqlwarnl. .sqlwarnc

Warning messages in the structure sglca [Page
57]

sqlresn

char [18]

Contains the name of the result table after a
SELECT statement is called

C/C++-Precompiler User Manual

SAP DB 7.4 56

SAP AG

April 2003

sglresn contains a blank character after all
other calls

sqgldatetime

integer (2 byte)

Specifies which date and time format [See SAP
DB Library] the data types DATE, TIME und
TIMESTAMP have.

1 INTERNAL
2 18O

3 USA

4 EUR

5 JIS

All other sgqlca components are used for internal purposes.

% Warning Messages in the Structure sqlca

This table shows you the warning messages that can occur as database system messages

[Page 55].

Each of the sqlca components sglwarnl. .sglwarnc has the value w if the execution of
an embedded SQL statement [Page 9] generates the corresponding warning.

If the corresponding warning does not exist, the component contains a blank character.

sglwarnl

char [1]

Specifies whether a character string of the
type char was truncated when a host
variable [Page 15] and the database
exchanged values.

If you use an indicator variable [Page 18],
and a warning occurs, the variable specifies
the length of the original character string.

sqlwarn2

char [1]

Specifies whether COUNT, MAX, MIN, SUM,
AVG, STDDEV or VARIANCE NULL values
were found in the database table and ignored
by the database kernel when the SET
functions [See SAP DB Library] were
executed

sqlwarn3

char [1]

Specifies whether the number of result
columns of a SELECT or FETCH statement
did not match the number of host variables in
the INTO clause

sglwarn4

char [1]

Specifies whether an UPDATE or DELETE
statement was performed without a WHERE
clause and, therefore, in the entire database
table

sqlwarné

char [1]

Specifies whether the values of a date (DATE
or TIMESTAMP) needed to be corrected

C/C++-Precompiler User Manual

SAP DB 7.4 57

SAP AG April 2003

&

You see this warning for
incorrect dates such as 31.2 or
37.7.

sqlwarn8 char [1]

Specifies whether all table rows needed to be
searched to generate a result table

sqlwarnb char [1]

Set if a TIME value is greater than 99 (or
greater than 23 in the USA format) The value
is corrected to modulo 100 (or 24).

sqlwarnc char [1]

For a SELECT statement, specifies whether
more rows were found than permitted by the
ROWNO predicate [See SAP DB Library] in
the WHERE clause

% Programming Notes

To optimize your SAP DB application program, remember the following programming notes:

In SELECT statements [See SAP DB Library], identify the columns that you want to
select.

Use key specifications [See SAP DB Library] to identify the table rows that need to be
processed. You can determine key columns from the system tables [See SAP DB

Library].

SELECT statements with multiple result rows with no ORDER clause [See SAP DB
Library] do not specify the order in which the table rows are read from the database
table. In this case, the logic of your application program cannot assume that there is a
specified order.,

You can use the SINGLE SELECT statement [See SAP DB Library] to process
individual rows in the SQL mode INTERNAL.

Note the different way of handling named result tables [See SAP DB Library]
(CURSOR) in the different SQL modes [See SAP DB Library].

.
For information on the special features of the SQL mode ORACLE in the SAP

DB database system, see the documentation SQL Mode ORACLE: SAP DB
[See SAP DB Library].

Inform yourself about the user and role concept [See SAP DB Library] of the SAP DB
database system.

Execute a RELEASE statement [See SAP DB Library] as the final SQL statement in
your application program. This releases the resources needed by the precompiler
runtime environment [Page 65].

In the SAP DB database system, remember that DDL statements such as CREATE
TABLE are also subject to the transaction concept [See SAP DB Library], which means
that they can be undone or that they must be completed with a COMMIT statement
[See SAP DB Library].

Read the information about the locks [See SAP DB Library] in the database, and define
a suitable isolation level [See SAP DB Library] for your statements.

C/C++-Precompiler User Manual SAPDB 74 58

SAP AG April 2003

e Program reactions to possible TIMEOUT messages. You can do this by, for example,
querying the structure component sqlcode after each SQL statement (see Database
System Messages [Page 55]).

&
For more information on the meaning of the optimum SQL statements and the
available options, see Optimizer: SAP DB 7.4 [See SAP DB Library].

% Compatibility with Other Database Systems

The SAP DB database system can execute database statements that are written in other SQL
modes [See SAP DB Library].

You specify the SQL mode of your application program in the precompiler options [Page 62]
when you run the precompiler [Page 61].

Inform yourself about the special features in the SQL mode ORACLE [Page 59] and the SQL
mode ANSI [Page 60].

é]

If you only want to create individual embedded SQL statements in another SQL
mode, then precede them with the following key words:

e EXEC SAPDB or EXEC INTERNAL for individual statements in the
INTERNAL mode

e EXEC ORACLE for individual statements in the ORACLE mode

e EXEC ANSI for individual statements in the ANSI mode

% Special Features in SQL Mode ORACLE

o The isolation levels [See SAP DB Library] 0, 1, 2, 3 are permitted in the SQL mode
ORACLE. The default isolation level is 1.

¢ You need to define the appropriate sqlda structures for dynamic SQL statements
Page 37]. They are compatible with the ORACLE sglda structures, but contain
additional internal SAP DB information. Use the appropriate INCLUDE files that are
included automatically when the precompiler runs [Page 61].

=

/*Declaration*/

SQLDA orada;
/*Initialization*/
orada = sqglald (max vars, max name, max_ ind name);

where max_vars indicates the number of parameters, max name the maximum
number of characters in the parameter names, and max_ind name the
maximum number of characters in the indicator names.

e With a few exceptions, the return code [Page 55] sglcode of the database system is
copied from SAP DB (see Messages: SAP DB [See SAP DB Library]).

This table shows the exceptions and the corresponding SAP DB message codes:

ORACLE Message Code SAP DB Message Code

C/C++-Precompiler User Manual SAPDB 74 59

SAP AG April 2003

-1008 Warnung3

-1007 -804

-1034 -813

0 -4000

Warnungl =743

100 1403 ROW NOT FOUND

% Special Features in SQL Mode ANSI

e The isolation levels [See SAP DB Library] 0, 1, 2, 3 are permitted in the SQL mode
ANSI. The default isolation level is 3.

o Dynamic SQL statements [Page 37] in ANSI mode use the SAP DB sqglda structure
that is included automatically when the precompiler runs.

e With a few exceptions, the return code [Page 55] sqglcode of the database system is
copied from SAP DB (see Messages: SAP DB [See SAP DB Library]).

This table shows the exceptions and the corresponding SAP DB message codes:

ANSI Message Code SAP DB Message Code
-250 +250

-300 +300

-320 +320

ANSISTATE 01004 sglwarnl

ANSISTATE 01003 sgqlwarn?2

éj

The warning messages sglwarnl and sqglwarn2 appear in the structure salca

[Page 57].

