

Reference Manual: SAP DB

Vers ion 7 .4

SAP AG April 2003

Copyright

© Copyright 2003 SAP AG.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation.
For more information on the GNU Free Documentaton License see
http://www.gnu.org/copyleft/fdl.html#SEC4.

Reference Manual: SAP DB 7.4 2

SAP AG April 2003

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Typographic Conventions

Type Style Description

Example text Words or characters that appear on the screen. These include field
names, screen titles, pushbuttons as well as menu names, paths and
options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, titles of graphics and tables.

EXAMPLE TEXT Names of elements in the system. These include report names,
program names, transaction codes, table names, and individual key
words of a programming language, when surrounded by body text, for
example, SELECT and INCLUDE.

Example text Screen output. This includes file and directory names and their paths,
messages, source code, names of variables and parameters as well as
names of installation, upgrade and database tools.

EXAMPLE TEXT Keys on the keyboard, for example, function keys (such as F2) or the
ENTER key.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Pointed brackets indicate that you replace these
words and characters with appropriate entries.

Reference Manual: SAP DB 7.4 3

SAP AG April 2003

Reference Manual: SAP DB 7.4 .. 14
Concepts .. 14

Data Type... 15

NULL value ... 15

Special NULL value .. 15

Character string .. 16

LONG column ... 16

Number ... 16

Date value... 17

Time value .. 17

Timestamp value .. 17

BOOLEAN... 17

Code Attribute .. 17

UNICODE ... 18

Code tables .. 18

ASCII code.. 18

EBCDIC code ... 20

SERIAL... 22

Parameter... 22

Table... 23

Column ... 24

Domain ... 24

Index... 24

Synonym... 24

Users and Usergroups ... 25

Privilege.. 25

Role .. 25

Database Catalog/Application Data ... 26

Transaction... 26

Subtransaction ... 27

Database Session .. 27

Data integrity .. 28

Database procedure... 28

Trigger .. 29

SQL mode .. 29

Basic Elements .. 29
Character.. 30

Digit... 30

Letter... 30

Reference Manual: SAP DB 7.4 4

SAP AG April 2003

Extended letter.. 31

hex_digit.. 31

language_specific_character .. 31

Special character .. 31

Literal (literal).. 31

String Literal (string_literal)... 32

hex_literal .. 32

hex_digit_seq .. 32

Numeric Literal (numeric_literal)... 33

Fixed point literal ... 33

Sign.. 33

Digit sequence... 33

Floating point literal ... 33

Mantissa .. 34

Exponent ... 34

Unsigned integer .. 34

Integer .. 34

Token.. 35

Regular token ... 35

Keyword .. 35

Not reserved keyword.. 36

Reserved keyword... 36

Identifier... 36

Simple Identifier (simple_identifier) ... 36

First character .. 37

Identifier tail character.. 37

Underscore .. 37

Double quotes ... 37

Special Identifier (special_identifier).. 37

Delimiter token.. 38

Names .. 38

Alias name .. 39

Usergroup name ... 39

User name .. 40

Constraint name ... 40

Name of a database procedure (dbproc_name) .. 40

Domain name ... 41

Owner ... 41

Result table name... 41

Index name ... 42

Reference Manual: SAP DB 7.4 5

SAP AG April 2003

Indicator name .. 42

Mapchar Set Name (mapchar_set_name) ... 42

Password .. 42

Parameter name ... 43

Privilege type (privilege) ... 43

Name of a referential constraint (referential_constraint_name) 44

Reference name ... 45

Role Name (role_name) ... 45

Sequence name.. 45

Column name ... 46

Synonym name... 46

Table name... 47

Trigger Name (trigger_name) ... 47

Column specification (column_spec) ... 47

Parameter specification (parameter spec) ... 48

Specifying values (extended value spec)... 49

Specifying Values (value_spec) ... 49

Date and time format (datetimeformat) .. 50

