

Development Environment:
SAP DB

SAP AG April 2003

Copyright

© Copyright 2003 SAP AG.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation.
For more information on the GNU Free Documentaton License see
http://www.gnu.org/copyleft/fdl.html#SEC4.

Development Environment: SAP DB 2

SAP AG April 2003

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Typographic Conventions

Type Style Description

Example text Words or characters that appear on the screen. These include field
names, screen titles, pushbuttons as well as menu names, paths and
options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, titles of graphics and tables.

EXAMPLE TEXT Names of elements in the system. These include report names,
program names, transaction codes, table names, and individual key
words of a programming language, when surrounded by body text, for
example, SELECT and INCLUDE.

Example text Screen output. This includes file and directory names and their paths,
messages, source code, names of variables and parameters as well as
names of installation, upgrade and database tools.

EXAMPLE TEXT Keys on the keyboard, for example, function keys (such as F2) or the
ENTER key.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Pointed brackets indicate that you replace these
words and characters with appropriate entries.

Development Environment: SAP DB 3

SAP AG April 2003

Development Environment: SAP DB... 9
General Directory Structure of the SAP DB Development Environment 9
Development Hierarchy ... 10

Working with the SAP DB Development Hierarchy.. 11

Environment Variables... 11
$VMAKE_VERSION... 12

$VMAKE_DEFAULT .. 12

$VMAKE_OPTION ... 13

Parameters for $VMAKE_OPTION .. 13

$VMAKE_OPTION Parameters for Searching for Source Code 15

$VMAKE_OPTION Parameters for Searching for Object Files 15

$INSTROOT... 15

$VMAKE_PATH ... 16

$SHELL .. 16

$TOOLSHELL .. 16

$TOOLOPT .. 17

$TOOL.. 17

$TOOLEXT... 17

$DLL_TYPE.. 17

$ARC_TYPE... 17

$OWN... 18

$WRK ... 18

$PATH.. 18

%INCLUDE% ... 18

$RELVER ... 19

$CORRECTION_LEVEL.. 19

$BUILD_PRAEFIX ... 19

$PYTHONPATH... 19

$PERL5LIB... 19

$EDITOR.. 20

$DBROOT .. 20

$NOQUIET ... 20

$TOOLVARS.. 20

Tools in the SAP DB Development Environment... 21
Tools for Operating the Development Environment... 21

ims.pl; imq.pl; imf.pl .. 21

idiff.pl... 21

ils.pl... 22

ips.pl, ipq.pl and ipf.pl ... 22

Development Environment: SAP DB 4

SAP AG April 2003

iview.pl .. 22

icp.pl.. 23

VMAKE... 23

Terms.. 23

Files... 23

Module File .. 24

Module File Directory ... 24

Include Files... 24

Include Directory .. 24

Description Files .. 24

Link Descriptions.. 25

Compilation Descriptions ... 25

Processing Lists... 26

Object Files.. 26

Object Directory ... 26

Initialization Files ... 26

Langextinfo .. 27

Langinfo ... 28

Extra... 29

DirectoryMapping... 29

Files That do not Require Translation ... 30

Date Files .. 30

Layer ... 31

Target .. 31

Debug Mode.. 31

File Storage .. 32

Naming Conventions for Files... 32

Naming Conventions for Module Files .. 32

Naming Conventions for Description Files.. 33

Using VMAKE ... 34

MAKE Operation ... 34

Process Flow of the MAKE Operation... 35

Defining the MAKE Operation.. 36

VMAKE Versions.. 36

fast VMAKE Version ... 36

quick VMAKE Version .. 37

slow VMAKE Version.. 37

Grammar for the VMAKE Call .. 37

Options for Calling VMAKE .. 38

VMAKE Tools ... 40

Development Environment: SAP DB 5

SAP AG April 2003

Storage Location of the VMAKE Tools ... 40

Scripts for the VMAKE Tools .. 40

Selecting the Translation Tools .. 42

Options for VMAKE Tools... 43

Creating Description Files .. 43

General Grammar for Description Files.. 44

Grammar for Link Descriptions.. 45
Grammar for Compilation Descriptions ... 46
Grammar for Processing Lists ... 46

Options for Description Files .. 47

Options for Link Descriptions... 47
Options for Compilation Descriptions .. 48
Options for Processing Lists.. 48
! <command>... 49
!! <command>.. 49
!? <command>... 49
? defaultlayer : <layer> .. 50
? defaultlayer : ... 50
? defaultversion : <vmake_version>.. 50
? defaultversion : ... 50
? distribute : <list>.. 51
? link with : <list> ... 51
? linkoption : <list>... 51
? output : <list> .. 51
? propagate : <variable>[=<value>]... 52
? require : <target> .. 52
? tooloption : <list> .. 52
-><output> ... 53
ascii.. 53
binary ... 53
debug|d.. 54
definition .. 54
demand.. 54
demand{<relative path>} ... 54
demand=<list> ... 54
demand{<relative path>}=<list>... 55
dep=<list> .. 55
distrib ... 55
exec ... 55
extdep=<list> ... 55

Development Environment: SAP DB 6

SAP AG April 2003

inc=<list> ... 56
interface ... 56
nobind .. 56
nodistrib ... 56
noobjcopy .. 56
noshrglob ... 57
noversion ... 57
obj=<list> ... 57
profile|p .. 57
remake... 57
shrglob ... 58
uncond ... 58

VMAKE Logs.. 58

Translation Process ... 58

Unpacking the Module Files... 58

Removing Frame Parts that are not Relevant for Translation.................... 59

Conditional Compilation.. 59

Translating the Module Files .. 59

Link Operation.. 59

Working with the SAP DB Development Environment: Examples....................................... 60
Operating the Development Environment .. 60

Objective ... 60

Process Flow .. 61

Explanation of the Process Flow .. 61

Logs .. 62

Further Options... 64

Forced Translation .. 64

Working with Debug Information... 65

Further Information on Dependencies .. 65

Displaying the New Targets to be Generated... 65

Displaying the Module and Description Files Used .. 66

Displaying the Module and Description Files Used, and Their Dependencies 66

Comparison Between SAP DB VMAKE and a Conventional Make Program 67

Creating DBMCLI with the SAP DB Development Environment...................................... 67

Structure of the Database Manager CLI... 68

Creating the Database Manager CLI.. 68

Link Description dbmcli.lnk.. 69

Explanation of the Link Description dbmcli.lnk.. 70

Components of DBMCLI... 70

dbmcli.rc .. 71

Development Environment: SAP DB 7

SAP AG April 2003

vcn12.cpp, vcn13.cpp, vcn14.c... 71

Compilation Description... 71

Include Files .. 72

cservlib .. 72

splib ... 73

eoxlib ... 73

sqlusr, enalib, enblib ... 73

Other Dependencies ... 73

Function Check... 74

Development Environment: SAP DB 8

SAP AG April 2003

 Development Environment: SAP DB
General Directory Structure of the SAP DB Development Environment [Page 9]

Development Hierarchy [Page 10]

Environment Variables [Page 11]

Tools in the SAP DB Development Hierarchy [Page 21]

Working with the SAP DB Development Environment: Examples [Page 60]

 General Directory Structure of the SAP DB
Development Environment
The SAP DB development environment uses a fixed directory structure.

The top node (SAPDB_DEV) corresponds to the environment variable $OWN [Page 18].

The system creates the following directory structure when you call VMAKE for the first time.

SAPDB_DEV

systmp

desc wrksrc

fast slowquick incl dates

usr

env terminfobin libpgm ...

ak ...

obj tmp dates csrc psrc debug

The top SAPDB_DEV node is divided into 3 areas:

• Development area: sys

• Temporary area: tmp

• Directory for created software components: usr

Development Area
The development area is divided into the subdirectories desc, src, and wrk.

The development area is not always necessary. Using the development hierarchy [Page 10],
the system accesses the sources from the next hierarchy level when the software is created.

Development Environment: SAP DB 9

SAP AG April 2003

• All types of description files [Page 24] are stored in the desc directory, which can also
have subdirectories.

• The src directory contains all the module files [Page 24] in separate directories or layers
[Page 31].

• The actual software creation process takes place in the wrk directory. All of the
intermediate products (object files [Page 26], include files [Page 24]) and logs [Page 58]
are also stored here.

• A separate directory (fast, quick, slow) with a standard structure exists for each of
the three VMAKE versions [Page 36]. Each of these directories has a tmp subdirectory.
This is the temporary work area that is used during the MAKE operation [Page 34].

• All of the object files and static libraries created are stored in the obj
subdirectory.

• The date files are stored in the dates subdirectory.

• The psrc and csrc directories can be used as buffers for module files if the
VMAKE_OPTION parameters [Page 13] have been set accordingly.

• The module files that were translated in debug mode [Page 31] are stored in the
debug directory.

• Since include files are independent of the VMAKE version, they are stored directly below
the wrk directory in the incl directory.

• The associated date files are stored directly below the wrk directory in the dates
directory.

Temporary Area
This is a temporary area that allows the iview.pl tool to use the development environment.
When the tool is called, the specified module and/or description files are copied to the tmp
file. These files, however, cannot be modified in this directory.

Directory for Created Software Components
The usr directory for the created software components is the future DBROOT directory of the
SAPDB software. All of the components that are required to operate the database are copied
here.

 Development Hierarchy
VMAKE provides access to module [Page 24] and description files [Page 24] across several
levels. Several development states can be logically superimposed on one another in different
directories (also from other computers). This provides an overview of a complete software
version.

Each hierarchy level does not have to contain all the module and description files. For the
translation process [Page 58], the module and description files are usually taken from the top

Development Environment: SAP DB 10

SAP AG April 2003

level in the hierarchy. This hierarchy sequence is defined through the environment variable
VMAKE_PATH [Page 16].

A two-level hierarchy is implemented with the standard installation of the SAPDB
development environment. This ensures that the original module and description files are
always retained.

Example of a two-level hierarchy

Directory 1
(C:\SAPDB\SAPDB_ORG)

Contains the original SAP DB sources;
these are located in the subdirectories sys/desc and sys/src
(General Directory Structure [Page 9])

Directory 2
(C:\SAPDB\SAPDB_DEV)

Directory for creating and developing SAPDB software

Working with the SAP DB Development Hierarchy [Page 11]

 Working with the SAP DB Development Hierarchy

If you want to modify files, use the icp.pl [Page 23] tool to copy them from the SAPDB_ORG
directory to the SAPDB_DEV directory in the development hierarchy [Page 10].

The SAPDB_ORG directory is located und the following path:
C:\SAPDB\SAPDB_ORG

The SAPDB_DEV directory is located under the following path:
C:\SAPDB\SAPDB_DEV

In this case, the environment variable $VMAKE_PATH [Page 16] must contain
the following entry:
VMAKE_PATH= C:\SAPDB\SAPDB_DEV,C:\SAPDB\SAPDB_ORG

In a MAKE operation, SAPDB_DEV would now be searched for a module or description file.
VMAKE only searches the next level if it cannot find the file here.

If a path in the VMAKE_PATH [Page 16] does not end with two slashes, it is also searched for
current object files [Page 26] in the wrk directory. The files are copied if they match the
current development status. The relevant module files do not need to be translated.

You can use the idiff.pl [Page 21] tool to compare the modified and original module or
description files.

The iview.pl [Page 22] tool enables you to display a module or description file.

 Environment Variables
The VMAKE initialization process is based on environment variables.

In Windows NT, environment variables must be encapsulated in percentage symbols.

On UNIX systems, environment variables are prefixed with a $. This is also the selected
notation in this documentation.

Development Environment: SAP DB 11

SAP AG April 2003

All of the environment variables listed here, with the exception of $NOQUIET, can be set with
the initDev_SAPDB.bat (Windows NT) or initDev_SAPDB (UNIX) initialization script.
This script is stored in the SAPDB_DEV directory when the development environment is
installed.

$VMAKE_VERSION [Page 12]

$VMAKE_DEFAULT [Page 12]

$VMAKE_OPTION [Page 13]

$INSTROOT [Page 15]

$VMAKE_PATH [Page 16]

$SHELL [Page 16]

$TOOLSHELL [Page 16]

$TOOLOPT [Page 17]

$TOOL [Page 17]

$TOOLEXT [Page 17]

$DLL_TYPE [Page 17]

$ARC_TYPE [Page 17]

$OWN [Page 18]

$WRK [Page 18]

$PATH [Page 18]

%INCLUDE% [Page 18]

$RELVER [Page 19]

$CORRECTION_LEVEL [Page 19]

$BUILD_PRAEFIX [Page 19]

$PATHONPATH [Page 19]

$PERL5LIB [Page 19]

$EDITOR [Page 20]

$DBROOT [Page 20]

$NOQUIET [Page 20]

$TOOLVARS [Page 20]

 $VMAKE_VERSION
This variable defines the system default for the VMAKE version [Page 36].

VMAKE only evaluates the first letter of the set variable.

set VMAKE_VERSION=fast

 $VMAKE_DEFAULT
This variable is optional. If this variable is not set, VMAKE uses the entry for the
$VMAKE_VERSION [Page 12] variable. VMAKE only evaluates the first letter of the set
variable.

It defines the system default for translating module files that are listed in description files.

set VMAKE_DEFAULT=fast

If translation is carried out with the slow VMAKE version and the
$VMAKE_DEFAULT set to fast, only the module files in the description files are
translated with the fast method; all other files are translated using the slow
method.

Development Environment: SAP DB 12

SAP AG April 2003

 $VMAKE_OPTION
You use the parameters [Page 13] for the $VMAKE_OPTION environment variable to define
the VMAKE mode of operation.

You can override some of the $VMAKE_OPTION parameters by entering options for the
VMAKE call.

If you want to specify several parameters, do not enter a blank space between the individual
parameters.

set VMAKE_OPTION=DISOhvWMLRg

 Parameters for $VMAKE_OPTION
Different parameters can be set for the $VMAKE_OPTION [Page 13] variable.