% Functions of the C/C™" Precompiler

When you run the precompiler [Page 61], the C/C++ precompiler translates the SQL

statements embedded [Page 9] in the application program into calls of procedures of the
precompiler runtime environment [Page 65], and prepares the source code for the C/C++

compiler

The precompiler performs the following tasks:

e Generates the descriptor structure [Page 39] sgqlda

o Generates the structure sqlca for database system messages [Page 55]

¢ Includes the standard header file cpc.h

e Checks the syntax of the embedded SQL statements

o Generates the precompiler log [Page 64] with any error messages and warnings

C/C++-Precompiler User Manual

SAP DB 7.4 60

SAP AG April 2003

Precompiler Option check

If you choose the precompiler option [Page 62] check , the precompiler checks the existence
of the called database tables and columns, as well as the compatibility of the data types and
the access privileges of the users. It does this by sending the embedded SQL statements to
the parser or database kernel. A ROLLBACK [See SAP DB Library] resets the effects of all
SQL statements executed in this way after the precompiler has completed its run.

A

Only the syntax can be checked for statements with components unknown to
the precompiler. These can be, for example, dynamic SQL statements [Page 37]
or CONNECT statements with host variables [Page 15].

The SQL statements are executed in the order in which they appear in the
source code, and not in the logical order of the program statements.

Connecting to a Database

Before it can check the embedded SQL statements (with the check option), the precompiler
must connect to the database instance. The following rules apply:

o If the first static SQL statement of a database session is not a CONNECT statement
Page 34], then all user data of the XUSER user key [See SAP DB Library] DEFAULT
applies.

o If the first static SQL statement of a database session is a CONNECT statement, then
all data is taken from this statement, and any missing data from the XUSER user key
DEFAULT.

¢ In the first database session, you can use appropriate precompiler options to override
all user data.

% Running the Precompiler

To check the source code file <filename>. cpc of your application program with the C/C++
Precompiler [Page 60], and so make it executable, perform the following tasks:

1. Use the following call to start the precompiler and compiler from the command line:
cpc <precompiler options> <filename> <compiler options>
Specify your preferred precompiler options [Page 62] and compiler options. The
precompiler generates a C file <filename>.c ora C++ file<filename>. cpp,
depending on the chosen precompiler options.

2. Translate this file with your C/C++ compiler. The compiler generates an object file.
Depending on your chosen precompiler options, the compiler can be started at the
same time as the precompiler, so that the object file can be generated from your source
code in a single step.

3. Combine this object file with other object files and libraries until you have an executable
program. To do this, call the precompiler linker epclnk with your chosen options [Page
62], or include the precompiler runtime environment 1ibpcrl manually.

éj:

See also Example: Compiling a SAP DB Application Program [Page 65]

C/C++-Precompiler User Manual SAPDB 74 61

SAP AG April 2003

% Call Options for the Precompiler Linker

After running the precompiler [Page 61] and compiling your application program, call the
precompiler linker with the following options:

Options for Microsoft Windows Operating Systems

cpclnk [-<sdkver>] [-BIT32|-BIT64] [-MT|-MD|-SMT] [<link options>]
<file name> [<object archive>]

¢ If you have installed multiple versions of the precompiler software, choose a version
with <sdkver>.

=

For example, enter —=7402, if you have installed Version 7.4.02.

e Use the options -BIT32|-BIT64 and -MT | -MD | -SMT to specify the runtime libraries
that you want the linker to use.

e Specify your linker options in <1ink options>. For information on your linker, see
your operating system documentation.

e Choose a name for the executable program in <file name>.

o Specify the object files in <object archive>. You can also specify the relevant path.
Options for UNIX Operating Systems
cpclnk [-P] [-s] [<link_options>] <file name> [<object_archive>]

e Use option —P to call the C++ linker.

e Use option -s if you want to link the object files statically.

% Precompiler Options

This table shows all the options you can specify when you call the precompiler [Page 61].

-E cansi Generates ANSI C-compatible code
-E cplus Generates C++-compatible code
-BIT32 Generates 32 bit-compatible code

If you do not specify this option, the
precompiler generates 64 bit-compatible
code, if possible.

-m <m_begin,m_end> Defines the valid column range in which
the precompiler interprets source code

If you do not specify this option, the
following defaults apply:

m _begin = 1

m_end = 132

-e Generates a program module that can be
combined with other modules

Only translate the main module without
this option, all other modules must be
compiled with this option.

-H <check_option> Sets the chosen check option for the

C/C++-Precompiler User Manual SAPDB 74 62

SAP AG

April 2003

<check_option> =
nocheck | syntax|check

precompiler

nocheck: the precompiler checks only the
syntax of the exec sgl commands for the
embedded SQL statements

syntax: the precompiler also checks the
syntax of the database statements
themselves

check: the precompiler also checks the
existence of the called database tables and
columns, their compatibility with the data
types of the corresponding host variables
[Page 15], and the access privileges of the
specified database user

If you do not specify a check option, the
precompiler uses check automatically.

-b <maxpacketsize>

Restricts the size of the request buffer for
SQL statements when the precompiler
runs

The default when the precompiler runs is
<maxpacketsize> = 16000

At runtime of the application program, the
request buffer is restricted by the support
database parameter [See SAP DB Library]
_PACKAGE_SIZE of the database
instance that is being addressed.

-G unicode

Specifies that the generic precompiler data
types, such as TCHAR and LPSTR, are
converted to UNICODE data types such as
WCHAR and LPWSTR

At the same time, the precompiler
integrates the macro
SAPDB_WITH_UNICODE with the source
code.

If you do not specify this option, then the
generic data types are converted to ANSI
data types (CHAR, CHAR®).

Suppresses the screen output of
precompiler messages

-w

Suppresses the output of any precompiler
warnings

Specifies that the embedded SQL
statements are copied to the source code
generated by the precompiler as
comments

Specifies that the precompiler writes the
embedded SQL statements and their error
messages to the precompiler log [Page 64]

Prevents the compiler from being called
automatically after the precompiler has run
successfully

However, the source file for the compiler is

C/C++-Precompiler User Manual

SAP DB 7.4 63

SAP AG April 2003
retained.

-T Sets the default TRACE SHORT for the
trace option [Page 66]

-X Sets the default TRACE LONG for the

trace option [Page 66]

-F <trace_file name>

Sets the default for the name of the trace
file (see Trace Options [Page 66])

-n <server_na.me>

Overrides the database server specified in
the SET SERVERDB statement [Page 33]
or CONNECT statement [Page 34] for the
first database session

-d <database_name>

Overrides the database instance specified
in the SET SERVERDB statement or
CONNECT statement for the first database
session

-u <user_name>,<password>

Overrides the user name and password
specified in the CONNECT statement of
the first database session

-U <user_key>

Overrides the KEY specified in the
CONNECT statement for the first database
session

-S <sql_mode>

<sql _mode> = internal|ansi|oracle

Defines the SQL mode [See SAP DB
Library] for your application program

If you do not specify an SQL mode, the
precompiler uses the INTERNAL mode
automatically.