Specifying a string (string spec) ... 52

Specifying a Key (key_spec) .. 52

Expression.. 52

factor ... 54

Predicate (predicate) .. 55

BETWEEN predicate (between_predicate) .. 56

Boolean predicate (bool_predicate).. 57

Comparison Predicate (comparison_predicate) ... 58

Comparison operators (comp_op) .. 59

Comparison operators (equal_or_not) .. 59

DEFAULT predicate.. 60

EXISTS Predicate (exists_predicate) ... 60

IN Predicate (in_predicate) ... 61

JOIN Predicate (join_predicate) ... 62

LIKE Predicate (like_predicate) .. 64

Pattern element... 65

match_string .. 65

match_set .. 66

NULL predicate... 67

Quantified Predicate (quantified_predicate) ... 67

Quantifier... 69

ROWNO Predicate (rowno_predicate) ... 69

Reference Manual: SAP DB 7.4 6

SAP AG April 2003

SOUNDS predicate... 70

Search Condition (search_condition) ... 70

Boolean factor... 72

Functions: Overview... 72

Function (function_spec) .. 73

Arithmetic function .. 73

ABS(a)... 74

CEIL(a) .. 74

EXP(a)... 74

FIXED(a,p,s) ... 75

FLOAT(a,s) ... 75

FLOOR(a) ... 75

INDEX(a,b,p,s) .. 75

LENGTH(a) ... 76

LN(a) ... 77

LOG(a,b) ... 77

NOROUND(a) ... 78

PI ... 78

POWER(a,n) ... 78

ROUND(a,n).. 78

SIGN(a) ... 79

SQRT(a).. 79

TRUNC(a,n) .. 79

Trigonometric function .. 80

String Function (string_function)... 81

ALPHA(x,n) ... 81

ASCII/EBCDIC(x) .. 82

EXPAND(x,n) .. 82

GET_OBJECTNAME(x,o) ... 82

GET_OWNER(x,o).. 83

INITCAP(x).. 84

LFILL(x,a,n)... 84

LPAD(x,a,y,n).. 85

LTRIM(x,y) .. 86

MAPCHAR(x,n,i) ... 86

REPLACE(x,y,z).. 86

RFILL(x,a,n) .. 87

RPAD(x,a,y,n) ... 88

RTRIM(x,y) .. 88

SOUNDEX(x) .. 88

Reference Manual: SAP DB 7.4 7

SAP AG April 2003

SUBSTR(x,a,b) ... 89

TRANSLATE(x,y,z) ... 90

TRIM(x,y)... 90

UPPER/LOWER(x) ... 91

Concatenation (concatenation) ... 91

Date function... 92

ADDDATE/SUBDATE(t,a)... 93

DATEDIFF(t,s) .. 93

DAYNAME/MONTHNAME(t) .. 94

DAYOFWEEK/WEEKOFYEAR/DAYOFMONTH/DAYOFYEAR(t) 94

MAKEDATE(a,b) ... 94

date_or_timestamp_expression.. 95

Time function .. 95

ADDTIME/SUBTIME(t,a)... 95

MAKETIME(h,m,s) .. 96

TIMEDIFF(t,s) ... 96

hours/minutes/seconds ... 96

Time expression.. 96

Time or timestamp expression.. 97

Extraction function .. 97

DATE(a) .. 97

HOUR/MINUTE/SECOND(t) ... 98

MICROSECOND(a) .. 98

TIME(a) ... 98

TIMESTAMP(a,b).. 98

YEAR/MONTH/DAY(t) .. 99

Special Function (special_function).. 99

DECODE(x,y(i),...,z).. 100

GREATEST/LEAST(x,y,...) ... 100

VALUE(x,y,...) ... 101

General CASE Function (searched_case_function) ... 101

Simple CASE Function (simple_case_function) ... 102

Conversion Function (conversion_function) ... 103

CHAR(a,t).. 103

CHR(a,n) ... 104

HEX(a)... 104

HEXTORAW(a) ... 104

NUM(a).. 105

Set Function (set_function_spec)... 105

DISTINCT Function (distinct_function) ... 106

Reference Manual: SAP DB 7.4 8

SAP AG April 2003

ALL function.. 107

Set function name... 108

AVG... 108

COUNT.. 108

MAX/MIN... 109

STDDEV.. 109

SUM .. 109

VARIANCE.. 109

SQL Statement: Overview ... 109
Comment (sql_comment) ... 111

Example Tables.. 111

customer ... 111

hotel .. 112

room.. 113

reservation .. 114

Data definition .. 115
CREATE TABLE Statement (create_table_statement).. 115

SAMPLE definition.. 117

Column Definition (column_definition).. 118

Data Type (data_type) .. 119

CHAR[ACTER] .. 120

VARCHAR ... 120

LONG[VARCHAR]... 121

BOOLEAN ... 121

FIXED .. 121

FLOAT ... 122

INT[EGER]... 122

SMALLINT ... 122

DATE ... 122

TIME .. 123

TIMESTAMP.. 123

Memory requirements of a column value per data types.. 123

Column Attributes (column_attributes).. 124

DEFAULT Specification (default_spec)... 125

CONSTRAINT definition (constraint_definition) ... 127

Referential CONSTRAINT definition (referential_constraint_definition)..................... 128