If you want to specify several parameters, do not enter a blank space between
the individual parameters.

Parameters for Searching for Source Code [Page 15]

Parameters for Searching for Object Files [Page 15]

General Parameters for $VMAKE_OPTION

A Object files [Page 26] are also copied to the first hierarchy level [Page 10] of
$VMAKE_PATH if they can be found in an integrated file system.

a A warning is output instead of an error message for differences regarding upper and
lower-case notation of a target [Page 31] in the hierarchy. Discrepancies regarding
upper and lower-case letters in the targets within the hierarchy are usually regarded
as an error.

b Normally, C module files are not allowed to use PASCAL include files [Page 24]. If
this option is set, the C header files generated from the PASCAL include file are used.

C | c C Level:
The same rules apply as with the Pascal level, with the exception that no PASCAL
module files are allowed to exist here. If PASCAL and C Level are used, non-
PASCAL files are copied from the PASCAL Level to the C Level during the translation
process [Page 58]. C | c, therefore, implies that a C Port is to be carried out.
PASCAL files are translated into C files. C requires that source code be managed at
this level. If you use c, this is optional. In other words, the source text from this level is
used if it exists.

D Date files are used to flag the date of a module file that was used to create a program.

e All object files are assigned debug information.

g global make:
If objects are found in the path hierarchy that are younger than the those in the first
hierarchy, they are copied to the first hierarchy (standard behavior).

Development Environment: SAP DB 13

SAP AG April 2003

h If you specify a description file without an extension in the command line, VMAKE
attempts to find a description file with a file name that matches the one entered in the
command line. The system follows a specific search sequence. With the h option, you
can assign description files the following order in accordance with their file extension:
the system first searches for a file with this name and the extension shm, then with the
extension lnk, then with the extension shr, and finally with the file extension rel.

H PASCAL include files are not automatically converted to C header files.

I | i Include Level:
Include files are assigned a frame. This must be removed, and the include file must
be transferred to the include directory [Page 24]. If neither the i nor the I option is
set, include files are not interdependent. If i is specified, include files are subject to
the standard dependency rules. If I is specified, include files are generated with size
information for PASCAL. Include files are only considered if one of the S | s options
is set.

l local make:
Object files whose module files are located in the first path are regarded as being up
to date. This means that object files from the path hierarchy are never used.

L Libraries are like relocatables:
The contents of libraries are not analyzed. The date of the library is checked against
the timestamp of the object files. The library is rebuilt by linking all of the relevant
object files.

M Modules are independent:
Object files are stored in the file system, as they cannot be accessed otherwise.
Alternatively, object files from programs that have already been linked can be used.

O | o Object Level:
This level contains object files that can be linked to generate programs. If O is set,
these files are used accordingly. If o is specified, program generation ends once all of
the object files have been created.

P | p PASCAL Level:
The frame is missing from all module files. PASCAL Level, since most module files
are written in PASCAL and, therefore, PASCAL module files exist at this level. Files in
different languages are stored here. If P is specified, PASCAL Level files remain in the
PASCAL Level directory. P requires that source code be managed at this level; with p,
this is optional, in other words, the source code from this level is used if it exists.

R The shrglob and noshrglob options for description files [Page 47] are ignored.

S | s Source Level:
Many module files have a frame that has to be removed before they are translated. If
S is specified, all of the module files have to be present. If s is set, these files are only
used if they exist. Dependent files are only processed if the source code is present.

t timestamp the start of bigger targets
If description files are translated, a timestamp is output.

T A timestamp is always output before a module file is translated.

X Specify this option if write-protected source code (for example, from CD) is to be
accessed.

Z The system searches for module files, whose name does not contain a coded layer
[Page 31] and which ends in .rc, .ico, .def, .mc, .dlg, .idl, .ycc,
.lex or .rgs, in the Resource layer.

Development Environment: SAP DB 14

SAP AG April 2003

 $VMAKE_OPTION Parameters for Searching for
Source Code
Different parameters [Page 13] can be set for the $VMAKE_OPTION [Page 13] variable.

If you want to specify several parameters, do not enter a blank space between
the individual parameters.

Parameters for Searching for Source Code

(No parameter set) The first item of source code found is used.

v The first item of source code found is used. The system outputs a
warning if a more recent file is found in the remaining path hierarchy.

V The most recent source code in the hierarchy is used and, if
necessary, copied to the local source area.

vV The most recent source code in the hierarchy is used and a warning
is output.

 $VMAKE_OPTION Parameters for Searching for
Object Files
Different parameters [Page 13] can be set for the $VMAKE_OPTION [Page 13] variable.

If you want to specify several parameters, do not enter a blank space between
the individual parameters.

Parameters for Searching for Object Files

(No parameter set) The first object file found is used.

w The first object file found is used. The system outputs a warning if a
more recent object file is found in the remaining path hierarchy.

W The most recent object file in the hierarchy is used.

wW The most recent object file in the hierarchy is used and a warning is
output.

 $INSTROOT
This variable contains an absolute path specification within the current file system. This
describes where VMAKE is to store linked software components.

VMAKE decides, on the basis of the software component, under which relative path under
$INSTROOT the component will be stored.

Development Environment: SAP DB 15

SAP AG April 2003

set INSTROOT=D:\V72

 $VMAKE_PATH
This variable lists paths under which VMAKE can search for files [Page 23].

The individual path specifications are separated by a comma. The paths can be absolute
paths in the file system of the local computer, or of other computers that are integrated in the
file system.

If a file system that is not integrated is to be used, the VMAKE Server program is required on
the computer with this file system.

The path must then be specified as follows:
<server_name>:<absolute_path>

<server_name> Name of the other computer

<absolute_path> Absolute path on the file system of the other computer

If you enter two slashes at the end of a path specification, the system will ignore this path
when searching for object files [Page 26].

set
VMAKE_PATH=D:\V72,P26326:F:\Develop//,\\P26208\share\tools

 $SHELL
Description files [Page 24] can contain operating system commands.

You use this variable to specify that a certain command shell is to be used to process these
OS commands.

set SHELL=C:\MyTools\4dos.exe

 $TOOLSHELL
This variable defines the shell that executes the scripts used by VMAKE (VMAKE Tools [Page
40]).

set TOOLSHELL=D:\Perl\5.00502\bin\MSWin32-x86-
object\perl5.00502.exe

Development Environment: SAP DB 16

SAP AG April 2003

 $TOOLOPT
You can use this variable to transfer additional options to the shell specified in the
$TOOLSHELL [Page 16] variable.

set TOOLOPT=-d

 $TOOL
The relative path containing the scripts and programs used by VMAKE is specified in this
variable.

set TOOL=D:\DevTool

 $TOOLEXT
The file extension of the scripts (VMAKE Tools [Page 40]) is defined in this variable.

VMAKE only recognizes the first part of the script file names. VMAKE uses this variable to
determine the file extension.

set TOOLEXT=.pl

 $DLL_TYPE
The file extension for dynamic libraries is defined in this variable.

This variable is optional.

VMAKE has the following default settings:

Win32 .dll

UNIX without file extension

 $ARC_TYPE
The file extension for static libraries is defined in this variable.

This variable is optional.

Default settings:

Win32 .lib

UNIX .a

Development Environment: SAP DB 17

SAP AG April 2003

 $OWN
The environment variable OWN corresponds to the absolute path for the
SAPDB_DEV directory (General Directory Structure of the SAP DB Development
Environment [Page 9]).

This environment variable is set by the initialization script
initDev_SAPDB(.bat) (Environment Variables [Page 11]).

 $WRK
The environment variable $WRK is used by various description files. It refers to the sys/wrk
directory below the SAPDB_DEV directory (General Directory Structure of the SAP DB
Development Environment [Page 9]).

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $PATH
The $PATH variable must be adapted to include the following directories:
$DBROOT/bin

$DBROOT/pgm (NT)

$TOOL/Posix

$TOOL/bin

$TOOL/pgm (NT)

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 %INCLUDE%
This environment variable only applies to Windows NT.

The compiler uses this environment variable to locate all of the SAPDB-internal include files.

The following entries must be listed here:
%DBROOT%\incl

%TOOL%\incl

%OWN%\sys\wrk\incl

%OWN%\sys\wrk\incl\SAPDB

Development Environment: SAP DB 18

SAP AG April 2003

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $RELVER
This environment variable specifies the current software version. It generates the build
information in the program components, and is used by the link tools.

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $CORRECTION_LEVEL
This environment variable specifies the number of the correction level for the build
information. This information is also used by the link tools.

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $BUILD_PRAEFIX
This environment variable specifies the patch level number of the current software version.
This information is also used by the link tools.

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $PYTHONPATH
This environment variable must be set so that the Python scripts in the tools can be executed.

It should contain the following entries:

$TOOL\Lib\Python

$INSTROOT/lib

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $PERL5LIB
This environment variable must be set so that the Perl scripts in the tools can be executed.

It should contain the following entries:

Development Environment: SAP DB 19

SAP AG April 2003

$INSTROOT/misc

$TOOL/bin

$TOOL/Lib/Perl

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $EDITOR
This environment variable specifies the program that is used to display and edit files using the
development environment operating tool iview.pl [Page 22].

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $DBROOT
This environment variable is an obsolete name for the $INSTROOT [Page 15] variable. As a
result, it should be set in the same way as $INSTROOT.

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

 $NOQUIET
If this environment variable is set, every call of the compiler is output during the creation
process.

 $TOOLVARS
The path specification in this environment variable refers to the central initialization file
toolvars.pl for most Perl scripts. The default storage location for this file is the
$TOOL/bin directory.

A large part of the platform-specific adjustments is made in this Perl file. This includes the
definition of the various platform-specific compiler, link, and other programs, as well as the
associated options. Certain additional environment variables that are required for the creation
process are also initialized in this file.

This environment variable is set by the initialization script initDev_SAPDB(.bat)
(Environment Variables [Page 11]).

Development Environment: SAP DB 20

SAP AG April 2003

 Tools in the SAP DB Development Environment
The development tools consist of the following components:

• Tools for Operating the Development Environment [Page 21]

• VMAKE [Page 23], as a software creation tool

• Various auxiliary programs

The various tools in the SAP DB development environment are essentially Perl
scripts. These can be called with various options. You can use the -h option to
display a list of the available options.

 Tools for Operating the Development Environment
ims.pl; imq.pl; imf.pl [Page 21]

idiff.pl [Page 21]

ils.pl [Page 22]

ips.pl, ipq.pl und ipf.pl [Page 22]

iview.pl [Page 22]

icp.pl [Page 23]

 ims.pl; imq.pl; imf.pl
These commands are tools for operating the development environment [Page 21] and are
used to create SAP DB software components. A distinction is made here between the three
VMAKE versions [Page 36]. At least the name of a processing list [Page 26], a link description
[Page 25], or a module file [Page 24] is expected as a parameter. You can also specify
several names as parameters.

Once a defined environment has been initialized, these scripts call the VMAKE program.

All of the available options for calling VMAKE [Page 38] are also available for these scripts
and are passed on directly to VMAKE.

Specify the name of the file (and not the complete path) in accordance with the naming
conventions for files [Page 32] for all of the file names transferred as parameters.

Example [Page 60]

 idiff.pl
This command is a tool for operating the development environment [Page 21] and compares
the file specified as a parameter in the local development area (General Directory Structure
[Page 9]) with an older version of the same file within the development hierarchy.

You can also use the –l option [Page 38] to compare the same files at different levels in the
development hierarchy.

Development Environment: SAP DB 21

SAP AG April 2003

Specify the name of the file (and not the complete path) in accordance with the naming
conventions for files [Page 32] for all of the file names transferred as parameters.

 ils.pl
This command is a tool for operating the development environment [Page 21], and is similar
to the commands dir or ls in other operating systems. The module [Page 24] or description
files [Page 24] specified as parameters within the development hierarchy are displayed.

Specify the name of the file (and not the complete path) in accordance with the naming
conventions for files [Page 32] for all of the file names transferred as parameters.

 ips.pl, ipq.pl and ipf.pl
These commands are tools for operating the development environment [Page 21], and are
used to display both of the VMAKE logs [Page 58] of the translation process [Page 58].

There are three different commands for the three VMAKE versions [Page 36]. The logs from a
creation process started with imf.pl [Page 21] can be displayed with the ipf.pl tool. The file
name used with the imf.pl command must be specified as a parameter here:

imf.pl dbmcli

ipf.pl dbmcli

 iview.pl
This command is a tool for operating the development environment [Page 21], and is used to
display and edit module [Page 24] and decription files [Page 24].

If the files are located in the src or desc subdirectory below the SAPDB_DEV directory
(General Directory Structure [Page 9]), they are opened directly and can be modified
accordingly.

If the are not located in these subdirectories, the system searches for their first occurrence in
the development hierarchy and copies them to the tmp subdirectory below the SAPDB_DEV
directory so that they can be displayed.

The files are displayed with the program that is referred to by the environment variable
$EDITOR [Page 20].

iview vcn12.cpp

iview dbmcli.lnk

You can also use the -l option [Page 38] to access all of the versions of a file within the
development hierarchy, even though they are also located in the SAPDB_DEV directory.

iview –l1 co.com

Development Environment: SAP DB 22

SAP AG April 2003

Specify the name of the file (and not the complete path) in accordance with the naming
conventions for files [Page 32] for all of the file names transferred as parameters.

Changes to the files that are relevant for translation can only be carried out if the
files are directly located in the development area. You can copy these files with
icp.pl [Page 23].

 icp.pl
This command is a tool for operating the development environment [Page 21], and is used to
copy a module [Page 24]- or description file [Page 24] from the development hierarchy to the
development area in the SAPDB_DEV directory. As a result, this file is used instead of the
file in the development hierarchy the next time a MAKE operation [Page 34] is carried out.