-D <datetimeformat>

<datetimeformat> =
eur|iso|jis|usal|internal

Defines the date and time format [See SAP
DB Library] used in the application
program

If you do not specify a format, the
precompiler uses the INTERNAL format
automatically.

-v Displays the precompiler version
-<sdkver> Specifies the version of the precompiler
software
P
[
For example, enter -7402, if
you have installed Version
7.4.02.
-h Displays all call options for the precompiler

and precompiler runtime environment

% Precompiler Log

When the precompiler runs [Page 61], the C/C++ precompiler writes a log file
<filename>.pcl. Depending on the specified precompiler options [Page 62], this file can
contain the source code, warnings, and error messages from the precompiler.

C/C++-Precompiler User Manual

SAP DB 7.4 64

SAP AG April 2003

If errors occur before the precompiler can generate the log file, then they are logged in the file
sglerror.pcl.

E? Example: Compiling a SAP DB Application
Program

You have written a source code file test.cpc.
Use the command cpc -d DB -u Jones, secret test

to generate the file test . o. This uses the database instance DB with the user Jones and the
password secret.

Use the command cpclnk test
to link the file with the runtime library and generate an executable program.

If you want a trace file to be written when the test program is executed, set the environment
variable SQLOPT to -X. The corresponding command in a Bash shell is as follows:

export SQLOPT=-X

The trace file test.pct is written when the test program is executed. This file is located in
the same directory as the test program.

&
To test the newly installed precompiler, you can use the SAP DB test database
at http://www.sapdb.org.

After you install the package (5 KB), you have a database called TST, and the
user TEST with the password TEST.

Example of the call for compiling the file test.cpc:
cpc -d TST -u TEST,TEST test

% Functions of the Precompiler Runtime
Environment

The precompiler runtime environment performs the following functions at runtime of the
application program:

e Connecting to the databases and opening database session as specified in the
connection options [Page 66]

e Assigning parameter values

e Converting data types [Page 25]

o Executing precompiler statements

e Using indicator variables [Page 18] to denote NULL values (undefined values)

o Writing database system messages [Page 55] in the structure sqlca

o Writing the trace file as specified in the trace options [Page 66]

é]

See also the example: Executing a SAP DB Application Program [Page 69]

C/C++-Precompiler User Manual SAPDB 74 65

http://www.sapdb.org/

SAP AG April 2003

You can use the IRCONF [Page 70] tool to administer the installed versions of
the runtime library of the interface programs, including the precompiler.

% Connection Options at Runtime

The table shows you all options that you can set for the precompiler runtime environment
[Page 65] in the environment variable SQL.OPT when you connect to the database instance.

The options—u, -U, -t and -1 are then valid for all database connections of the application
program for which you have specified the key <key> DEFAULT or SQLOPT in the CONNECT
statement [Page 34].

The options —n and —d apply to all database connections and override the settings specified
in the CONNECT or SET SERVERDB statement [Page 33].

&
For information on setting the environment variable, see your operating system
documentation.

-n <server_name> Name of the database server

-d <database name> Name of the database instance

-U <user_key> XUSER user key [See SAP DB Library]

-t <timeout> Timeout value [See SAP DB Library] in
seconds

If the default -1 is specified, then the
precompiler runtime environment uses the
timeout value specified in the database
parameter SESSION_TIMEOUT [See SAP

DB Library].

-I <isolation_level> Isolation level [See SAP DB Library]

If no isolation level is specified, the
precompiler runtime environment uses level
10 automatically.

% Trace Options

Use

You can use the trace options to specify that the precompiler runtime environment [Page 65]
logs the execution of the entire application program in the trace file <filename>.pct at

runtime.
é}

If you want to log individual embedded SQL statements [Page 9] only, then use
the TRACE statements [Page 55].

You can use the IRTRACE [Page 68] tool to activate and deactivate the trace at
runtime.

C/C++-Precompiler User Manual SAPDB 74 66

SAP AG April 2003

Procedure

o Specify your chosen default for the trace option in the precompiler options [Page 62]
when you run the precompiler [Page 61].

e Set your chosen trace option for runtime in the environment variable SQLOPT.

The following table shows the possible trace options that you can specify when running the
precompiler and calling the application program.

-T Logs with the option TRACE SHORT

Every executed SQL statements is logged,
including the messages sglcode und
sqlerrd[2].

-X Logs with the option TRACE LONG

Every executed SQL statements is logged,
including the messages sqglcode und
sglerrd[2] and all parameter values.

-F <trace_file name> Allows you to choose a name other than
<filename>.pct for the trace file

If you do not specify any other trace options,
then the option TRACE SHORT is activated at
the same time.

If you specify pid or PID for

<trace_file name>, then the name of the
trace file becomes pid<process id>.pct
automatically. In this way, you can generate
multiple trace files in parallel. If you do not
specify any other trace options, then logging is
deactivated at the same time.

The following table shows the possible trace options that you can specify only when you call
the application program:

-N Suppresses the logging of the date and
time for the start and end of each
executed SQL statement

-L <execution_time> Specifies that any SQL statements that take
longer to execute than <execution_time>
are logged

Specify <execution_time> in seconds.

The log option TRACE LONG is used
automatically. Dates and times cannot
be suppressed with —N.

-Y <statement count> Specifies that logging alternates between the
two trace files <filename>.pct and
<filename>.prot in the run directory of the
application program.

Use <statement_count> to specify how
many SQL statements are logged in each file.
If the number of SQL statements exceeds
<statement_ count> then the trace files are
overwritten cyclically.

C/C++-Precompiler User Manual SAPDB 74 67

SAP AG April 2003

If you specify this option, then the option
TRACE LONG is used automatically. Dates
and times cannot be suppressed with —N.

é]

See also Example of a Trace File [Page 69]

% Using IRTRACE

IRTRACE is a tool for changing the trace settings [Page 68] and displaying the current trace
setting [Page 68] of the precompiler runtime environment [Page 65] for a SAP DB application
program translated with the C/C++ precompiler.

To do this, you enter commands at the operating system level. IRTRACE and the application
program communicate through a shared memory segment.

If you use IRTRACE to change trace settings, the system makes an entry in the shared
memory segment. The application program checks the entries in the shared memory at
regular intervals, and changes its trace setting accordingly. The assignment of an application
program to the correct entry in the shared memory is made using the process ID of the
application program. The entry remains in the shared memory for as long as the
corresponding process is active, and can be queried.