DELETE rule ... 130

CASCADE dependency .. 130

Reference cycle .. 131

Matching row... 131

Reference Manual: SAP DB 7.4 9

SAP AG April 2003

Key Definition (key_definition) .. 131

UNIQUE Definition (unique_definition) ... 132

DROP TABLE statement.. 132

CASCADE option.. 132

ALTER TABLE statement... 133

ADD Definition (add_definition) .. 133

ALTER definition... 134

COLUMN change definition .. 135

DROP definition .. 136

MODIFY definition .. 137

RENAME TABLE statement... 138

RENAME COLUMN statement... 139

EXISTS TABLE statement ... 139

CREATE DOMAIN statement... 140

DROP DOMAIN statement... 140

CREATE SEQUENCE Statement (create_sequence_statement) 140

DROP SEQUENCE statement ... 141

CREATE SYNONYM statement... 142

DROP SYNONYM statement ... 142

RENAME SYNONYM statement.. 143

CREATE VIEW Statement (create_view_statement) .. 143

Complex view table... 144

Updateable View Table... 145

INSERT privilege for the owner of the view table... 145

UPDATE privilege for the owner of the view table ... 146

DELETE privilege for the owner of the view table .. 146

Updateable join view table.. 146

DROP VIEW statement .. 147

RENAME VIEW statement ... 147

CREATE INDEX Statement (create_index_statement) ... 148

DROP INDEX Statement (drop_index_statement) .. 149

ALTER INDEX Statement (alter_index_statement) ... 149

RENAME INDEX statement ... 149

COMMENT ON Statement (comment_on_statement)... 150

CREATE DBPROC Statement (create_dbproc_statement) .. 152

routine... 153

statement .. 154

General CASE Statement (searched_case_statement) ... 156

Simple CASE Statement (simple_case_statement) ... 157

DROP DBPROC statement.. 158

Reference Manual: SAP DB 7.4 10

SAP AG April 2003

CREATE TRIGGER Statement (create_trigger_statement) .. 158

DROP TRIGGER statement... 159

Authorization .. 160
CREATE USER Statement (create_user_statement).. 160

User mode .. 162

CREATE USERGROUP Statement (create_usergroup_statement) 162

Usergroup name ... 164

DROP USER statement ... 164

DROP USERGROUP statement.. 165

ALTER USER Statement (alter_user_statement) .. 165

ALTER USERGROUP Statement (alter_usergroup_statement) 166

RENAME USER statement .. 167

RENAME USERGROUP statement... 168

GRANT USER Statement (grant_user_statement).. 168

GRANT USERGROUP Statement (grant_usergroup_statement) 168

ALTER PASSWORD statement... 169

CREATE ROLE Statement (create_role_statement) ... 169

DROP ROLE Statement (drop_role_statement) .. 170

GRANT Statement (grant_statement).. 170

Privilege specification (priv_spec) .. 171

grantee.. 171

REVOKE Statement (revoke_statement)... 172

Data Manipulation .. 173
INSERT Statement (insert_statement)... 173

Data type of the target column and inserted value... 174

Join View Table in INSERT Statement... 175

QUERY Expression in INSERT Statement... 175

DUPLICATES clause.. 176