You can use the iview.pl [Page 22] command to display the copied file, an then edit it.

This command can only be used to copy one file. If you specify a second file name as a
parameter in addition to the file name, the name of the copied file is changed to the one in the
second parameter.

Specify the name of the file (and not the complete path) in accordance with the naming
conventions for files [Page 32] for all of the file names transferred as parameters.

 VMAKE
This document is designed as a reference guide for creating or maintaining programs,
libraries, and so on with the VMAKE tool.

The VMAKE tool supports all versions of the SAP DB software.

To develop the SAPDB software, or parts thereof, enter the command for the required
VMAKE version [Page 36].

Various options [Page 38] are provided for modifying the call for the VMAKE tool.

 Terms
Files [Page 23]

Layer [Page 31]

Target [Page 31]

Debug Mode [Page 31]

 Files
When software is created, module files [Page 24] are translated using description files [Page
24].

The resulting files are called object files [Page 26].

Development Environment: SAP DB 23

SAP AG April 2003

The <file_name> of a file is preserved across the various phases of the MAKE operation.
The file extension <ext> changes.

 Module File
Source code comprises individual files. These files are referred to as module files.

Module files can be combined in module groups [Page 31].

Module files are stored separately from description files [Page 24] in the file system of the OS
(Storage System [Page 32]).

Module files can be written in any programming language. VMAKE features a complete set of
tools [Page 40] for unpacking [Page 58] and translating [Page 59] module files for all of the
programming languages supported by SAP DB.

 Module File Directory
The module file directory is used to store the module files [Page 24] .

The structure of this directory is identical to that of the object directory (General Directory
Structure of the SAP DB Development Environment [Page 9]).

 Include Files
An include file is a module file [Page 24] that is included in a different module file.

When the source code of an include file changes, both the file and the file, in which this
include file is integrated, must be retranslated (Translation Process [Page 58]) as part of the
software creation process.

Include files are independent of VMAKE versions [Page 36].

 Include Directory
Unlike module files, include files [Page 24] are independent of the called VMAKE version
(VMAKE Call Versions [Page 36]) and, therefore, are always stored in the same directory.

This directory is called incl and is created by the VMAKE tool (General Directory Structure
[Page 9]).

 Description Files
Description files contain information on how the software is created, and which module files
[Page 24] are used to do so. This information includes:

• Link descriptions [Page 25]

• Compilation descriptions [Page 25]

• Processing lists [Page 26]

Development Environment: SAP DB 24

SAP AG April 2003

 Link Descriptions
Link descriptions specify how the module files [Page 24] are to be linked to form a program.

Essentially, link files consist of a list of references to module files and other description files
[Page 24] that are processed sequentially by the system. You can also specify the options
that are to be used during the link operation [Page 59].

The file extension of the link description is used to distinguish between the resulting software
components (Using VMAKE [Page 34]).

File Extension of Link Description Type of Software Component Created
lnk Program

shm Program that facilitates shared memory access

lib Static library

dld Dynamic library

rel Program that can be linked to other programs
(relocatable)

shr Program that can be linked to other programs
(relocatable) and facilitates shared memory access

mac Other types of object files

 Compilation Descriptions
Use
Compilation description specify how module files [Page 24] are to be translated. Essentially, a
compilation description contains a list of module files and their interdependencies, as well as
translation-specific options [Page 48]. These interdependencies include:

• Include dependencies (include file [Page 24])

• Dependencies, such as certain auxiliary files that must be located in the same directory
as the module file to be translated (demand=<list> [Page 54]) during the translation
process [Page 58]

• Logical dependencies – if, for example, the module file X links to a file Z that is created as
a by-product of the translation of the module file Y (extdep=<list> [Page 55])

Compilation descriptions are created for groups of module files, and not for individual module
files. The compilation description has the same name as the layer [Page 31]. Compilation
descriptions have the file extension .com

If the layer ak exists in the directory containing the module files (src), the
directory with the description files (desc) must contain the compilation
description ak.com .

If a layer (subdirectory) under the directory with the module files [Page 24] (src) contains
further sublayers, the hierarchy must be recreated up to the second last level in the directory

Development Environment: SAP DB 25

SAP AG April 2003

containing the description files (desc). The name of the compilation description is then
formed from the last sublayer and the file extension .com

The compilation description for module files in the SAPDB/DBM/Cli layer has the
name Cli.com and is located in the directory containing the description files
(desc) under SAPDB/DBM.

Compilation descriptions are not processed sequentially. The processing points of a
description of this kind are addressed selectively.

 Processing Lists
Use
A processing list is a list of description files [Page 24] and module files [Page 24] to be
processed, as well as OS commands to be executed. A processing list can also contain other
processing lists. In addition, options [Page 48] can be specified.

The entries in a processing list are processed by VMAKE from top to bottom. All of the listed
files, as well as any other files listed as links, are first checked down to the lowest level to
determine whether they have been changed with respect to a target created previously. Only
if this is the case does VMAKE recreate (update) the targets.

 Object Files
Module files [Page 24] are unpacked and translated. The files created as a result are called
object files.

These files are usually stored in the directories that correspond to the VMAKE version
(VMAKE Call Versions [Page 36]), that is, under fast, quick or slow (see General
Directory Structure of the SAP DB Development Environment [Page 9]).

If the noversion [Page 57] option is specified in the compiler description for a module file, the
object file is stored directly in the wrk/obj directory.

Object files have the file extension .o

 Object Directory
The object files [Page 26] are stored in the object directory.

The object directory has the same structure as the source code directory (General Directory
Structure of the SAP DB Development Environment [Page 9]).

 Initialization Files
VMAKE uses the following initialization files:

Langextinfo [Page 27] Contains the assignments between the module files [Page 24] and
the translation tools, based on the file extension or the last character

Development Environment: SAP DB 26

SAP AG April 2003

in the file name.

Langinfo [Page 28] Contains assignments between the programming languages and
certain tools for unpacking [Page 58] and translating [Page 59]
module files [Page 24].

EXTRA [Page 29] Contains assignments between files that do not require translation
[Page 30] and their storage location.

DirectoryMapping
[Page 29]

This file is used to assign module files to a layer [Page 31], on the
basis of the first part of their file name (directory mapping function).

These files can be modified.

The files are stored in the desc directory (General Directory Structure of the SAP DB
Development Environment [Page 9]).

 Langextinfo
Use
Langextinfo is an initialization file [Page 26] of the VMAKE tool. This file is used to assign
file extensions to a programming language. Each programming language is identified by a
letter.

VMAKE uses certain default settings for each language.

If you want to change the existing assignments, create a file with the name Langextinfo in
the desc directory. You can also assign new letters, programs, and file extensions. In this
case, however, you must create an appropriate Langinfo [Page 28] file. All further
changes are then made in this file.

If VMAKE finds a Langextinfo file, the information contained in the
file overrides the system defaults.

Syntax
<langextinfo_line> = <comment_line> |
(<lang_id><comment><token_sep><token>{<token_sep>,<token_sep><token>}
<new_line>)

General Rules
<comment> must not contain <token_sep>

Lines can contain the comment character #. The subsequent text in this line is treated as a
comment.

System Default in VMAKE
Assigned letter (program) File extension(s)

x(C++) cpp, hpp

c(C) c, h

t(PASCAL) t

a(Assembler) s

r(Resources) rc, ico, def, mc, dlg, idl, ycc,
lex, rgs

Development Environment: SAP DB 27

SAP AG April 2003

 Langinfo
Use
Langinfo is an initialization file [Page 26] of the VMAKE tool. The file is used to assign
certain tools for unpacking [Page 58] and translating [Page 59] module files [Page 24] to
programming languages. The relevant programming language is specified by a letter
(Langextinfo [Page 27]).

VMAKE uses certain default settings for each language.

If you want to change the existing assignments, create a file with the name Langinfo in the
desc directory. All further changes are then made in this file.

If VMAKE finds a Langinfo file, the information contained in the file
overrides the system defaults.

Syntax
<langinfo_line> = <comment_line> |
(<lang_id><token_sep><unpack_inc_tool><token_sep><unpack exp
tool><tokensep><unpack mod
tool><tokensep><extension><tokensep><option prefix><tokensep>
<compiler tool>)

<unpack inc tool> = <token>

<unpack exp tool> = <token>

<unpack mod tool> = <token>

<extension> = „.“<token>

<option prefix> = <ext character><letter>

<compiler tool> = <token>

General Rules
Lines can contain the comment character #. The subsequent text in this line is treated as a
comment.

The scripts for unpacking a module file use the table entry under extension as the file
extension.

System Default in VMAKE
last

char
unpack
include

unpack
exports

unpack
module

extension option
prefix

compiler

 t mfpinc mfpexp mfp . p %T comppc # PASCAL

 p mfpinc mfpexp mfp .p %P compp # PASCAL

 c mfcinc mfcexp mfc .c %C compc # C

 x mfcinc mfcexp mfc .cpp %X compc # C++

 a mfainc mfaexp mfa .s %A compa #
Assembler

 r mfcinc mfcexp mfrc .rc %R comprc #
Resources

Development Environment: SAP DB 28

SAP AG April 2003

 Extra
Extra is an initialization file [Page 26] of the VMAKE tool.

This file contains assignments between files that do not require translation [Page 30] and their
storage location.

Syntax
<extra_line> = <comment_line> |
(<extension><token_sep><layer><token_sep><dest_dir><token_sep><option
><new_line>)

Extension Layer Destination directory Options

 .ino xx usr/env unpack=no

 .mp px usr/bin unpack=no nodot

 .dm px tmp exec

Explanation:

Module files [Page 24] with the file extension .ino belong to the xx layer [Page
31]. They must be copied to the usr/env directory in $INSTROOT [Page 15].
The module file does not contain any textual frame (option unpack=no).

Module files with the file extension .mp belong to the px layer. These must be
copied to the usr/bin directory (relative to $INSTROOT). The module file does
not contain any textual frame. Once the files have been copied, the extension
.mp must be removed (option unpack=no dot).

Module files with the file extension .dm belong to the px layer. These must be
copied to the tmp directory (relative to $INSTROOT). The module file contains a
textual frame that must be removed. Once the frame has been removed, the file
is identified as executable (exec [Page 55] option, only relevant for UNIX).

General Rule
Lines can contain the comment character #. The subsequent text in this line is treated as a
comment.

 DirectoryMapping
Use
DirectoryMapping is an initialization file [Page 26] of the VMAKE tool. This file is stored in
the <path>/sys/desc [Page 9] directory.

VMAKE uses the second and third letters of the file name to assign module files [Page 24] to
a layer [Page 31]. An alternative method of assigning module files to a layer is to use the
DirectoryMapping function. This method also allows you to use longer and more meaningful
file names.

Development Environment: SAP DB 29

SAP AG April 2003

File names specified with the DirectoryMapping function consist of two parts, which are linked
by an underscore. The first part specifies the layer in short. The second part specifies the
name of the module file.
<file_name> = <short_layer>_<module_file>

The short form is mapped to the corresponding layer in the DirectoryMapping file.

Syntax
<extra_line> = <comment_line> | (<short_layer>,
<full_layer><new_line>)

General Rules
...

1. The <full_layer> expression stands for the layers below
<path>/sys/src/SAPDB.

2. Lines can contain the comment character #. The subsequent text in this line is treated
as a comment.

3. The layer requires a compilation description, in which the structure of the layers,
including the second last layer, is specified.

The <path>/sys/src/DirectoryMapping file contains the following entries:

<short_layer>, <directory>
Component SQLStudio
StudioTD, SQLStudio/TableDefinition # Table Definition

If the StudioTD_TableDef.cpp and StudioTD_Wrapper.cpp files are to be
created, the compilation description TableDefinition.com must be stored
under <path>/sys/desc/SAPDB/SQLStudio/.

VMAKE searches for the StudioTD_TableDef.cpp and
StudioTD_Wrapper.cpp files in the
<path>/sys/src/SAPDB/SQLStudio/TableDefinition layer.

 Files That do not Require Translation
Certain files contain source code that is already in the required text or binary format. These
files do not need to be translated. They should simply be copied to the object directory [Page
26], but can be manipulated, if necessary, using the mfextra tool (VMAKE Tools [Page 40]).

Use the ascii [Page 53] or binary [Page 53] options to prevent these files from being
translated by VMAKE.

Alternatively, you can add an entry in the EXTRA [Page 29] initialization file.

 Date Files
A date file is created for every target [Page 31] that is to be generated.

The name of the date file comprises the name of the processed file [Page 23] and the file
extension .dat: <file_name>.dat

Development Environment: SAP DB 30

SAP AG April 2003

The timestamp is identical to the timestamp of the corresponding module file [Page 24] or link
description [Page 25].

Use
The date file is used during the MAKE operation to determine whether the local targets
correspond to the module files/link descriptions that are currently being used. If the two files
do not have the same timestamp, the target is regarded as not up to date and is regenerated.

Storing the Date Files
Date files for include files [Page 24] are stored in the $WRK/dates directory within their layer
[Page 31] irrespective of the VMAKE version [Page 36] used in the MAKE operation, since
include files are not version specific.

Date files for all other module files are stored in the version-specific
$WRK/<version>/dates directory, under the relevant subdirectories for the layer in
question.

Date files for link descriptions are stored directly in the version-specific
$WRK/<version>/dates directory.

 Layer
Layers are logical units that represent subdirectories in the module file directory [Page 24].

Module files are stored in various layers and subordinate layers. In addition to providing a
clearer overview, this enables a logical distinction to be drawn between the individual
database areas.

 Target
Targets are all types of output files that are created during the entire software development
process.

These can be individual object files [Page 26], link descriptions [Page 25], or output files of
files that do not require translation [Page 30].

 Debug Mode
If debug mode is activated, all of the module files [Page 24] with a debug option are compiled
so that the resulting object files [Page 26] contain additional debugging information. The
relevant module files are copied to the version-specific debug directory
$WRK/<version>/debug, from where they can be used for subsequent troubleshooting.