When a shared memory segment is being used, the system creates the synchronization file
irtrace.shm, which the processes of the application program and IRTRACE use to access
the shared memory. The system creates this release-independent file in the directory
/opt/sapdb/indep prog/wrk. In the installation, the system registers the path
/opt/sapdb/indep prog and creates the subdirectory wrk. The system also gives read
and write rights to the IRTRACE tool and the application program.

% Displaying the Current Trace Setting
Use the IRTRACE [Page 68] tool to display the current trace setting.

To do this, enter the following commands:

o Display the current trace setting for the application program:

irtrace -p <process_id>

o Display overview of trace settings for all application programs where changes have
been made with IRTRACE:

irtrace -p all

% Changing the Trace Setting

You can use the IRTRACE [Page 68] tool to change the current trace setting.

o Activating/deactivating/switching the trace for a specified process:
irtrace -p <process_id> -t <trace_setting>

o Activating or deactivating the trace for all application programs on the local server that
have been translated by the precompiler.
irtrace -p all -t <trace_setting>

This table shows the possible values for <t race_set ti ng>:

<long> Activates logging with option TRACE LONG

C/C++-Precompiler User Manual SAPDB 74 68

SAP AG April 2003

<short> Activates logging with option TRACE SHORT

<off> Deactivates trace

é]

See also: Trace Options [Page 66].

= Example of a Trace File

PREPARE

select name, price into ?, ? from hotel where hno=?

SQL STATEMENT : FROM MODULE : docu07 AT LINE : 80
Statement Name : STMT2

PARSEID: OUTPUT: 00000347 00000901 3D001400

START : DATE : 2001-11-02 TIME : 0015:40:00
END : DATE : 2001-11-02 TIME : 0015:40:00
SQL STATEMENT : FROM MODULE : docuO7 AT LINE : 80

Statement Name : STMT2
PARSEID: INPUT : 00000347 00000901 3D001400

INPUT : 3: hno : 10
OUTPUT: 1: name : Excelsior

OUTPUT: 2: price : 135.00
SQLERRD (INDEX 3) : 1

START : DATE : 2001-11-02 TIME : 0015:40:00

END : DATE : 2001-11-02 TIME : 0015:40:00

E? Example: Executing an Application Program

You want to execute an application program, test, that you have translated with the C/C++
Precompiler.

If you want a trace file to be written when the test program is executed, set the environment
variable SQLOPT to -X. The corresponding command in a Bash shell is as follows:

export SQLOPT=-X

The trace file test.pct is written when the test program is executed. This file is located in
the same directory as the test program.

&
To test the newly installed precompiler, you can use the SAP DB test database
at http://www.sapdb.org.

After you install the package (5 KB), you have a database instance called TST,
and the user TEST with the password TEST.

In a Bash shell you can, for example, execute the following command:
export SQLOPT="-d TST -u TEST,TEST"

C/C++-Precompiler User Manual SAPDB 74 69

http://www.sapdb.org/

SAP AG April 2003

The result of this is that your application program uses, at runtime, the database instance TST
and the user TEST with the password TEST.

% Return Codes

The precompiler [Page 60] returns the following return codes:

0 Precompiler and compiler ran without errors

1 Precompiler ran with errors

2 Precompiler ran without errors; compiler ran with errors
3-120 Number of precompiler errors

126 Error in precompiler data management

127 Precompiler called; compiler not yet called

The SAP DB application program returns the following return codes:

1 No error

2 Error when reading the XUSER file [See SAP DB Library]

3 Database instance is not in the operational state [See SAP DB Library]
ONLINE

Too many database sessions

Unknown combination of user name and password

Application program ended with WHENEVER STOP statement [Page 51]

SQLOPT contains incorrect options

Error when opening or writing to the trace file [Page 66]

O o N|O| L, | D>

Internal data structures inconsistent (system error)

% Using the IRCONF Tool

For connections and communication between the database server and the client, the runtime
library of the interface programs (such as the precompiler and ODBC) must be installed on
the client.

You can update this part of the client software. So that you can continue to use and
administer any older applications, the various versions of the runtime library of the interface
programs are installed in different directories. The registrations in the system perform these
installations automatically.

IRCONF is a tool that you can use to register and display the installed versions of the runtime
library of the interface programs at a later time. You do this by entering commands at the
operating system level, with your choice of options [Page 71].

C/C++-Precompiler User Manual SAPDB 74 70

SAP AG April 2003

% Options for IRCONF

The following options are available when you use the IRCONF [Page 70] tool:

Specifying the installation path [Page 71] -p <path>
Displaying registered versions of the runtime library [Page 72] =S

Deleting the registration of the runtime library [Page 72] r

Overriding the driver name [Page 72] -d <CPC_driver>
Registering the version of the runtime library [Page 73] -i

Overriding the version check [Page 73] -v <version>
Specifying an additional key [Page 74] -k <key>
Displaying options and help [Page 74] -h

@! Specifying the Installation Path: -p

Use

Use the option —p to define the installation path. You only need to specify the root directory
here.

After the installation, the runtime library of the interface programs is in a subdirectory of the
root directory:

e Windows NT: .\ pgm
o UNIX(32bit):./lib

The installation saves the runtime library of the interface programs for 64 bit UNIX operating
systems in the subdirectory ./1ib/1ib64.

You can link the option -p with the options -i (Reqistering the Version of the Runtime Library
[Page 73]) and/or -v (Overriding the Version [Page 73]).

C/C++-Precompiler User Manual SAPDB 74 71

SAP AG April 2003

% Displaying Registered Versions of the Runtime
Library: -s

Use

Use the option -s to display the registered versions of the runtime library of the interface
programs on the client.

Syntax

irconf -s

Result
You see the paths and versions of the installed runtime library of the interface programs.

=

/ opt/ sapdb/interfaces/preconpil er/runtime/7300 -> 7.3.00.00
/ opt/ sapdb/interfaces/preconpil er/runtime/7401 -> 7.4.01.00

% Deleting the Registration of the Runtime Library: -r

Use

Use the option —r to delete the registration of a runtime library of the interface programs on
the client. Specify the path in which the client installation is located.

Syntax
irconf -r -p <path>

7

irconf -r -p /opt/sapdb/interfaces/precompiler/runtime/7.2
Result

You see a message about the deletion of the registration, including the path and the version
of the runtime library of the interface programs.

=

/opt/sapdb/interfaces/precompiler/runtime/7401 -> 7.4.01.00
registration removed

% Overriding the Driver Name: -d

Use

The driver name is used for finding out versions information about the runtime libraries of the
interface programs. The default is 1ibpcr.

=

The option -d <CPC_driver> is needed for support purposes only.