Constraint Definition in INSERT Statement.. 177

Trigger in INSERT Statement... 177

Extended expression .. 177

SET INSERT clause ... 178

UPDATE Statement ... 178

SET UPDATE clause.. 180

Column combination for a given column of a join view table...................................... 181

DELETE statement... 181

NEXT STAMP statement.. 183

CALL Statement (call_statement) .. 183

Data Query... 184
QUERY statement.. 184

Reference Manual: SAP DB 7.4 11

SAP AG April 2003

Named/Unnamed Result Table .. 185

DECLARE CURSOR statement ... 185

Recursive DECLARE CURSOR statement .. 186

SELECT Statement (named_select_statement)... 186

SELECT Statement (select_statement).. 188

QUERY expression (query expression).. 189

QUERY term (query_term).. 190

QUERY expression (named query expression).. 191

QUERY term (named query term) .. 192

QUERY specification (query_spec) .. 192

DISTINCT function (distinct spec)... 193

Selected Column (select_column) .. 193

QUERY specification (named_query_spec) ... 195

Table expression .. 195

FROM clause .. 196

FROM TABLE specification (from_table_spec) .. 196

joined_table.. 197

WHERE Clause (where_clause)... 198

GROUP Clause (group_clause).. 199

HAVING clause ... 200

Subquery... 200

Correlated Subquery ... 200

Scalar Subquery (scalar_subquery) ... 201

ORDER Clause (order_clause) .. 202

UPDATE Clause (update_clause) .. 203

LOCK Option (lock_option)... 203

OPEN CURSOR statement.. 204

FETCH statement... 205

CLOSE statement .. 208

SINGLE SELECT statement .. 208

EXPLAIN Statement (explain_statement) .. 209

Transaction .. 210
CONNECT Statement (connect_statement) .. 211

SET Statement (set_statement) ... 212

COMMIT Statement (commit_statement) .. 213

ROLLBACK Statement (rollback_statement) ... 213

SUBTRANS Statement (subtrans_statement) ... 214

LOCK Statement(lock_statement) ... 215

ROW specification (row spec) .. 216

UNLOCK Statement (unlock_statement) ... 216

Reference Manual: SAP DB 7.4 12

SAP AG April 2003

RELEASE Statement (release_statement) .. 217

Statistics... 217
UPDATE STATISTICS Statement (update_statistics_statement) 217

MONITOR Statement (monitor_statement).. 219

Restrictions .. 219
Syntax List.. 220

Reference Manual: SAP DB 7.4 13

SAP AG April 2003

 Reference Manual: SAP DB 7.4
This document outlines the syntax and semantics of the SQL statements of the SAP DB
database system, version 7.4. The syntax notation used in this document is BNF.

An SQL statement performs an operation on the database instance. The parameters used are
host variables of a programming language in which the SQL statements are embedded.

For general information about the SAP DB database system, see the
documentation The SAP DB Database System and the SAP DB homepage at
http://www.sapdb.org.

For information on the Optimizer functions for SQL statements , see the
documentation Optimizer: SAP DB 7.4.