You can use the following methods to set a debug option for module files:

• -e Option for Calling VMAKE [Page 38]

• VMAKE_OPTION Parameter e [Page 13]

Development Environment: SAP DB 31

SAP AG April 2003

• with the option for description files debug|d [Page 54]

 File Storage
The module files [Page 24] and description files [Page 24] are stored in the file system of the
OS.

The files required to create a program can be stored at different locations in a file system, in
different file systems, and on different computers.

The potential paths are specified in the $VMAKE_PATH environment variable. This variable
must be adapted accordingly to be able to access older file versions.

There is a separate directory for description files, and a separate directory for module files.

Each of these directories has at least one subdirectory that reflects the logical hierarchy of the
files. Files are only stored at the lowest directory level.

The files can also be stored in a database. As a rule, however, databases do not
provide adequate support for search operations, with the result that the files
cannot be accessed efficiently.

 Naming Conventions for Files
The names of module files [Page 24] and description files [Page 24] are subject to certain
conventions.

Basic Elements
<digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<letter> = A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
| P | Q | R | S | T | U | V | W | X | Y | Z | a | b | c | d | e | f |
g | h | i | j | k | l | m | n | o | p | q | r | s | | u | v | w | x |
y | z

<extended letter> = all other printable characters, apart from hyphen and period

<character> = <digit> | <letter> | <extended letter>

<token> = <character>{<character>}

Naming Conventions for Module Files [Page 32]

Naming Conventions for Description Files [Page 33]

 Naming Conventions for Module Files
<source_spec> = <qual_source> | <std_source> | <ext_std_source> |
<map_source>

<qual_source> = :<ext_layer><source>

<std_source> =
<source_id><layer><digit><digit>{<digit>}[{<letter>}<lang_id>][<varia
nt>]

Development Environment: SAP DB 32

SAP AG April 2003

<ext_std_source> = <std_source>[<primary_lang_id>]

<map_source> = <shortform>_<specification>

<source> = <token>[<variant>]<primary_lang_id>

<source_id> = g | h | i | v

<ext_layer> = [<ext_layer>]<character><character>{< character >}/

<shortform> = <letter>{<letter>}

<specification> = <letter>{<letter>}[<variant>][<primary_lang_id>]

<lang_id> = <letter>

<layer> = <letter><letter>{<letter>}

<primary_lang_id> = .<token>

<variant> = -<token>

General Rules
...

1. <layer> and <ext_layer> can contain a maximum of 256 characters

2. <source_spec> can contain a maximum of 512 characters

<qual_source> ⇒ :Demo/Test/demo.cpp

<std_source> ⇒ hak33c | vbd23x | vkb00

<ext_std_source> ⇒ hak33.h | vbd23x.cpp | vkb00.hxx

<map_source> ⇒ StudioTD_TableDef.hpp |
StudioTD_Wrapper.cpp

 Naming Conventions for Description Files
<desc_spec> = <qual_desc> | <std_desc>

<qual_desc> = ::[<ext_layer>]<std_desc>

<std_desc> = <character>{<character>}<desc_ext>

<desc_ext> = .(mac | prj | shm | lnk | dld | shr | rel | lib | com)

General Rule
<desc_spec> can contain a maximum of 512 characters

<qual_desc> ⇒ ::x_demo.lnk | ::Kern/diagnose.lnk

<std_desc> ⇒ ak1.lib | kernel.shm | ak.com

Development Environment: SAP DB 33

SAP AG April 2003

 Using VMAKE
Use
The procedure for creating SAP DB software with VMAKE is divided into two phases:

• Translation Process [Page 58]

• Link Operation [Page 59]

The following software components can be generated:

• Programs

• Programs that facilitate shared memory access

• Static libraries

• Dynamic libraries

• Program that can be linked to other programs (relocatable)

• Programs that can be linked to other programs (relocatable) and facilitate shared
memory access

 MAKE Operation
The MAKE operation is divided into a collection phase and a make phase.

The individual steps carried out by VMAKE during the MAKE operation are described in the
section entitled Process Flow of the MAKE Operation [Page 35].

Collection Phase
In the collection phase, the description files [Page 24] of a target [Page 31] are collected and
analyzed. The interdependencies between all of the files are collected at the same time. The
system does not yet search for the module files [Page 24] in the hierarchy.

If errors occur during this phase, VMAKE terminates without starting the MAKE phase.

MAKE Phase
The MAKE phase marks the actual beginning of the creation process for the SAP DB
software. During this phase, the module files are created in the order of their
interdependency.

If a module file vak10 is dependent on vak00 (vak10 inc=vak00), vak00 is
handled first. vak10 cannot be created until this file has been successfully
generated.

If an error occurs while a module file is being created, all the targets that are dependent on
this module file will not be created either. This applies across all dependency levels.

If an error occurs while vak00 is being created, vak10 will not be processed, as
well as other dependent files:
since vak10 is contained in ak1lib.lib, ak1lib.lib is not linked. Since
ak1lib.lib is contained in the kernel.shm kernel, the kernel is also not
linked in the result.

Development Environment: SAP DB 34

SAP AG April 2003

 Process Flow of the MAKE Operation

VMAKE

Platform-Specific Perl
Scripts for Unpacking,
Compiling, and Linking the
Source Code

SAPDB_ORG

SAPDB_DEV

tmp

desc

src

sys

desc

src

sys

obj

incl

usr

3

Module and Description
Files

debug

SAPDB Software

6

1

prot

25

47

At the beginning of a MAKE operation [Page 34], VMAKE uses the date files [Page 30] to
determine the targets that have to be recreated. The system then searches for all of the
relevant module files in the hierarchy (1) and copies them to the temporary working directory
tmp (General Directory Structure [Page 9]) (2).

The files are then further processed in this directory with VMAKE tools [Page 40]. These tools
are essentially Perl scripts (3). VMAKE selects the appropriate Perl scripts on the basis of the
programming language in the module files (Selecting the Translation Tools [Page 42]). The
Perl scripts are platform specific, and call the respective compilers, translators, and
unpackers.

The output files produced as a result (object files [Page 26] and include files [Page 24]) are
initially also stored in the temporary working directory (4). VMAKE then copies the object files
to the respective obj directory and the include files to the incl-directory for the relevant
layer (5).
If VMAKE is operating in debug mode [Page 31], the module files are also copied to the
corresponding debug directory.

A date file [Page 30] is stored for every module file that is used to create a target.

The relevant tools also perform the link operations in the temporary directory, based on the
applicable link descriptions. The output files are also stored here. Following this, VMAKE
copies the targets to the relevant directories (6).
The files located in the temporary working directory are deleted once the targets have been
successfully created. If an error occurs while the targets are being created, the files are not
deleted in the temporary directory.

VMAKE also logs the entire software creation process.

Defining the MAKE Operation [Page 36]

VMAKE Log [Page 58]s

Translation Process [Page 58]

Development Environment: SAP DB 35

SAP AG April 2003

Link Operation [Page 59]

 Defining the MAKE Operation
VMAKE Versions [Page 36]

Grammar for the VMAKE Call [Page 37]

VMAKE Tools [Page 40]

Creating Description Files [Page 43]

 VMAKE Versions
There are three VMAKE versions:

• fast [Page 36]

• quick [Page 37]

• slow [Page 37]

The versions relate to the various trace and check levels in the software created.

You specify the required version when you call VMAKE:

If the VMAKE version in the description files [Page 24] for the module groups is
different to the one you specified when you called VMAKE, the call version is
overridden by the version specified in the validity range of the description file.

 fast VMAKE Version
Syntax
imf.pl

Use
When you call VMAKE as a fast version (VMAKE versions [Page 36]), the software created
in the result does not carry out any additional internal error checks, and does not log any
information other than the standard trace output of the database.

Development Environment: SAP DB 36

SAP AG April 2003

 quick VMAKE Version
Syntax
imq.pl

Use
When you call VMAKE as a quick version, the software created as a result does carries out
additional internal error checks.

 slow VMAKE Version
Syntax
ims.pl

Use
When you call VMAKE as a slow version, the software created as a result carries out
additional internal error checks, and logs information in addition to the standard trace output
of the database.

 Grammar for the VMAKE Call
The VMAKE call is based on the general grammar for description files [Page 44], the naming
conventions for module files [Page 32], and the naming conventions for description files [Page
33].
<usage> =
vmake<space>{<vmake_opt_list>}<target>[//<ext_option>]{<space><target
><ext_option>}

<target> = <source_spec> | <desc_spec>

<vmake_optlist> = [-<vmake_opt>{<vmake_opt>}] [+e]

<vmake_opt> = b | c | d | D<digit> | F | g | i | I | k | K | l | L |
m | M | n | p | r | S | u | U | w | x

General Rules
...

1. In <ext_option>, <token_sep> = /

2. <desc_ext> can be omitted in <desc_spec>

vmake -D4i vzz34x//debug/profile

vmake -D4 -l -p demo.mac

vmake demo

Explanation:

Development Environment: SAP DB 37

SAP AG April 2003

You can specify additional Options for Description Files [Page 47] in the VMAKE
call for the translation of module files using VMAKE. Where applicable, these
options are combined with the options that are specified in the description files
used at the same time. The options specified for description files in the VMAKE
call must be separated from <target> with two slashes.

The options for description files are separated from each other with one slash.

 Options for Calling VMAKE
Option Description
D<digit> Information on internal data and program runs is output. The larger <digit> is, the

more information is output.

i interactive
VMAKE is executed interactively (default setting for Windows NT). In UNIX systems,
VMAKE creates a new process that assumes all of the tasks. The parent process
shows all of the messages from the child process, and waits for termination signals. If
you use the i option, a new process is not started, and the standard signal handlers
are used.

w This option corresponds to the default setting for UNIX systems, with the exception
that the parent process is terminated by a termination signal without a query.
Normally, this signal leads to a query asking you to confirm whether you want to
terminate or continue.

b background
This option terminates the parent process once the child process has been
successfully generated.
Note: the child process is generated once all of the descriptions have been collected.
Normally, the first child process message is <date> start of <target>. VMAKE
is executed interactively before this message, that is, the standard signal handlers are
used.

c print collection only
Once all of the description files have been collected, all of the description information
is displayed, and VMAKE is terminated. This can be used to check the description
files (or the VMAKE tool).

m print module list only
Once all of the description information has been collected, all of the required module
files are output.

x print commands before execution
All of the file system commands executed by VMAKE are first displayed.

n no execution
VMAKE functions as normal, but no file system or OS commands are executed.
VMAKE assumes that all of these operations have been successfully carried out.

r unpack module frames only ('retrieve')
Normally, module files are 'freed' from their frame and then translated. This option
suppresses translation and linking. The unpacked module files remain in the working
directory. No further operations are executed.

L lint
This option analyzes C module files using Lint. No further operations are executed.

S sizeof
Size information for types and variables is extracted from PASCAL module files. No
further operations are executed.

Development Environment: SAP DB 38

SAP AG April 2003

d do not make dependencies
Only the targets listed in the command line are created (if they are not up to date).
Dependent module files are assumed to be up to date. For test purposes, therefore,
you can avoid having to update all of the dependent module files.

u unconditionally make named targets
All named module files are explicitly retranslated and linked. All dependent module
files are translated and linked as standard, depending on whether they are up to date.
All named description files are explicitly relinked.

U unconditionally make ALL targets (except includes)
All named module files, and files that are dependent on them, are translated and
linked (exception: include files).

I unconditionally make includes too (with -U)
When this option is used with the -U option, include files are regenerated.

k keep temporary files
Temporary files created by VMAKE are not deleted. These are unpacked module
files, object files, and others.

K keep temporary files
Temporary files created by VMAKE are not deleted. In addition, all scripts are
assigned the –k option, with the result that they also do not delete their temporary
files.

p include profiling calls into all targets
You use this option to specify profiling for all module files.

M more information (print manual entry)
You use this option to display the vmakman file.

l local make
This option prevents object files from smaller path hierarchies from being used.
VMAKE only translates module files that originate from the lowest path hierarchy. This
option overrides the $VMAKE_OPTION parameter g.

g global make
Use of the complete path hierarchy $VMAKE_PATH for finding object files is initiated.
This option overrides the $VMAKE_OPTION parameter I.

R require
To speed up the creation process, the ? require : <source> option in the
description files is not evaluated (default setting in VMAKE). If you use the R option,
the ? require : <source> option is taken into account.

F file list for release
You use this option to create a distribution list; any obsolete targets, however, are not
updated. All files from the called target that have been assigned the distrib or
distribute option for description files are entered in a list. This list is saved in a file
in the $INSTROOT/etc directory. The name of the file is the same as the name of the
called target. The file is given the extension .lst.

The all.lst file is created when you enter imf -F all .

+e If you have specified software creation in debug mode using the $VMAKE_OPTION
parameter, you can deactivate debug mode with the +e option.

Integration
Grammar for the VMAKE Call [Page 37]

Development Environment: SAP DB 39

SAP AG April 2003

 VMAKE Tools
The tools used by VMAKE are essentially scripts [Page 40]. These can be written in any script
or prototyping language. The shell used to execute the scripts is defined in the environment
variable $TOOLSHELL [Page 16].

The VMAKE tools accept both absolute and relative path specifications for module files [Page
24] and description files [Page 24]. The targets [Page 31] are created in the current run
directory specified by VMAKE and are then stored in the specified target directory.

 Storage Location of the VMAKE Tools
VMAKE initially assumes that the VMAKE tools are stored in the $TOOL/bin directory. If this
is not the case, VMAKE searches every local <path> along the <path>/sys/tool/bin
path.

 Scripts for the VMAKE Tools
Script Name Description
mfainc [-<token>=<value>]
source

Extracts the include code from an Assembler
include file [Page 24] and writes it to the file
<file_name [Page 23]>.h.