C/C++-Precompiler User Manual SAPDB 74 72

SAP AG April 2003

Syntax
irconf -i -d <CPC_driver>
&
=

irconf -i -d <libpcr.old>

@! Registering the Version of the Runtime Library: -i

Use

Use the option —1i to register a version of the runtime library of the interface programs on the
client. Use the option -p <path> to specify the path under which this version of the runtime
library has been installed.

During registration, the version of the runtime library of the interface programs (Windows NT:
i bpcr.dll,UNIX:Iibpcr.soorlibpcr.sl)ischecked, and the version found by the
system is registered. In special cases, you may need to avoid this version check (Overriding
the Version: -v [Page 73]).

Syntax
irconf -i -p <path>
P
[
irconf -i -p /opt/sapdb/interfaces/precompiler
/runtime/7401
Result

You see a message about the successful registration, including the path and the version of
the installed runtime library of the interface programs.

=

/opt/sapdb/interfaces/precompiler /runtime/7401 ->
7.4.01.00 registered

% Overriding the Version Check: -v

Use

The IRCONF [Page 70] tool attempts to determine the version of the installed runtime library
of the interface programs. In special cases, you can use the option -v to override this feature.
You can specify this option when you register the version of a runtime library, and then save
the version under a version string of your choice.

=

You want to register a 64 bit version of the runtime library of the interface
programs with a 32 bit version of IRCONF. The 32 bit version of IRCONF cannot
determine the version of the 64 bit software, and you need to override the
feature that determines the version.

C/C++-Precompiler User Manual SAPDB 74 73

SAP AG April 2003

=

In a special support scenario, you need to register the version of the runtime
library under another name, and you need to override the feature that
determines the version.

Syntax
irconf -i -v <version> -p <path>
Result
You see which version is installed under the specified path.
P
=

/usr/sapdb-if/runtime/7401 -> 7.4.01.00

% Specifying an Additional Key: -k

Use

The registration procedure does not permit two identical versions of the runtime library of the
interface programs to be determined uniquely on one server (in different directories). This can
be the case if the test system and the production system are both installed on the same
server, but the binaries come from different directories.

In this case, use the option =k to name and retrieve the versions. Set the environment
variable SAPDBINSTKEY to the value specified in <key>, so that the applications can use the
version registered in this key.

Syntax
irconf -i -p <path> -k <key>
o
=

irconf -i -p /opt/sapdb/interfaces/precompiler/runtime/7401
-k db _instance name

Result
You see under which path the version specified in <key> was registered.
[
[

/opt/sapdb/interfaces/precompiler/runtime/7401 -> 7.4.01.00
db_instance name

% Displaying Options and Help: -h
Use

You can use this option to display a summary of all options possible with IRCONF [Page 70].

Syntax

irconf -h

C/C++-Precompiler User Manual SAPDB 74 74

SAP AG April 2003

Result

You see the following output:

Usage : irconf -i[-v | -d | -p | -k] | -r -p | -s | -h
Options:

-1 Registers a version

-r Unregisters a version

-s Displays all installed versions

-v <version> Overrides version number identified by the system
-d <CPC driver> Default is 'libpcr'

-p <path> Installation path

-k <key> Installation name

-h Displays help

% IRCONF Error Messages

IRCONF can write the following error messages:

e TInvalid option

An invalid option [Page 71] was specified when IRCONF was called.
e TInvalid combination of options

e Missing CPC Driver name
Option -d specified without arguments.

e Missing path name
Option -p specified without arguments.

e Missing installation name
Option -k specified without arguments.

e Missing version number
Option -v specified without arguments.

e Cannot get version info of CPC Driver
The version of the runtime library of the interface programs on the client cannot be
found.

e The specified driver does not exist
The specified driver does not exist or cannot be loaded.

e Cannot find any installed version of CPC Driver
No installations of the runtime library of the interface programs are registered.

e The specified installation does not exist

% Syntax List

This syntax list shows you the syntax of all precompiler statements. The syntax notation [See
SAP DB Library] used is BNF.

C/C++-Precompiler User Manual SAPDB 74 75

SAP AG

April 2003

é]

For the syntax of the database statements in the SQL mode INTERNAL, see the

Reference Manual: SAP DB [See SAP DB Library].

as_clause [Page 78]

array _statement [Page 78]

cancel session [Page 78]

cancel_statement [Page 78]

c_function [Page 78]

char_host _var [Page 79]

close_statement [Page 79]

command [Page 79]

connect_option [Page 79]

connect_statement [Page 79]

connect_statement_internal [Page 79]

connect_statement oracle [Page 80]

cursor_name [Page 80]

database name [Page 80]

database_server [Page 80]

dbproc_clause [Page 80]

dbproc_name [Page 80]
ddl_statement [Page 81]

declare_clause [Page 81]

declare_cursor_statement [Page 81]

declare_statement [Page 81]

describe_statement [Page 82]

descriptor_name [Page 82]

dml_statement [Page 82]

dyna_parameter [Page 82]

dyna parameter list [Page 82]

embedded sql_statement [Page 82]

exec_command_statement [Page 83]

execute _immediate statement [Page 83]

execute statement [Page 83]

fetch_spec [Page 83]

fetch_statement [Page 83]
file_host var [Page 83]
file_name [Page 84]

float_host var [Page 84]

for_clause [Page 84]

getval_statement [Page 84]

C/C++-Precompiler User Manual SAPDB 74

76

SAP AG

April 2003

host variable [Page 84]

hostvarprefix [Page 84]

include declare statement [Page 84]

include file statement [Page 85]

include salca_statement [Page 85]

include statement [Page 85]

ind_clause [Page 85]

indicator_marker [Page 85]

indicator_variable [Page 85]

ind_variable declarator [Page 85]
int_host var [Page 86]

key [Page 86]

label [Page 86]

loop parameter [Page 86]

open_cursor_statement [Page 86]

0s_command [Page 86]

os_command_async [Page 87]

0s_command_sync [Page 87]

parameter [Page 87]

parameter_list [Page 87]

parameter _marker [Page 87]

precom_version [Page 87]

prepare_statement [Page 87]

putval_statement [Page 88]

result_param [Page 88]

rte_version [Page 88]

session_name [Page 88]

session_number [Page 88]

session_spec [Page 88]

set_serverdb_statement [Page 88]

sqlda_variable [Page 89]

statement_name [Page 89]

statement_source [Page 89]

string_constant [Page 89]

structure_tag [Page 89]

table clause [Page 89]

trace_line [Page 89]

trace_state [Page 90]

trace_statement [Page 90]

type declarator [Page 90]

C/C++-Precompiler User Manual SAPDB 74

77

SAP AG

April 2003

uidpwd [Page 90]

unichar_host_var [Page 90]

using_clause [Page 90]

using_expr [Page 90]

variable declarator [Page 91]

variable _name [Page 91]

version_statement [Page 91]

whenever_action [Page 91]

whenever_condition [Page 91]

whenever_statement [Page 91]