Concepts

Basic Elements

SQL Statements: Overview

Data Definition

Authorization

Data Manipulation

Data Query

Transaction

Statistics

Restrictions

Syntax Directory [Page 220]

Other Documentation

System Tables: SAP DB 7.4

SQL Mode ORACLE: SAP DB 7.4

Concepts
The following terms are explained here:

Data type [Page 15]

Code attribute [Page 17]

Code tables [Page 18]

SERIAL [Page 22]

Parameter [Page 22]

Table [Page 23]

Column [Page 24]

Domain [Page 24]

Index [Page 24]

Synonym [Page 24]

Users and User Groups [Page 25]

Reference Manual: SAP DB 7.4 14

http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~06631419A4A211D2A97100A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~87534D78A57E11D2A97100A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~6D117C0ED14811D2A97400A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~6D117C11D14811D2A97400A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~48F0DAA2225811D3A97D00A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~79440F982D2C11D3A98100A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~0F486F962F9611D3A98100A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~5EEBA664440A11D3A98200A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~3B86F062458411D3A98200A0C9449261/
http://pwdf0148.wdf.sap-ag.de:1080/SAPIKS/~S~a7329d0c412a4eedaa849efa5658d310/KW/KW/IWB_EXTHLP~98329D6448BF11D3A98200A0C9449261/

SAP AG April 2003

Privilege [Page 25]

Role [Page 25]

Database Catalog/User Data [Page 26]

Transaction [Page 210]

Subtransaction [Page 27]

Database Session [Page 27]

Data Integrity [Page 28]

Database Procedure [Page 28]

Trigger [Page 29]

SQL Mode [Page 29]

See also:

User Manual: SAP DB → Terms

Data Type
A data type is a set of values that can be represented.

• NULL value [Page 15]

• Special NULL value [Page 15]

• Non-NULL value

Character string [Page 16], LONG column [Page 16], number [Page 16], date value
[Page 17], time value [Page 17], timestamp value [Page 17], BOOLEAN [Page 17]

Use
As well as specifying the column name when you define columns [Page 118], you can also
specify data types.

If required, a code attribute [Page 17] can also be entered for LONG columns and some kinds
of character strings.

See also:
Using data types in SQL statements: data_type [Page 119]

NULL value
The data type [Page 15] NULL value (that is, an unspecified value) is a special value. Its
relationship to any other value is always unknown.

Special NULL value
A special NULL value is a special data type [Page 15] and is the result of arithmetic
operations that lead to an overflow or a division by 0.

The special NULL value is only permitted for output columns and for columns in the ORDER
clause [Page 202]. If an overflow occurs in an arithmetic operation or a division by 0 at
another point, the SQL statement is abnormally terminated.

The comparison of a special NULL value with any value is always undefined.

Reference Manual: SAP DB 7.4 15

SAP AG April 2003

As far as sorting is concerned, the special NULL value is greater than all non-NULL values,
but less than the NULL value [Page 15].

Character string
A character string is a data type [Page 15] that consists of a series of alphanumeric
characters.

Examples: CHAR[ACTER] [Page 120], VARCHAR [Page 120], LONG[VARCHAR] [Page
121], DATE [Page 122], TIME [Page 123], TIMESTAMP [Page 123]

In a column definition [Page 118], a code attribute [Page 17] can be entered for the data types
CHAR[ACTER], VARCHAR and LONG[VARCHAR].

The following comparison options exist for data types CHAR[ACTER] and VARCHAR:

Character strings with the same code
attribute

These character strings can be compared to each
other.

Character strings with the code attributes
ASCII [Page 18], EBCDIC [Page 20] and
UNICODE [Page 18]

These character strings are comparable with the
character strings of code attributes EBCDIC, ASCII,
and UNICODE, and with date [Page 17], time
[Page 17] and timestamp values [Page 17].

LONG column
A LONG column is a data type [Page 15] that contains a sequence of characters of any length
to which no functions can be applied.

LONG columns cannot be compared to one another. The contents of LONG columns cannot
be compared to character strings [Page 16] or other data types.

See also:
LONG[VARCHAR] [Page 121]

In a column definition [Page 118], a code attribute [Page 17] can be entered for the data type
LONG[VARCHAR].

Number
A number is a special data type [Page 15]. There are fixed point and floating point numbers:

• Fixed point number

A fixed point number is described by the number of significant digits and the scale. The
maximum number of significant digits is 38.