Further options define conditional compilation [Page
59]

mfcinc [-<token>=<value>]
source

Extracts the include code from a C/C++ include file
and writes it to the file <file_name>.h.

Further options define conditional compilation [Page
59]

mfpinc [-<token>=<value>]
source

Extracts the include file from a C/C++ include file.
Extracted CONST definitions are written to the file
<file_name>.con;
extracted TYPE definitions are written to the file
<file_name>.typ.

Further options define conditional compilation [Page
59]

mfcexp [-<token>=<value>]
source

Writes the exported interface (define section of the
text frame) to the file <file_name>.h.

Further options define conditional compilation [Page
59]

Development Environment: SAP DB 40

SAP AG April 2003

mfa [-trace=<procedure>] [-
check=no] [-<token>=<value>]
source [includes]

Extracts the code section of an Assembler module
file and writes it to the file <file_name>.s.
If include files are required, they must be specified
in the correct order.
The -trace=... and -check=... options are
inserted to ensure compatibility with mfp scripts,
and are ignored by the mfa script.

Further options define conditional compilation [Page
59]

mfc [-trace=<procedure>] [-
check=no] [-<token>=<value>]
source [includes]

Extracts the code section of a C/C++ module file
[Page 24] and writes it to <file_name>(.c
|.cpp).
If include files are required, they must be specified
in the correct order.
If $VMAKE_VERSION [Page 12] is defined as slow
[Page 37], #define DEBUG is used as a prefix for
the file name.
The -trace=... and -check=... options are
inserted to ensure compatibility with mfp scripts,
and are ignored by the mfc script.

Further options define conditional compilation [Page
59]

mfp [-trace=<procedure>] [-
check=no] [-<token>=<value>]
source [includes]

Extracts the defined section, use section, and code
section of a PASCAL module file and writes them to
the file <file_name>.p.
If include files are required, they must be specified
in the correct order.
The -trace=<procedure> option specifies the
name of the trace procedure, whose call is inserted
at the start of every function and procedure.
The -check=no option defines whether the name
prefixes of exported procedures are to be checked.

Further options define conditional compilation [Page
59]

mfsize [include-list] module Creates a file <file_name>.siz that contains size
information on the types of module file used.
If include files are required, they must be specified
in the correct order.

mfextra [-<token>=<value>]
source destination [includes]

Creates files that do not require translation [Page
30].

Further options define conditional compilation [Page
59] and attributes of the files that do not require
translation.

compa [as-flags] source Translates an Assembler module file. The file
<file_name>.o is created.

compc [cc-flags] source Translates a C/C++ module file. The file
<file_name>.o is created.

compp [pc-flags] source Translates a PASCAL module file. The file
<file_name>.o is created.

comppc [pc-flags] source Translates a PASCAL module file into a C module
file.

Development Environment: SAP DB 41

SAP AG April 2003

complint [cc-flags] source Uses LINT to check a C module file.

archive [ar-flags] library
objects

Writes object files [Page 26] to the library.

linkrel [ld-flags] relocatable
objects

Writes object files to a relocatable object [Page 34].
The name of the created relocatable object is
relocatable.

linkshr [ld-flags] relocatable
objects

Writes object files to a relocatable object, the global
variables of which must be stored in the shared
memory. The name of the created relocatable object
is relocatable.

linkdll [ld-flags] dll archive
objects

Links object files to a dynamic library dll and
generates a static library archive.

linklnk [ld-flags] [-o program]
objects

Links a program with the name program.

linkshm [ld-flags] [-o program]
objects

Links a program with the name program, the global
variables of which must be stored in the shared
memory.

VMAKE completes the names of the scripts using the $TOOLEXT [Page 17] variable (if
available), which defines the file extension of the scripts. If additional parameters are to be
sent to $TOOLSHELL [Page 16], they must be defined in the environment variable
$TOOLOPT [Page 17].

 Selecting the Translation Tools
Module files [Page 24] can be written in different programming languages.

Special VMAKE tools [Page 40] are provided for translating PASCAL, C/C++, and Assembler,
as well as a tool for translating a group of various description languages, such as IDL,
Resource, Yak, Lex, and so on.

Names of the Available Tools
 Assembler PASCAL C / C++ Description

Language Group
Unpack imported

interface mfainc mfpinc mfcinc mfcinc

Unpack exported
interface mfaexp mfpexp mfcexp mfcexp

Phase 1

Unpack module mfa mfp mfc mfrc

Phase 2 Translate compa comppc compc comprc

Each tool consists of a set of scripts that can be modified in the Langinfo
initialization file [Page 26].

Development Environment: SAP DB 42

SAP AG April 2003

Assignment Between File Extension or Last Character and
Translation Tool
VMAKE assigns module files [Page 24] to a specific tool on the basis of the file extension. If
the file does not have an extension, it is assigned on the basis of the last character in the file
name.

 Assembler PASCAL C / C++ Description Language
Class

File extension s p, t c, h / cpp,
hpp

rc, ico, def, mc,
dlg, idl, ycc,
lex, rgs

Last character a p, t or a
number

c / x r

The assignment of the translation tools on the basis of the file extension or last
character in the file name can be modified in the Langextinfo initialization file
[Page 26].

 Options for VMAKE Tools
The following options are transferred by VMAKE

-language=<lang id> Abbreviation for the programming language of the source code.

The following options can be transferred by VMAKE

-k Temporary files are not deleted

-p Profiling is activated (for at least one module file)

-g Debug mode [Page 31] is activated (for at least one module file)

-Y Shared global data, PTOC pointer conversion

-unpack=no The source code does not contain a frame (mf* scripts only)

Depending on the tool in question, these options are either used or ignored.

The specified options for calling VMAKE [Page 38] and options for description files [Page 47]
also apply here.

 Creating Description Files
General Grammar for Description Files [Page 44]

Options for Description Files [Page 47]

Development Environment: SAP DB 43

SAP AG April 2003

 General Grammar for Description Files
<debug_opt> = debug | d

<digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<letter> = A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
| P | Q | R | S | T | U | V | W | X | Y | Z | a | b | c | d | e | f |
g | h | i | j | k | l | m | n | o | p | q | r | s | r | u | v | w | x
| y | z

<new_line> = explicit line break
<profile_opt> = profile | p
<sign> = + | -

<tabulator> = tab

<vmake_default> = f | q | s

<vmake_version> = f | q | s

<extended_letter> = all other printable characters

<character> = <digit> | <letter> | <extended_ letter>

<identifier> = <token>

<space> = [<space>] | [<space>]<tabulator>

<token_sep> = {<token_sep>}<space>

<token> = <character>{<character>}

<list> = [<list>,],{<character>}<token_sep>

<ext_list> = [<ext_list>,],[<sign>]{<character>}<token_sep>

<comment> = [<comment><token_sep>]<token>

<compile_option> = <extended_letter><token>

<demand_spec> = demand[{<layer>{<layer>}}]

<dep_list> = (obj | inc | dep | <demand spec>)=(<list> | <ext_list> |
EMPTY)

<expr> = <character>{<character>} | (<expr>) | not<space><expr> |
![<space>]<expr> | <expr><space>[(not | !)<space>
]in<space>[[<space>]<expr>{[<space>] ,[<space>]<expr>}[<space>]] |
<expr>=[=]<expr> | <expr>!=<expr> | <expr>&&<expr> | <expr>||<expr>

<layer> = <letter><letter>{<letter>}

<mf_option> = <token>[=<value>]

<option> = [<option><token_sep>](<dep_list> | <mf_option> |
<compile_option> | <target_option>)

<option_block> = ([f | [q | [s) <option> {<option>} (f] | q] | s])

<ext_option> = <option_block> | <option> | EMPTY

<target_option> = uncond | remake | <debug opt> | binary | ascii |
exec | definition | interface | <profile opt> | shrglob | noshrglob |
noobjcopy | (<vmake_version>[<vmake_default>]) | -><token> |
<ext_target_option> | <ext_target_option_list>

Development Environment: SAP DB 44

SAP AG April 2003

<ext_target_option> = ?<token_sep>(default_layer | default_version |
require | -><token> | propagate)<token_sep>(: |
([<character>]))<token_sep><token>

<ext_target_option_list> = ?<token_sep>(output | link_with |
link_option | tool_option)<token_sep>(: |
([<character>]))<token_sep><token>{<token_sep>,<token_sep><token>}

<ext_target_option_line> = (<ext_target_option> |
<ext_target_option_list>) <new_line>

<value> = <character>{<character>}

<def line> = &define | &undef <identifier> [<value>]<new_line>

<comment_line> = #<comment><new_line>

<block> = <instance_block> | <sub_block>

<instance_block> =
(<instance_block_start>{<sub_block>}<instance_block_end>) | EMPTY

<instance_block_start> = (&fast | &quick | &slow) <comment><new_line>

<instance_block_end> = (&endfast | &endquick | &endslow)
<comment><new_line>

<sub_block> = {<line>} | <sub_block_start>{<line>}<sub_block_end>

<sub_block_start> = &if <expr>{<space>}<new_line> | &ifdef | &ifndef
| &ifvar | &ifnvar) <identifier>{<space>}<new_line>

<sub_block_end> = &endif <comment><new_line> | &else
<comment><new_line> | &elif <comment><new_line>

<line> Line

For more details, see Grammar for Link Descriptions [Page 45], Grammar for
Compilation Descriptions [Page 46], or Grammar for Processing Lists [Page 46].

General Rules
...

1. <token> can contain a maximum of 512 characters

2. <token> must not contain a <space>

3. If <instance_block_start> contains the string &xxx, <instance_block_stop>
must contain the character string &endxxx.

4. If the <option_block> expression starts with [x , it must end with x].

5. In <mf_option>, <token> must start with <letter> or <character>.

 Grammar for Link Descriptions
Link descriptions are based on the general grammar for description files [Page 44], the
naming conventions for module files [Page 32], and the naming conventions for description
files [Page 33].
<link_description> = {<block>} | EMPTY

<line> = <link_desc_line>

<link_desc_line> = <comment_line> | <link_line> | <def_line> |
<ext_target_option_line> | <tool_option_line> | <file> | EMPTY

Development Environment: SAP DB 45

SAP AG April 2003

<tool_option_line> = <extended_letter><token><new_line>

<file> = (/ | $)<token>

<link_line> = [<source_spec>|<desc_spec>]<new_line>

General Rule
In <tool_option_line>, <ext_character> must not begin with / | $ | !

 Grammar for Compilation Descriptions
Compilation descriptions are based on the general grammar for description files [Page 44]
and the naming conventions for module files [Page 32].
<compile_description> = {<block>} | EMPTY

<line> = <comp_desc_line>

<comp_desc_line> = <comment_line> | <comp_line> | <def_line> |
<option_line> | EMPTY

<comp_line> = (<source_spec> |
<reg_source>)<token_sep>{<option>}<new_line>

<reg_source> = regex(<regex>) |
([<source_id>]*[<lang_id>][<variant>])

<source_id> = g | h | i | v

<regex> = regular expression (GNU)

 Grammar for Processing Lists
Processing lists are based on the general grammar for description files [Page 44], the naming
conventions for module files [Page 32], and the naming conventions for description files [Page
33].
<macro_description> = {<block>} | EMPTY

<line> = <macro_desc_line>

<macro_desc_line> = <comment_line> | <macro_line> | <def_line> |
<ext_target_option_line>

| <command_line> | EMPTY

<command_line> = ![! | ?]<command>

<command> = {<character>}

<macro_line> = [<source_spec>|<desc_spec>]<new_line>

General Rule
In <tool_option_line>, <ext_character> must not begin with / | $ | !

Development Environment: SAP DB 46

SAP AG April 2003

 Options for Description Files
By specifying options in description files, you can influence the translation process [Page 58]
and link operation [Page 59], as well as modify the system default for certain processes.

Some of these options differ depending on the type of description file.

Options for Link Descriptions [Page 47]

Options for Compilation Descriptions [Page 48]

Options for Processing Lists [Page 48]

 Options for Link Descriptions
The following options are available for link descriptions [Page 25]:

? defaultlayer : <layer> [Page 50]
? defaultlayer : [Page 50]
? defaultversion : <vmake_version> [Page 50]
? defaultversion : [Page 50]
? distribute : <list> [Page 51]
? link with : <list> [Page 51]
? linkoption : <list> [Page 51]
? output : <list> [Page 51]
? propagate : <variable>[=<value>] [Page 52]
? require : <target> [Page 52]
? tooloption : <list> [Page 52]
-><output> [Page 53]

ascii [Page 53]

binary [Page 53]

debug|d [Page 54]

definition [Page 54]

demand [Page 54]

demand<relative_path> [Page 54]

demand=<list> [Page 54]

demand<relative_path>=<list> [Page 55]

dep=<list> [Page 55]

distrib [Page 55]

extdep=<list> [Page 55]

inc=<list> [Page 56]

interface [Page 56]

nobind [Page 56]

nodistrib [Page 56]

Development Environment: SAP DB 47

SAP AG April 2003

noobjcopy [Page 56]

noshrglob [Page 57]

obj=<list> [Page 57]

profile|p [Page 57]

remake [Page 57]

shrglob [Page 58]

uncond [Page 58]

 Options for Compilation Descriptions
The following options are available for compilation descriptions [Page 25]:

? defaultlayer : <layer> [Page 50]
? defaultlayer : [Page 50]
ascii [Page 53]

binary [Page 53]

debug|d [Page 54]

definition [Page 54]

demand=<list> [Page 54]

demand<relative_path>=<list> [Page 55]

dep=<list> [Page 55]

exec [Page 55]

extdep=<list> [Page 55]

inc=<list> [Page 56]

interface [Page 56]

noobjcopy [Page 56]

noshrglob [Page 57]

noversion [Page 57]

obj=<list> [Page 57]

profile|p [Page 57]

remake

shrglob [Page 58]

uncond [Page 58]

 Options for Processing Lists
Options
The following options are available for processing lists [Page 26]:

Development Environment: SAP DB 48

SAP AG April 2003

!! <command> [Page 49]
!? <command> [Page 49]
! <command> [Page 49]
? defaultlayer : <layer> [Page 50]
? defaultlayer : [Page 50]
? defaultversion : <vmake_version> [Page 50]
? defaultversion : [Page 50]
? distribute : <list> [Page 51]
? propagate : <variable>[=<value>] [Page 52]
? require : <target> [Page 52]
ascii [Page 53]

binary [Page 53]

debug|d [Page 54]

distrib [Page 55]

nodistrib [Page 56]

remake [Page 57]

shrglob [Page 58]

uncond [Page 58]

 ! <command>
You can only use this option in processing lists [Page 26].