& as_clause

<as_clause> ::=

AS VAR [<variable declarator [Page 91]>]
| AS TYPE [<type declarator [Page 90]>]
| AS STRUCT [<structure tag [Page 89]>]

il array_statement

<array_statement [Page 48]> ::=

[<for_clause [Page 84]>] <dml_statement [Page 82]>

il cancel_session

<cancel session> ::=
<session_number [Page 88]>

| <session name [Page 88]>

| CURRENT

il cancel_statement

<cancel_statement [Page 54]> ::=

EXEC SQL CANCEL [<cancel_session [Page 78]>];

il c_function

<c_function> ::=
<simple identifier [See SAP DB Library]>

C/C++-Precompiler User Manual SAPDB 74

78

SAP AG April 2003

il char_host_var

<char_host var [Page 15]> ::=
<hostvarprefix> <identifier [See SAP DB Library]>

(for variables of type chardecspec only)

il close_statement

<close statement> ::=
CLOSE [<cursor_name [Page 80]>]

& command

<command> ::=
<string_constant [Page 89]>

| <char host var [Page 79]>

| <unichar_host var [Page 90]>

il connect_option

<connect option> ::=
[ISOLATION LEVEL <unsigned integer [See SAP DB Library]>] [TIMEOUT
<unsigned integer [See SAP DB Library]>1]

il connect_statement

<connect statement [Page 34]> ::=
<connect_statement_internal [Page 79]>
| <connect statement oracle [Page 80]>

il connect_statement_internal

<connect_statement internal [Page 34]> ::=
EXEC SQL [<session _number [Page 88]>]
CONNECT [<user _name [See SAP DB Library]> IDENTIFIED BY <password [See SAP

DB Library]> | <uidpwd [Page 90]>]
[<connect option [Page 79]>...]1 [KEY <key [Page 86]>];

C/C++-Precompiler User Manual SAPDB 74 79

SAP AG April 2003

il connect_statement_oracle

<connect_statement oracle [Page 35]> ::=
EXEC SQL
CONNECT [<user name [See SAP DB Library]> IDENTIFIED BY <password [See SAP

DB Library]> | <uidpwd [Page 90]>]

AT <session_name [Page 88]> USING <database server [Page 80]-database name

[Page 80]>
[<connect option [Page 79]>...] [KEY <key [Page 86]>];

% cursor_name

<cursor7name> s i=

<result table name [See SAP DB Library]>
| <char host var [Page 79]>
| <unichar_host var [Page 90]>

il database name

<database name> ::=
<string_constant [Page 89]>
| <char_host var [Page 79]>

il database_server

<database server> ::=
<string_constant [Page 89]>
| <char_host var [Page 79]>

il dbproc_clause

<dbproc clause> ::=
DBPROC <dbproc name [Page 80]>

il dbproc_name

<dbproc name> ::=
[<owner [See SAP DB Library]>.] <procedure name [See SAP DB Library]>
[(<parameter_list [Page 87]>)]

C/C++-Precompiler User Manual SAPDB 74 80

SAP AG April 2003

il ddl_statement

<ddl statement> ::=

<create table statement [See SAP DB Library]>
<drop table statement [See SAP DB Library]>
<alter table statement [See SAP DB Library]>
<rename_table statement [See SAP DB Library]>
<rename_column_statement [See SAP DB Library]>
<exists table statement [See SAP DB Library]>
<create _domain_statement [See SAP DB Library]>
<drop _domain_statement [See SAP DB Library]>
<create_sequence_statement [See SAP DB Library]>
<drop_sequence_statement [See SAP DB Library]>
<create _synonym statement [See SAP DB Library]>
<drop_synonym_statement [See SAP DB Library]>
<rename_synonym _statement [See SAP DB Library]>
<create view statement [See SAP DB Library]>
<drop view_statement [See SAP DB Library]>
<rename_view_statement [See SAP DB Library]>
<create_index_statement [See SAP DB Library]>
<drop_index_statement [See SAP DB Library]>
<alter_index_statement [See SAP DB Library]>
<rename_index_statement [See SAP DB Library]>
<comment _on_statement [See SAP DB Library]>
<create trigger statement [See SAP DB Library]>
<drop_trigger statement [See SAP DB Library]>
<create dbproc_statement [See SAP DB Library]>
<drop dbproc_statement [See SAP DB Library]>

& declare_clause

<declare clause> ::=
<table_clause [Page 89]>
| <dbproc_clause [Page 80]>

& declare_cursor_statement

<declare cursor statement> ::=
EXEC SQL [<session spec [Page 88]>]
DECLARE <cursor_name [Page 80]> CURSOR FOR <statement source [Page 89]>;

& declare_statement

<declare_statement [Page 32]> ::=
EXEC SQL BEGIN DECLARE SECTION;
| EXEC SQL END DECLARE SECTION;

C/C++-Precompiler User Manual SAPDB 74 81

SAP AG April 2003

il describe_statement

<describe _statement [Page 45]> ::=
EXEC SQL [<session_spec [Page 88]>] DESCRIBE <statement name [Page 89]>
[INTO <descriptor name [Page 82]> [<using clause [Page 90]>]1;

&l descriptor_name

<descriptor name> ::=
<sqlda_variable [Page 89]>

il dml_statement

<dml_ statement> ::=

<select statement [See SAP DB Library]>
| <select into statement> (nur SQL-Modus ORACLE)
| <insert_statement [See SAP DB Library]>
| <update statement [See SAP DB Library]>
| <delete statement [See SAP DB Library]>
| <close_ statement [Page 79]>
\
\
\
\

<putval statement [Page 88]>

<getval statement [Page 84]>
<call_statement [See SAP DB Library]>
<explain_statement [See SAP DB Library]>

il dyna_parameter

<dyna parameter> ::=
<parameter_marker [Page 87]> [<indicator marker [Page 85]>]

il dyna_parameter_list

<dyna parameter list> ::=
<dyna_parameter [Page 82], .. .>

il embedded_sql_statement

<embedded sal statement [Page 30]> ::=
EXEC SQL [<session_spec [Page 88]>]

| <ddl_statement [Page 81]>;

| <dml_statement [Page 82]>;

<array_statement [Page 78]>;

C/C++-Precompiler User Manual SAPDB 74

82

SAP AG April 2003

il exec_command_statement

<exec_command_statement [Page 54]> ::=
EXEC COMMAND <o0s command [Page 86]>;

il execute_immediate_statement

<execute immediate statement [Page 37]> ::=
EXEC SQL [<session_spec [Page 88]>] EXECUTE IMMEDIATE <statement source

[Page 89]>;

il execute_statement

<execute statement [Page 46]> ::=
EXEC SQL [<session spec [Page 88]>] [<for_clause [Page 84]>]
EXECUTE <statement name [Page 89]> [<using_ clause [Page 90]>1];

& fetch_spec

<fetch spec> ::=

FIRST

LAST

NEXT

PREV

SAME

POS (<unsigned integer [See SAP DB Library]>)
POS (<int_host var [Page 86]>)

il fetch_statement

<fetch statement> ::=

EXEC SQL [<session spec [Page 88]>] [<for_clause [Page 84]>]

FETCH [<fetch spec [Page 83]>] [<cursor name [Page 80]>] <using_clause [Page
90]>;

il file_host_var

<file host var> ::=
<hostvarprefix [Page 84]><identifier [See SAP DB Library]>

(nur fir Variablen vom Typ vfldecspec erlaubt)

C/C++-Precompiler User Manual SAPDB 74 83

SAP AG April 2003

il file_name

<file name> ::=
<string_constant [Page 89]>

il float_host_var

<float host var> ::=
<hostvarprefix [Page 84]><identifier [See SAP DB Library]>

(for variables of type flpdecspec only)

il for_clause

<for clause> ::=
FOR <|oop parameter [Page 86]>

&l getval_statement

<getval_statement [Page 50]> ::=
GETVAL INTO (<parameter list [Page 87]>)

(For LONG columns only)

il host_variable

<host variable [Page 15]> ::=
<char_host_var [Page 79]>

| <unichar_host var [Page 90]>

| <int_host var [Page 86]>

| <float_host var [Page 84]>

&l hostvarprefix

<hostvarprefix> ::=

il include_declare_statement

<include declare statement [Page 32]> ::=
EXEC SQL INCLUDE <file_name [Page 84]> <declare clause [Page 81]>
[<as_clause [Page 78]>] [<ind_clause [Page 85]>] ;

C/C++-Precompiler User Manual SAPDB 74 84

SAP AG

April 2003

&l include_file_statement

<include file statement [Page 49]> ::=
EXEC SQL INCLUDE <file name [Page 84]>;

il include_sqlca_statement

<include sqglca statement> ::=
EXEC SQL INCLUDE SQLCA;

il include_statement

<include statement> ::=
<include sqlca_statement [Page 85]>
| <include file statement [Page 85]>
| <include declare statement [Page 32]>

& ind_clause

<ind clause> ::=

IND [<ind variable declarator [Page 85]>] [<structure tag [Page 89]>]

il indicator_marker

<indicator marker> ::=
?

il indicator_variable

<indicator variable [Page 18]> ::=
<int_host var [Page 86]>

&l ind_variable_declarator

<ind variable declarator> ::=
<simple identifier [See SAP DB Library]>

C/C++-Precompiler User Manual SAPDB 74

85

SAP AG April 2003

il int_host_var

<int host var> ::=
<hostvarprefix [Page 84]><identifier [See SAP DB Library]>

(for variables of type intdecspec only)

& ey

<key> :: =
<simple identifier [See SAP DB Library]>

&0 |apel

<label> :: =
<identifier [See SAP DB Library]>

il loop_parameter

<loop parameter> ::=
<unsigned integer [See SAP DB Library]>
| <int _host var [Page 86]>

il open_cursor_statement

<open_cursor_statement [Page 46]> ::=
EXEC SQL [<session_spec [Page 88]>] [<for_clause [Page 84]>] OPEN
<cursor_name [Page 80]>
[USING <parameter_list [Page 87]>
| USING DESCRIPTOR [<descriptor name [Page 82]>] [KEEP]
| INTO <parameter list [Page 87]>]
| INTO DESCRIPTOR [<descriptor nhame [Page 82]>] [KEEP]];

il os_command

<os_command> ::=
<0s_command_async [Page 87]>
| <os_command_sync [Page 87]>

C/C++-Precompiler User Manual SAPDB 74 86

SAP AG

April 2003

il os_command_async

<os_ command async> ::=
ASYNC <0s_command [Page 86]>

il os_command_sync

<os_command sync> ::=
SYNC <os_command [Page 86]> RESULT <result param [Page 88]>

il parameter

<parameter> ::=
<host variable [Page 84]> [<indicator variable [Page 85]>]

il parameter_list

<parameter list> ::=
<parameter [Page 87], ...>

il parameter_marker

<parameter marker> ::=
?

il precom_version

<precom version> ::=
<char_host_var [Page 79]>

il prepare_statement

<prepare_statement [Page 45]> ::=

EXEC SQL [<session spec [Page 88]>] PREPARE <statement name [Page 89]>

[INTO <descriptor name [Page 82]> [USING <using_clause [Page 90]>]]

FROM <statement source [Page 89]>;

C/C++-Precompiler User Manual SAPDB 74

87

SAP AG April 2003

il putval_statement

<putval_statement [Page 49]> ::=
PUTVAL INTO <table name [See SAP DB Library]> [(<column_name [See SAP DB

Library]>, .. .)]

VALUES (<parameter list [Page 87]>)

(For LONG columns only)

il result_param

<result param> ::=
<int_host var [Page 86]>

il rte_version

<rte version> ::=
<char_host_var [Page 79]>

&l session_name

<session name> ::=
<string_constant [Page 89]>
| <char_host var [Page 79]>

&l session_number

<session number> ::=
11213141516171819

& session_spec

<session spec> ::=
<session_number [Page 88]> (SQL-Modus Internal)
| AT <session _name [Page 88]> (SQL-Modus ORACLE)

il set_serverdb_statement

<set serverdb statement [Page 33]> ::=
EXEC SQL [<session number [Page 88]>]
SET SERVERDB <database name [Page 80]> [ON <database_server [Page 80]>1] ;

C/C++-Precompiler User Manual SAPDB 74 88

SAP AG

April 2003

il sqglda_variable

<sglda variable> ::=
<simple _identifier [See SAP DB Library]>

&l statement_name

<statement name> ::=
<string_constant [Page 89]>

| <char _host var [Page 79]>

| <unichar_host var [Page 90]>

il statement_source

<statement source> ::=
‘<dml_statement [Page 82]>'

| ‘<ddl_statement [Page 81]>"

| <statement name [Page 89]>

& string_constant

<string constant> ::=
“<simple identifier [See SAP DB Library]>"
| ‘<simple identifier [See SAP DB Library]>’

il structure_tag

<structure tag> ::=
<simple _identifier [See SAP DB Library]>

il table_clause

<table clause> ::=
TABLE <table name [See SAP DB Library]>

il trace_line

<trace line> ::=
<string_constant [Page 89]>
| <char host var [Page 79]>

C/C++-Precompiler User Manual SAPDB 74

89

SAP AG

April 2003

il trace_state

<trace state> ::=
TRACE ON
| TRACE LONG
| TRACE OFF
| TRACE LINE <trace line [Page 89]>

il trace_statement

<trace_statement> ::=
EXEC SQL SET TRACE <frace_state [Page 90]>;

il type_declarator

<type declarator> ::=
<simple _identifier [See SAP DB Library]>

&P yidpwd

<uidpwd> ::=
<user_name [See SAP DB Library]>/<password [See SAP DB Library]>

il unichar_host_var

<unichar host var> ::=
<hostvarprefix [Page 84]><identifier [See SAP DB Library]>