VMAKE processes a processing list from top to bottom. When the tool reaches this option,
and if VMAKE has updated targets [Page 31] up to this point, the OS command <command>
is executed.

If no targets have been updated, this command is ignored.

 !! <command>
You can only use this option in processing lists [Page 26].

VMAKE processes a processing list from top to bottom. When the tool reaches this option, the
operating system command <command> is executed.

Unlike the ! <command> [Page 49] option, the command is executed irrespective of whether
targets have been updated up to this point.

 !? <command>
You can only use this option in processing lists [Page 26].

Development Environment: SAP DB 49

SAP AG April 2003

VMAKE processes a processing list from top to bottom. When the tool reaches this option, the
operating system command <command> is only executed if all of the preceding targets [Page
31] have been successfully updated.

 ? defaultlayer : <layer>
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

If the name of a module file [Page 24] does not follow the naming conventions [Page 32], and
if the system cannot determine the corresponding layer [Page 31] as a result, the layer
specified in <layer> is accessed.

This option can be repeated several times in a description file.

 ? defaultlayer :
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

If the name of a module file [Page 24] does not follow the naming conventions [Page 32], and
if the system cannot determine the corresponding layer [Page 31] as a result, the layer
specified with the ? defaultlayer : <layer> option is accessed.

Use the ? defaultlayer : option if you want to delete the default value for a layer.

 ? defaultversion : <vmake_version>
You can use this option in processing lists [Page 26] and link descriptions [Page 25].

This option defines the VMAKE version [Page 36] to be used to process the following listed
files.

To specify a different version subsequently, use the ? defaultversion
: <vmake_version> option. This option, therefore, can be used repeatedly in a description
file.

To reset VMAKE to the VMAKE version specified in the call, use the ? defaultversion :
option.

 ? defaultversion :
You can use this option in processing lists [Page 26] and link descriptions [Page 25].

You use this option to delete a VMAKE version [Page 36] that was set with ? defaultversion
: <vmake_version> [Page 50].

The system then uses the VMAKE version specified when VMAKE is called.

Development Environment: SAP DB 50

SAP AG April 2003

 ? distribute : <list>
You can use this option in processing lists [Page 26] and link descriptions [Page 25].

This option can be used to create distribution lists (-F option for calling VMAKE [Page 38]).
Enter the list of files to be included in the distribution list in <list>.

Specify the file paths in <list>, relative to the $INSTROOT [Page 15] directory (for example
pgm/kernel) .

We recommend that you use the distrib [Page 55] option, if possible, for this
purpose.

 ? link with : <list>
You can only use this option in link descriptions [Page 25].

If a target [Page 31] requires additional libraries, these can be included in the link description
with the ? link with : <list> option.

 ? linkoption : <list>
You can only use this option in link descriptions [Page 25].

You use this option to transfer the list of options specified in <list> to the tool used for the
link operation [Page 59].

 ? output : <list>
You can only use this option in link descriptions [Page 25].

Targets [Page 31] of link descriptions are given the name of the link description and are
stored in a path specified by VMAKE.

Changing Names and Paths
If you use the ? output : <list> option, you can change the name and/or path of
several output files, or create copies of individual files. To do so, you create a list <list>, in
which you assign one or more paths to one or more targets. VMAKE then changes the name
and path definition specified for this target by the system.

Development Environment: SAP DB 51

SAP AG April 2003

If you specify a directory in the list or end an entry with a slash, the file retains the name
assigned by the system and is copied to the specified directory.

If you want to change the name and/or path for one individual output file, use the
-><output> [Page 53] option.

Output Files for Different Platforms
An output file can have different file extensions on different platforms. In this case, specify the
file extension * for the target. By doing so, you can avoid having to define individual output
files for each platform.

Dynamic libraries have the file extension dll on Windows NT and so or sl (HP-
UX) on UNIX. In this case, the option should read:
? output : $DBROOT/misc/libtest.*

 ? propagate : <variable>[=<value>]
You use this option in processing lists [Page 26] and link descriptions [Page 25] to set an
environment variable.

The system deletes this variable once the relevant list or link description has been processed.

 ? require : <target>
You can use this option in processing lists [Page 26] and link descriptions [Page 25]. It is only
effective with the -R option for calling VMAKE [Page 38].

You use this option to specify whether a link description requires certain targets [Page 31] to
be created.

A tool for forwarding a file to the pre-compiler is to be called in a processing list.
In this case, you can use this option to ensure that the pre-compiler is generated
first.

 ? tooloption : <list>
You can only use this option in link descriptions [Page 25].

The options in the <list> are forwarded to the tool that is responsible for the link operation
[Page 59].

Development Environment: SAP DB 52

SAP AG April 2003

 -><output>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

Targets [Page 31] of link descriptions are given the name of the link description and are
stored in a path specified by VMAKE.

Use
Changing Names and Paths
If you want to change the name and/or path for one individual output file, use the
-><output> option.

If you use the ? output: <list> [Page 51] option, you can change the name and/or path of
several output files, or create copies of individual files. To do so, you create a list <list>, in
which you assign one or more paths to one or more targets. VMAKE then changes the name
and path definition specified for this target by the system.

If you specify a directory in the list or end an entry with a slash, the file retains the name
assigned by the system and is copied to the specified directory.

Output Files for Different Platforms
An output file can have different file extensions on different platforms. In this case, specify the
file extension * for the target. By doing so, you can avoid having to define individual output
files for each platform.

Dynamic libraries have the file extension dll on Windows NT and so or sl (HP-
UX) on UNIX. In this case, the option should read:
->$DBROOT/misc/libtest.*

 ascii
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

The option prevents module files [Page 24] from being translated. VMAKE creates the
corresponding target [Page 31] by copying the module file only to the object directory [Page
26]. In contrast to the binary [Page 53] option, the file is treated as a text file.

If you want to store the file in a different location, use the -><output> [Page 53] option.

 binary
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

The option prevents module files [Page 24] from being unpacked and translated. VMAKE
creates the corresponding target [Page 31] by copying the module file only to the object
directory [Page 26]. In contrast to the ascii [Page 53] option, the file is treated as a binary file.

If you want to store the file in a different location, use the ->output [Page 53] option.

Development Environment: SAP DB 53

SAP AG April 2003

 debug|d
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

Module files [Page 24] are translated in debug mode [Page 31].

 definition
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

The definition option identifies a module file [Page 24] as a definition file for dynamic libraries
on Windows NT. Semantically speaking, this option has the same effect as a combination of
the binary [Page 53] and demand [Page 54] options.

When this option is assigned to a module file, the file is copied as a binary file to the current
working directory tmp [Page 9] before the link operation [Page 59] takes place.

 demand
You can only use this option in link descriptions [Page 25].

An object file [Page 26] is copied to the tmp [Page 9] directory before the link operation [Page
59] takes place.

If you assign this option to a module file [Page 24], the resulting object file is requested for the
link operation; in other words, it is copied to the working directory specified by VMAKE.
Expression of physical dependency.

 demand{<relative path>}
You can only use this option in link descriptions [Page 25].

The object file [Page 26] of the identified module file [Page 24] is requested in a specific path
for the link operation [Page 59]; in other words, it is copied to the specified path relative to the
working directory. Expression of physical dependency.

 demand=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

The object files (see also "binary") of the listed files are requested when translation is carried
out; in other words, they are copied to the relevant working directory. Expression of physical
dependency.

Development Environment: SAP DB 54

SAP AG April 2003

 demand{<relative path>}=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

The object files (see also "binary") of the listed files are requested to a specific path when
translation is carried out; in other words, they are copied to the path relative to the working
directory. Expression of physical dependency.

 dep=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

Lists the module files [Page 24] on which the specified module file is dependent, that is,

vco01.idl dep=vco03.idl

 distrib
You can use this option in processing lists [Page 26] and link descriptions [Page 25].

This option is required to create distribution lists (-F option for Calling VMAKE [Page 38]). The
files resulting from the target [Page 31] listed directly above this option are included in the
distribution list, provided that they are located in the $INSTROOT [Page 15] directory.

 exec
You can only use this option in compilation descriptions [Page 25]. It is only evaluated on
UNIX and in conjunction with the ascii [Page 53] or binary [Page 53] options.

When you specify this option, the corresponding target [Page 31] is assigned the execute
access authorization.

 extdep=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

You use this option to define a logical dependency between targets and/or files.

Development Environment: SAP DB 55

SAP AG April 2003

Translating module file X results in the by-product Y. You can use this option to
specify that X should be retranslated as soon as Y no longer exists.

 inc=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].
You list include files that are used by the module file.

The files in <list> must be identifiable as include files.

Files not identifiable as an include file by the extension .h or 00, or by the letter h as the first
letter in the file name, can be identified as such by appending an (i).

inc=vma18(i)

 interface
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

By specifying this option, you can ensure that a module file cannot be updated once it has
been translated (for example, a defined interface). For this purpose, a file with the extension
.i is created on the computer, on which module files with this option are translated.

This module file can only be translated again when VMAKE no longer finds a file of this name
with the extension .i in the path hierarchy (VMAKE_PATH [Page 16]).

 nobind
You can only use this option in link descriptions [Page 25].

The target [Page 31] that has been assigned this option is created but not linked during the
link operation [Page 59].

 nodistrib
You can use this option in processing lists [Page 26] and link descriptions [Page 25].

This option is specified after the Target [Page 31] nodistrib or directly after the output file
in brackets (nodistrib). In this way, you can exclude individual components or files, that
would usually be created during the make run, from the delivery list.

 noobjcopy
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

Development Environment: SAP DB 56

SAP AG April 2003

Object files that result from module files with this option are not copied. You use this option,
for example, if the object contains information that is computer specific or unique across all
departments.

 noshrglob
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

By specifying this option, you explicitly suppress the calculation of size specifications for
global variables in the source code. These size specifications are required to use the shared
memory.

 noversion
You can use this option in compilation descriptions [Page 25].

If you want to create modules used by the header files in such a way that they are version-
independent (VMAKE Versions [Page 36]), you must use noversion for these modules. The
object files [Page 26] and the date files [Page 30] are then copied directly under the $WRK
[Page 18] directory in the obj and date directories. In this way, these files are only created
once for all versions (fast, quick, slow).

 obj=<list>
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

Normally, the translation process [Page 58] with VMAKE generates exactly one object file
[Page 26]. The name of this file comprises the name of the module file [Page 24] and the file
extension .o.
You use this option if object files other than those that are normally created are generated.
<list> can be empty if no object file is created.

 profile|p
You can use this option in link descriptions [Page 25] and compilation descriptions [Page 25].

You can use this option to insert source code for measuring performance (profiling) in a
module file.

 remake
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

When object files are no longer up to date and the target is to be recreated, you can use this
option to force a retranslation of the corresponding module files.

Development Environment: SAP DB 57

SAP AG April 2003

 shrglob
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

With this option, you specify that a file is to be created containing the size specifications for
the global variables used in the source code. These size specifications are required to use the
shared memory.

 uncond
You can use this option in processing lists [Page 26], link descriptions [Page 25], and
compilation descriptions [Page 25].

You use this option if a module file is to be retranslated with every make operation.

 VMAKE Logs
The entire MAKE operation [Page 34] is logged by VMAKE. In doing so, VMAKE generates
two output logs and stores them in the prot directory (General Directory Structure [Page 9]).

These logs are named after the file name specified as a parameter when the required VMAKE
version [Page 36] was called. The files have the extension .p0 or .x0.

File extension Log
.p0 Normal log; corresponds to the screen outputs during the creation process

.x0 Contains detailed information on the individual files as well as the options
[Page 43] used to call the VMAKE tools [Page 40]

When these logs are created, older logs with the same name are renamed (the last digit is
incremented by 1). A log history comprising up to 10 logs (.p0 - .p9) is, therefore, possible.

You can display the current logs in the editor ($EDITOR [Page 20]) using the development
environment tool ipf.pl [Page 22].

 Translation Process
The translation process is divided into two phases:

Unpacking the Module Files [Page 58]

Translating the Module Files [Page 59]

 Unpacking the Module Files
VMAKE uses the options in the compilation descriptions [Page 25] to determine where to
unpack the module files [Page 24]. The following additional steps can be carried out:

The parts of the frame that are not relevant for translation are removed [Page 59]

Development Environment: SAP DB 58

SAP AG April 2003

Conditional compilation [Page 59]

 Removing Frame Parts that are not Relevant for
Translation
Module files [Page 24] that have to be unpacked [Page 58] have a text frame that contains
the following information:

• Name of the module

• Module specification

• Author, version, release

• Exported interface

• Imported interface

• Source code

• Control characters

Since some of the text frame does not have to be translated, those parts of the frame that are
not relevant for translation are removed when the file is unpacked.

 Conditional Compilation
VMAKE hides those parts of the source code that are not required under the current
conditions, such as unnecessary network connections (UNIX or NT).

The system copies the include files [Page 24] that are to be used to the start of the module
file [Page 24] that is awaiting translation.

 Translating the Module Files
VMAKE translates the module files [Page 24] in the temporary tmp [Page 9] directory.

The system stores the resulting object files [Page 26] in an object directory [Page 26] and
deletes the files from the temporary directory.