(for variables of type unichardecspec only)

& using_clause

<using clause [Page 47]> ::=
USING <using expr [Page 90]>
| INTO <using expr[Page 90]>

il using_expr

<using expr> ::=
<parameter _list [Page 87]>
| DESCRIPTOR [<descriptor name [Page 82]>]

C/C++-Precompiler User Manual SAPDB 74

90

SAP AG April 2003

il variable declarator

<variable declarator> ::=
<simple _identifier [See SAP DB Library]>

il variable_name

<variable name> ::=

<simple_identifier [See SAP DB Library]>

il version_statement

<version statement> ::=
EXEC SQL VERSION <rte version [Page 88]>, <precom_version [Page 87]>;

il whenever_action

<whenever action> ::=
CALL <c function [Page 78]>
| CONTINUE

| GOTO <label [Page 86]>

| STOP

il whenever_condition

<whenever condition> ::=
SQLWARNING

| SQLERROR

| SQLEXCEPTION

| NOT FOUND

| SQLBEGIN

| SQLEND

il whenever_statement

<whenever_ statement [Page 511> ::=
EXEC SQL WHENEVER <whenever condition [Page 91]> <whenever action [Page 91]>;

C/C++-Precompiler User Manual SAPDB 74 9

	C/C++ Precompiler User Manual: SAP DB 7.4
	Embedding SQL Statements in C/C++
	General Rules
	Conventions for the Order of SQL Statements
	Rules for the Declare Section
	Syntax of the Declare Section
	Host Variables
	Conventions for Host Variables
	Structures as Host Variables
	Arrays as Host Variables
	Simplified Notation for Structure and Array Variables
	Indicator Variables
	Rules for Indicator Variables
	Indicator Values
	Permitted Data Types
	Basic Data Types
	Predefined Data Types
	VARCHAR
	Examples for Permitted VARCHAR Declarations
	SQLFILE
	SQLLongDesc
	Special Features when Using Data Type SQLLongDesc
	UNICODE Data Types
	Converting Data Types
	Generating Structure Definitions
	Working with UNICODE Data
	Working with LONG Columns
	Transferring NULL Values to the Database Instance
	Transferring DEFAULT Values to the Database Instance
	Connecting to a Database Instance
	Overview of Precompiler Statements
	Working with Multiple Database Sessions
	DECLARE Statements
	INCLUDE DECLARE Statement
	Statements for Connecting to the Database Instance
	SET SERVERDB Statement
	CONNECT Statement
	CONNECT Statement in the SQL Mode INTERNAL
	CONNECT Statement in the SQL Mode ORACLE
	Static SQL Statements
	Static SQL Statement Without Parameters
	Static SQL Statement with Parameters
	Dynamic SQL Statements
	Dynamic SQL Statements Without Parameters
	Dynamic SQL Statements with Parameters
	Using the Descriptor
	Structure of the Descriptor
	sqlvar [i] Entries in the Descriptor
	SAP DB Data Types in sqlvar Entries
	C/C++ Data Types in sqlvar Entries
	Example for Using a Descriptor
	PREPARE Statement
	DESCRIBE Statement
	EXECUTE Statement
	OPEN CURSOR Statement
	USING Clause
	Array Statement
	INCLUDE FILE Statement
	PUTVAL Statement
	GETVAL Statement
	WHENEVER Statements
	Handling Errors with WHENEVER Statements
	Actions for the WHENEVER Statement
	Example for Using WHENEVER Statements
	CANCEL Statement
	EXEC COMMAND Statement
	VERSION Statement
	TRACE Statements
	Database System Messages
	Warning Messages in the Structure sqlca
	Programming Notes
	Compatibility with Other Database Systems
	Special Features in SQL Mode ORACLE
	Special Features in SQL Mode ANSI
	Functions of the C/C++ Precompiler
	Running the Precompiler
	Call Options for the Precompiler Linker
	Precompiler Options
	Precompiler Log
	Example: Compiling a SAP DB Application Program
	Functions of the Precompiler Runtime Environment
	Connection Options at Runtime
	Trace Options
	Using IRTRACE
	Displaying the Current Trace Setting
	Changing the Trace Setting
	Example of a Trace File
	Example: Executing an Application Program
	Return Codes
	Using the IRCONF Tool
	Options for IRCONF
	Specifying the Installation Path: -p
	Displaying Registered Versions of the Runtime Library: -s
	Deleting the Registration of the Runtime Library: -r
	Overriding the Driver Name: -d
	Registering the Version of the Runtime Library: -i
	Overriding the Version Check: -v
	Specifying an Additional Key: -k
	Displaying Options and Help: -h
	IRCONF Error Messages
	Syntax List
	as_clause
	array_statement
	cancel_session
	cancel_statement
	c_function
	char_host_var
	close_statement
	command
	connect_option
	connect_statement
	connect_statement_internal
	connect_statement_oracle
	cursor_name
	database_name
	database_server
	dbproc_clause
	dbproc_name
	ddl_statement
	declare_clause
	declare_cursor_statement
	declare_statement
	describe_statement
	descriptor_name
	dml_statement
	dyna_parameter
	dyna_parameter_list
	embedded_sql_statement
	exec_command_statement
	execute_immediate_statement
	execute_statement
	fetch_spec
	fetch_statement
	file_host_var
	file_name
	float_host_var
	for_clause
	getval_statement
	host_variable
	hostvarprefix
	include_declare_statement
	include_file_statement
	include_sqlca_statement
	include_statement
	ind_clause
	indicator_marker
	indicator_variable
	ind_variable_declarator
	int_host_var
	key
	label
	loop_parameter
	open_cursor_statement
	os_command
	os_command_async
	os_command_sync
	parameter
	parameter_list
	parameter_marker
	precom_version
	prepare_statement
	putval_statement
	result_param
	rte_version
	session_name
	session_number
	session_spec
	set_serverdb_statement
	sqlda_variable
	statement_name
	statement_source
	string_constant
	structure_tag
	table_clause
	trace_line
	trace_state
	trace_statement
	type_declarator
	uidpwd
	unichar_host_var
	using_clause
	using_expr
	variable_declarator
	variable_name
	version_statement
	whenever_action
	whenever_condition
	whenever_statement