 Link Operation
Object files [Page 26] are linked to form a software component in the tmp [Page 9] directory.
VMAKE then stores this component in a predefined (see below) directory, or in a target
directory specified in the link description. The component is then deleted from the tmp [Page
9] directory.

For the link operation, VMAKE is equipped with various tools (VMAKE tools [Page 40]) for
each type of object file that can result from the translation process [Page 58]. VMAKE uses

Development Environment: SAP DB 59

SAP AG April 2003

the file extension of the description file to decide which tool to use to link the respective object
files.

The tool takes the object files and the relevant options [Page 47] to be used from the link
description [Page 25].

Software Component to be Created Link Script Target Directory

Program linklnk $DBROOT/pgm

Program that facilitates shared memory
access

linkshm $DBROOT/pgm

Static library archive $WRK/fast/obj or
$WRK/quick/obj or
$WRK/slow/obj

Dynamic library linkdll $DBROOT/lib(32 bit)
$DBROOT/lib/lib64 (64 bit)

Program that can be linked to other
programs

linkrel $WRK/fast/obj or
$WRK/quick/obj or
$WRK/slow/obj

Program that can be linked to other
programs and facilitates shared memory
access

linkshr $WRK/fast/obj or
$WRK/quick/obj or
$WRK/slow/obj

 Working with the SAP DB Development
Environment: Examples
Operating the Development Environment [Page 60]

Creating DBMCLI with the SAP DB Development Environment [Page 67]

 Operating the Development Environment
The operation of the development environment can be explained using an example (objective
[Page 60]).

Process Flow [Page 61]

Explanation of the Process Flow [Page 61]

Logs [Page 62]

Further Options [Page 64]

Further Information on Dependencies [Page 65]

Comparison Between the SAP DB VMAKE Program and a Conventional Make Program
[Page 67]

 Objective
• The file sys/src/SAPDB/HelloWorld.c is to be translated.

Development Environment: SAP DB 60

SAP AG April 2003

• The include file [Page 24] sys/src/SAPDB/HelloWorld.h is required for this
purpose.

• The result is linked to an executable program:
usr/pgm/hello (or usr\pgm\hello.exe on Windows NT).

 Process Flow
imf.pl hello.lnk

Build: 40283

vmake 9.8.5 28-11-2000

VMAKE_PATH=d:\V73\develop,d:\SAPSRC

17-01-01 13:33:46 start of collection phase

17-01-01 13:33:54 end of collection phase

17-01-01 13:33:54 start of hello.lnk fast

HelloWorld.h

HelloWorld.c fast

hello.lnk fast

s100buildnumber_PID854.c

17-01-01 13:33:55 end of hello.lnk fast

 Explanation of the Process Flow
First, all of the required files are determined:
The description file [Page 24] sys/desc/hello.lnk is recognized as the description of an
executable program from the file extension .lnk. This description contains only one file:

:SAPDB/HelloWorld.c

The colon stands for the directory with the module files [Page 24] sys/src.

The system recognizes from the file extension .c that the module file [Page 24]
sys/src/SAPDB/HelloWorld.c is a module file that has to be translated with the C
compiler. The include files [Page 24] required by this module file are listed in the description
file sys/desc/SAPDB.com:

HelloWorld.c inc=:SAPDB/HelloWorld.h

This line can contain further compiler options.

The include file sys/src/SAPDB/HelloWorld.h does not require any further files.
Otherwise, these dependencies would also have to be entered in SAPDB.com.

Once the required files have been determined, each of these files is updated:

Development Environment: SAP DB 61

SAP AG April 2003

• Include files
HelloWorld.h

HelloWorld.c fast

hello.lnk fast

These files are copied from the development area (General Directory Structure [Page 9]) to a
suitable subdirectory sys/wrk/incl, in this case, to
sys/wrk/inl/SAPDB/HelloWorld.h.

File names in #include statements, therefore, must always be specified relative to
sys/wrk/incl.

• C sources
HelloWorld.h

HelloWorld.c fast

hello.lnk fast

These are converted to object files [Page 26] using the C compiler.

Object files can be created in three different versions (VMAKE versions [Page 36]):

 * fast: with optimization

 * quick: with assertions

 * slow: with assertions and trace outputs

In this case, the file created is written to sys/wrk/fast/obj/SAPDB/HelloWorld.o.

Object files are also assigned the file extension .o on Windows NT(tm).

The source file is copied to the sys/wrk/fast/tmp directory for translation [Page 58]. All of
the intermediate results (this is particularly relevant for PASCAL sources) are created in this
directory, and can be viewed in the event of an error.

• Executable programs
HelloWorld.h

HelloWorld.c fast

hello.lnk fast

These are linked and copied to usr/pgm.

On UNIX systems, usr/pgm/hello.f is created and a link to it is entered in the file system,
under usr/pgm/hello.

On Windows NT, the file usr\pgm\hello.exe.f is created and copied to
usr\pgm\hello.exe.

 Logs
Using the ipf.pl hello.lnk command, you can display two VMAKE logs [Page 58].

hello.lnk.p0 is a copy of the information displayed on the screen.

Development Environment: SAP DB 62

SAP AG April 2003

hello.lnk.x0 lists all of the relevant timestamps, as well as the actions that were carried
out.
...

HelloWorld.c:

17-01-01 18:27:05 dependencies
(d:\V73\develop/sys/wrk/incl/SAPDB/HelloWorld.h)

17-01-01 12:29:20 d:\V73\develop/sys/src/SAPDB/HelloWorld.c

17-01-01 12:29:20
d:\V73\develop/sys/wrk/fast/dates/SAPDB/HelloWorld.c.dat

17-01-01 18:27:07 d:\V73\develop/sys/wrk/fast/obj/SAPDB/HelloWorld.o

unconditional HelloWorld.c

rm d:\V73\develop/sys/wrk/fast/obj/SAPDB/HelloWorld.o

HelloWorld.c fast debug

D:\SAPDevelop\Devtool\Perl\bin\perl.exe
D:\SAPDevelop\Devtool/bin/mfc.pl \

 -f \

 -debug=1 \

 -language=c \

 -unpack=no \

 d:\V73\develop/sys/src/SAPDB/HelloWorld.c \

 d:\V73\develop/sys/wrk/incl/SAPDB/HelloWorld.h

touch HelloWorld.c

D:\SAPDevelop\Devtool\Perl\bin\perl.exe
D:\SAPDevelop\Devtool/bin/compc.pl \

 -g \

 -language=c \

 HelloWorld.c

HelloWorld.c

touch HelloWorld.o

mv HelloWorld.o d:\V73\develop/sys/wrk/fast/obj/SAPDB/HelloWorld.o

touch d:\V73\develop/sys/wrk/fast/dates/SAPDB/HelloWorld.c.dat (from
HelloWorld.c)

17-01-01 06:30:53 PM
d:\V73\develop/sys/wrk/fast/obj/SAPDB/HelloWorld.o

...

If you want to find out which options were used to call the compilers or linkers, set the
environment variable NOQUIET [Page 20].

UNIX: NOQUIET=1; export NOQUIET

Windows NT: set NOQUIET=1

imf -u :SAPDB/HelloWorld.c

HelloWorld.c fast

Development Environment: SAP DB 63

SAP AG April 2003

cl -DREL30 -DWIN32 -DI386 -DSAG -Id:\V73\develop\sys\wrk/incl/SAPDB -
DDU

MP_ENABLED -D_WIN32 -G6 -D_X86_=1 -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -
nol

ogo -Gy -W2 -MT -DFAST=FAST -Ox -ID:/SAPDevelop/Devtool/incl -
FoHelloWor

ld.o -c HelloWorld.c

 Further Options
Forced Translation [Page 64]

Working with Debug Information [Page 65]

 Forced Translation
• -u option

Creates the specified target [Page 31] as a new target. A new link is created to an executable
program.
imf.pl -u hello.lnk

hello.lnk fast

A module file is retranslated.
imf.pl -u :SAPDB/HelloWorld.c

HelloWorld.c fast

• -U option

Recreates the specified target and all of the necessary module files [Page 24].
imf.pl -U hello.lnk

HelloWorld.c fast

hello.lnk fast

• -U –I option

Recreates the specified target, all of the necessary modules, and all of the required include
files [Page 24].
imf.pl -U -I hello.lnk

HelloWorld.h

HelloWorld.c fast

hello.lnk fast

Development Environment: SAP DB 64

SAP AG April 2003

 Working with Debug Information
The -e option instructs VMAKE to generate all targets [Page 31] with debug information
(Debug Mode [Page 31]).
imf.pl -U -e hello.lnk

HelloWorld.c fast debug

hello.lnk fast debug

usr/pgm/hello can then be started in the debugger. The source files are copied to
sys/wrk/fast/debug after the translation process [Page 58]. This is particularly important
for PASCAL module files [Page 24], since these can only be debugged using the generated C
file, and not in the source code itself.

 Further Information on Dependencies
Displaying the New Targets to be Created [Page 65]

Displaying the Module and Description Files Used [Page 66]

Displaying the Module and Description Files Used, and their Dependencies [Page 66]

 Displaying the New Targets to be Generated
imf.pl -u -n hello.lnk

vmake 9.8.5 28-11-2000

VMAKE_PATH=d:\V73\develop,d:\SAPSRC

17-01-01 04:50:40 PM start of collection phase

17-01-01 04:50:48 PM end of collection phase

17-01-01 04:50:48 PM start of hello.lnk fast

HelloWorld.c fast

hello.lnk fast

17-01-01 04:50:48 PM end of hello.lnk fast

statistics:

macros: 0

programs: 1

dynlinklibs: 0

relocs: 0

libraries: 0

modules: 1

includes: 1

Development Environment: SAP DB 65

SAP AG April 2003

files: 0

commands: 0

extras: 0

 Displaying the Module and Description Files Used
imf.pl -m hello.lnk

desc/Langextinfo

desc/SAPDB.com

desc/hello.lnk

src/SAPDB/HelloWorld.h

src/SAPDB/HelloWorld.c

 Displaying the Module and Description Files Used,
and Their Dependencies
imf.pl -C hello.lnk

program

 name 'hello.lnk'

 type TT_PGM

 version 'f'

 language ' '

 layer ''

 level_i 2

 level_s 2

 level_p 0

 level_c 0

 level_o 2

 shrglob 0

 debug 0

 profile 0

 uncond 0

 forcemake 0

 binary 0

 ascii 0

 definition 0

 noobject 0

Development Environment: SAP DB 66

SAP AG April 2003

 noobjcopy 0

 deptype 0

 nodebug 0

 file

 descriptions

 options

 dependencies

 'HelloWorld.c' 'f'

 demands

 external dependencies

 callers

...

 Comparison Between SAP DB VMAKE and a
Conventional Make Program
To those who are familiar with the traditional UNIX make or Microsoft nmake programs, some
of the features of VMAKE might seem a little surprising.

• Since all of the include files are copied to sys/wrk/incl and all of the source files are
copied to a temporary directory before translation, file names in the error messages
output by the compiler never point to the actual source file.

• The program always attempts to generate as much as possible, and does not stop after
the first error. This is equivalent to the -k option in make.

• Each object file [Page 26] has a date file [Page 30] (for example,
sys/wrk/fast/dates/SAPDB/HelloWorld.c.dat). An new object file is created:

• If the existing object file is older than the source file (as in make)

• If the timestamp of the date file differs from that of the source file.

 Creating DBMCLI with the SAP DB Development
Environment
Database Manager CLI
The Database Manager CLI (Database Manager Command Line Interface, DBMCLI)
communicates with the DBM server and can, therefore, be used to administrate an SAP DB
instance. The behavior of the Database Manager CLI depends on the call parameters and
user entries. For more information about the Database Manager CLI, see the Database
Manager CLI: SAP DB 7.4 documentation.

Database Manager CLI tasks:

Development Environment: SAP DB 67

SAP AG April 2003

• The Database Manager CLI establishes the connection to the DBM server, and
transfers one or more commands to it.

• The Database Manager CLI accepts and outputs the DBM server response(s).

• When the Database Manager CLI has been terminated, the connection to the DBM
server is closed.

See also:
Structure of the Database Manager CLI [Page 68]

Creating the Database Manager CLI
...

1. Follow the instructions in Creating the Database Manager CLI [Page 68].

2. Perform a function check [Page 74].

 Structure of the Database Manager CLI
The Database Manager CLI consists of the following components:

• Main Components

• Communication Components

• DBM Server

Main Components
Tasks of the main components:

• Accept and evaluate the call parameters and user entries.

• Transfer the dbm commands to the communication components.

• Receive the DBM server responses from the communication components.

• Evaluate and output the DBM server responses.

Communication Components
Tasks of the communication components:

• Communication with the local DBM server.

• Communication with a DBM server on a remote host.

The communication components are part of the SAP DB runtime environment (RTE).

DBM Server
A DBM server is integrated in the Database Manager CLI.

If the user requires, this integrated DBM server can be used. In this case, the components
required to connect to a separate DBM server are not used.

 Creating the Database Manager CLI
The Database Manager CLI is created in the SAP DB development environment by
processing information from a link description [Page 25]. This link description is a file of the
lnk file type, and is called dbmcli.lnk ($OWN [Page 18]/sys/desc/dbmcli.lnk, see
also General Directory Structure of the SAP DB Development Environment [Page 9]).

Development Environment: SAP DB 68

SAP AG April 2003

Processing this link description leads to the creation of an executable program. The file
dbmcli.lnk also defines where the executable program is stored:

• Windows NT/Windows 2000: The executable program is stored in directory
$OWN\usr\pgm.

• UNIX: The line ->$INSTROOT [Page 15]/bin/dbmcli is inserted in the link
description file dbmcli.lnk. As a result, the executable program is stored in the
directory $OWN/usr/bin.

Procedure
Enter the following command:
imf dbmcli

For information about the command imf, see ims.pl; imq.pl; imf.pl [Page 21].

This command instructs the development environment to process the link description
dbmcli.lnk [Page 69] .

The link description file does not have to be specified with its type (lnk), since its name is
unique. The development environment automatically determines the type of the link
description file, and, therefore, the type of processing.

Result
The DBMCLI (Database Manager CLI) software component is created:

• UNIX: $OWN/usr/bin/dbmcli

• Windows NT / Windows 2000: $OWN\usr\pgm\dbmcli.exe

Perform a function check [Page 74].

Integration
Creating DBMCLI with the SAP DB Development Environment [Page 67]

 Link Description dbmcli.lnk
The following extract from the link description [Page 25] dbmcli.lnk contains the main
commands required for Creating the Database Manager CLI [Page 68]. Special commands
and switches, which may be needed for the link operation on the individual platforms, have
been omitted from this example.

To create the Database Manager CLI, you must always use the complete link
description file dbmcli.lnk in the source directory (see General Directory
Structure of the SAP DB Development Environment [Page 9]).

&if $OS in [WIN32, OS2]
 :Resource/dbmcli.rc [Page 71] remake
&endif

vcn12.cpp [Page 71]
vcn13.cpp [Page 71]
vcn14.c [Page 71]

cservlib [Page 72]

Development Environment: SAP DB 69

SAP AG April 2003

splib [Page 73]
eoxlib [Page 73]
&if $OS in [WIN32, OS2]
 sqlusr [Page 73]
&else

 enalib [Page 73]
 enblib [Page 73]
&endif

Further Information
Explanation of the Link Description dbmcli.lnk [Page 70]

Components of DBMCLI [Page 70]

 Explanation of the Link Description dbmcli.lnk
The link description dbmcli.lnk [Page 69] contains references to module files [Page 24] and
link descriptions [Page 25].

• References to module files cause these module files to be translated. The translation
tools are assigned on the basis of the file extension of the module files.
Module files in this example link description:
dbmcli.rc, vcn12.cpp, vcn13.cpp, vcn14.c

• References to link descriptions cause these descriptions to be processed in
accordance with their description type.
Link descriptions in this example:
cservlib, splib, eoxlib, sqlusr, enalib, enblib

You can find explanations of the module files and link descriptions in the section Components
of DBMCLI [Page 70].

 Components of DBMCLI
The Database Manager CLI consists of the following components:

• Module file [Page 24] dbmcli.rc [Page 71]

• Module file vcn12.cpp [Page 71]

• Module file vcn13.cpp [Page 71]

• Module file vcn14.c [Page 71]

• Link description [Page 25] cservlib [Page 72]

• Link description splib [Page 73]

• Link description eoxlib [Page 73]

• Link description sqlusr [Page 73]

• Link description enalib [Page 73]

• Link description enblib [Page 73]

Other Dependencies [Page 73]

Development Environment: SAP DB 70

SAP AG April 2003

Integration
Link description dbmcli.lnk [Page 69]

 dbmcli.rc
The module file [Page 24] dbmcli.rc in the link description dbmcli.lnk [Page 69] is only
relevant under Windows NT/Windows 2000. For this reason, the module is encapsulated in a
condition in the link description file dbmcli.lnk.

The module file dbmcli.rc is a resource file and is stored in the subdirectory $OWN [Page
18]\sys\src\Resource (General Directory Structure of the SAP DB Development
Environment [Page 9]). If the module file dbmcli.rc is specified in the link description file
dbmcli.lnk, the Resource directory must also be specified explicitly:
:Resource/dbmcli.rc

The module file dbmcli.rc contains source code that is specific to Windows NT/Windows
2000. When this file is specified in the link description file, the relevant resources are
integrated in the Database Manager CLI.

Integration
Components of DBMCLI [Page 70]

 vcn12.cpp, vcn13.cpp, vcn14.c
The module files [Page 24] vcn12.cpp, vcn13.cpp, and vcn14.c from the link description
dbmcli.lnk [Page 69] are stored in the directory $OWN [Page 18]/sys/src/cn. This
directory name is determined implicitly from the module file name.

These module files are the main components (see Structure of the Database Manager CLI
[Page 68])of the Database Manager CLI, and contain C or C++ source codes.

• The main function is stored in module file vcn12.cpp.

• The module file vcn13.cpp contains certain functions required for file access and
character set conversion.

• The module file vcn14.c is used to connect main components with communication
components.

In the module files vcn12.cpp, vcn13.cpp and vcn14.c, #include instructions are used
to refer to include files [Page 72] .

The dependency of a module file on an include file is described in the compilation description
[Page 71].

Integration
Components of DBMCLI [Page 70]

 Compilation Description
In the module files [Page 24] vcn12.cpp, vcn13.cpp, and vcn14.c [Page 71] of the link
description dbmcli.lnk [Page 69], #include instructions are used to refer to include files.

Development Environment: SAP DB 71

SAP AG April 2003

The dependency of a module file on an include file [Page 24] is described in the compilation
description [Page 25]. The compilation description appropriate to the module file is
determined and evaluated implicitly using the directory in which the module file to be
translated is stored.

In addition to the dependency of a module file on include files, the compilation description
specifies further properties of the module files that control how they are translated by the
development environment.

Further Information
Include Files [Page 72] of the module files vcn12.cpp, vcn13.cpp, and vcn14.c

 Include Files
The dependencies of a module file [Page 24] on include files [Page 24] is explained in the
following example of a module file of the link description dbmcli.lnk [Page 69].

The dependencies for the module file vcn12.cpp [Page 71] in the directory $OWN
[Page 18]/sys/src/cn are contained in compilation description [Page 71]
$OWN/sys/desc/cn.com. These are described by the following lines in the
compilation description:
vcn12.cpp inc=gsp09.h,heo02.h,hcn13.h,hcn14.h,hcn90.h,...

This example only contains the keyword inc. The keyword inc refers to the required include
files.

The include files listed after the keyword inc are created by the development environment in
include directory $OWN/wrk/incl before the module file is translated. In doing so, the
development environment processes the include files according to their file type.

Only type h include files are shown in the example above. Type h include files are copied
from the relevant subdirectory under $OWN/sys/src to a subdirectory of the include
directory. The name of this subdirectory is determined implicitly by the development
environment from the name of the include file.

 cservlib
The link description [Page 25] cservlib ($OWN [Page 18]/sys/desc/cservlib.lib) is
of the type lib. The link description type lib generates a static library.

A lib type link description consists of several module files [Page 24] that are grouped after
translation to form the appropriate library. The dependencies and properties of the individual
module files are stored in the directory-specific compilation descriptions [Page 25].

If cservlib is entered in link description dbmcli.lnk [Page 69], the cservlib library is
integrated in the Database Manager CLI.

The cservlib library contains the functionality of the DBM server integrated in the Database
Manager CLI (see Structure of the Database Manager CLI [Page 68]).

Integration
Components of DBMCLI [Page 70]

Development Environment: SAP DB 72

SAP AG April 2003

 splib
The link description [Page 25] splib ($OWN [Page 18]/sys/desc/splib.lib) in the link
description dbmcli.lnk [Page 69] is of the type lib.

The splib library contains modules with functions that can be used generally.

Integration
Components of DBMCLI [Page 70]

 eoxlib
The link description [Page 25] eoxlib ($OWN [Page 18]/sys/desc/eoxlib.lib) in the
link description dbmcli.lnk [Page 69] is of the type lib.

The library eoxlib contains communication components of the SAP DB runtime environment
(see Structure of the Database Manager CLI [Page 68]).

Integration
Components of DBMCLI [Page 70]

 sqlusr, enalib, enblib
The link descriptions [Page 25] sqlusr, enalib, enblib ($OWN [Page
18]/sys/desc/sqlusr.lib, $OWN/sys/desc/enalib.lib,
$OWN/sys/desc/enblib.lib) are of the type lib.

The libraries sqlusr, enalib, enblib contain communication components of the SAP DB
runtime environment (see Structure of the Database Manager CLI [Page 68]). Since the SAP
DB runtime environment is platform specific, different libraries are used on Windows
NT/Windows 2000 and UNIX. For this reason, the link description file is encapsulated in a
condition in the link description dbmcli.lnk [Page 69].

Integration
Components of DBMCLI [Page 70]

 Other Dependencies
If you are using Windows NT or Windows 2000, note that the Database Manager CLI requires
a dynamic library. This library must be created explicitly.

To do so, enter the following command:
imf sqltcp

For information about the command imf, see ims.pl; imq.pl; imf.pl [Page 21].

Integration
Components of DBMCLI [Page 70]

Development Environment: SAP DB 73

SAP AG April 2003

Development Environment: SAP DB 74

 Function Check
You can check the function of the Database Manager CLI by executing a dbm command.

Prerequisites
Creating the Database Manager CLI [Page 68]

Procedure
...

1. Check whether you are actually accessing the software component you have just
created, the Database Manager CLI ($OWN [Page 18]/usr/bin/dbmcli, Windows
NT/Windows 2000: $OWN\usr\pgm\dbmcli.exe).

2. Enter the dbm command for displaying the Database Manager version:
dbmcli [-n <server_node>] -d <database_name> -u
<dbm_userid>,<dbm_password> dbm_version

dbmcli -d TST -u dbm,dbm dbm_version

You can find more information on the various dbm commands in the documentation
Database Manager CLI: SAP DB 7.4.

Result
The output should roughly be as follows:
OK

VERSION = 7.2.4

BUILD = DBMServer 7.2.4 Build 009-000-220-192

OS = UNIX

INSTROOT = /usr/sapdb-srv

LOGON = False

CODE = ASCII

SWAP = full

	Development Environment: SAP DB
	General Directory Structure of the SAP DB Development Environment
	Development Hierarchy
	Environment Variables
	$VMAKE_VERSION
	$VMAKE_DEFAULT
	$VMAKE_OPTION
	Parameters for $VMAKE_OPTION
	$VMAKE_OPTION Parameters for Searching for Source Code
	$VMAKE_OPTION Parameters for Searching for Object Files
	$INSTROOT
	$VMAKE_PATH
	$SHELL
	$TOOLSHELL
	$TOOLOPT
	$TOOL
	$TOOLEXT
	$DLL_TYPE
	$ARC_TYPE
	$OWN
	$WRK
	$PATH
	%INCLUDE%
	$RELVER
	$CORRECTION_LEVEL
	$BUILD_PRAEFIX
	$PYTHONPATH
	$PERL5LIB
	$EDITOR
	$DBROOT
	$NOQUIET
	$TOOLVARS
	Tools in the SAP DB Development Environment
	Tools for Operating the Development Environment
	ims.pl; imq.pl; imf.pl
	idiff.pl
	ils.pl
	ips.pl, ipq.pl and ipf.pl
	iview.pl
	icp.pl
	VMAKE
	Terms
	Files
	Module File
	Module File Directory
	Include Files
	Include Directory
	Description Files
	Link Descriptions
	Compilation Descriptions
	Processing Lists
	Object Files
	Object Directory
	Initialization Files
	Langextinfo
	Langinfo
	Extra
	DirectoryMapping
	Files That do not Require Translation
	Date Files
	Layer
	Target
	Debug Mode
	File Storage
	Naming Conventions for Files
	Naming Conventions for Module Files
	Naming Conventions for Description Files
	Using VMAKE
	MAKE Operation
	Process Flow of the MAKE Operation
	Defining the MAKE Operation
	VMAKE Versions
	fast VMAKE Version
	quick VMAKE Version
	slow VMAKE Version
	Grammar for the VMAKE Call
	Options for Calling VMAKE
	VMAKE Tools
	Storage Location of the VMAKE Tools
	Scripts for the VMAKE Tools
	Selecting the Translation Tools
	Options for VMAKE Tools
	Creating Description Files
	General Grammar for Description Files
	Grammar for Link Descriptions
	Grammar for Compilation Descriptions
	Grammar for Processing Lists
	Options for Description Files
	Options for Link Descriptions
	Options for Compilation Descriptions
	Options for Processing Lists
	! <command>
	!! <command>
	!? <command>
	? defaultlayer : <layer>
	? defaultlayer :
	? defaultversion : <vmake_version>
	? defaultversion :
	? distribute : <list>
	? link with : <list>
	? linkoption : <list>
	? output : <list>
	? propagate : <variable>[=<value>]
	? require : <target>
	? tooloption : <list>
	-><output>
	ascii
	binary
	debug|d
	definition
	demand
	demand{<relative path>}
	demand=<list>
	demand{<relative path>}=<list>
	dep=<list>
	distrib
	exec
	extdep=<list>
	inc=<list>
	interface
	nobind
	nodistrib
	noobjcopy
	noshrglob
	noversion
	obj=<list>
	profile|p
	remake
	shrglob
	uncond
	VMAKE Logs
	Translation Process
	Unpacking the Module Files
	Removing Frame Parts that are not Relevant for Translation
	Conditional Compilation
	Translating the Module Files
	Link Operation
	Working with the SAP DB Development Environment: Examples
	Operating the Development Environment
	Objective
	Process Flow
	Explanation of the Process Flow
	Logs
	Further Options
	Forced Translation
	Working with Debug Information
	Further Information on Dependencies
	Displaying the New Targets to be Generated
	Displaying the Module and Description Files Used
	Displaying the Module and Description Files Used, and Their Dependencies
	Comparison Between SAP DB VMAKE and a Conventional Make Program
	Creating DBMCLI with the SAP DB Development Environment
	Structure of the Database Manager CLI
	Creating the Database Manager CLI
	Link Description dbmcli.lnk
	Explanation of the Link Description dbmcli.lnk
	Components of DBMCLI
	dbmcli.rc
	vcn12.cpp, vcn13.cpp, vcn14.c
	Compilation Description
	Include Files
	cservlib
	splib
	eoxlib
	sqlusr, enalib, enblib
	Other Dependencies
	Function Check