Examples: FIXED [Page 121], INT[EGER] [Page 122], SMALLINT [Page 122]

• Floating point number

A floating point number consists of a mantissa and an exponent. The mantissa may
have up to 38 significant digits. The valid range of values for floating point numbers
consists of the intervals from -9. 9999999999999999999999999999999999999E +62 to
-1E-64 and from +1E-64 to +9. 9999999999999999999999999999999999999E +62
and the value 0.0.

Reference Manual: SAP DB 7.4 16

SAP AG April 2003

Example: FLOAT [Page 122]

All numbers can be compared to one another.

Date value
The date value date type [Page 15] is a special character string [Page 16].

A date value can be compared to other date values and to character strings with the code
attributes [Page 17] ASCII, EBCDIC, and UNICODE.

See also:
DATE [Page 122]

Date and time format [Page 50]

Time value
The time value date type [Page 15] is a special character string [Page 16].

A time value can be compared to other time values and to character strings with the code
attributes [Page 17] ASCII, EBCDIC, and UNICODE.

See also:
TIME [Page 123]

Date and time format [Page 50]

Timestamp value
The timestamp value date type [Page 15] is a special character string [Page 16]. A timestamp
consists of a date [Page 17] and time value [Page 17] and a microsecond specification.

A timestamp value can be compared to other timestamp values and to character strings with
the code attributes [Page 17] ASCII, EBCDIC, and UNICODE.

See also:
TIMESTAMP [Page 123]

Date and time format [Page 50]

BOOLEAN
BOOLEAN is a data type [Page 15] that can only assume one of the states TRUE or FALSE
and the NULL value [Page 15].

A boolean value can only be compared to other boolean values.

See also:
BOOLEAN [Page 121]

Code Attribute
For the following character strings [Page 16], a code attribute can be entered as part of a
column definition [Page 118], if required: CHAR[ACTER] [Page 120], VARCHAR [Page 120],
LONG[VARCHAR] [Page 121]

Reference Manual: SAP DB 7.4 17

SAP AG April 2003

A code attribute defines the sort sequence to be used for comparing values.

Code Attribute Column Values

No code attribute Have the code attribute defined in the database system

ASCII In ASCII code [Page 18]

BYTE Code neutral, that is, the column values are not converted by the
database system

EBCDIC In EBCDIC code [Page 20]

UNICODE In UNICODE [Page 18]

If you do not specify a code attribute, the code defined in the database system is used.

• The code can be defined for particular users using appropriate SQL statements (for
more information, see: CREATE [Page 160]/ALTER USER Statement [Page 165] or
CREATE [Page 162]/ALTER USERGROUP Statement [Page 166]).

• The code can be defined globally during the installation of the database system using
the database parameter DEFAULT_CODE.

The code defined for a user overrides the code specified globally in the database system.

UNICODE
SAP DB uses the UNICODE code in line with ISO 10646, Page 1. You can find general
information on UNICODE in the following documentation:

User Manual: SAP DB → Definition of Terms → UNICODE

User Manual: SAP DB → SAP DB as UNICODE Database

Metadata in UNICODE
The names of the database objects (such as table or column names) can be stored internally
in UNICODE and can therefore be displayed in the database tools in the required
presentation code.

User data in UNICODE
SAP DB supports the code attribute [Page 17] UNICODE for the data types CHAR[ACTER]
[Page 120], VARCHAR [Page 120] and LONG[VARCHAR] [Page 121] and is able to map
various presentation codes to the UNICODE format.

Code tables
• ASCII code [Page 18] pursuant to ISO 8859/1

• EBCDIC code [Page 20] CCSID 500, codepage 500

ASCII code
The ASCII code (in accordance with ISO 8859/1.2) is as follows:

Reference Manual: SAP DB 7.4 18

SAP AG April 2003

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
0 00 NUL 32 20 SP 64 40 @ 96 60 `
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ' 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~
31 1F US 63 3F ? 95 5F _ 127 7F DEL

Reference Manual: SAP DB 7.4 19

SAP AG April 2003

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
128 80 160 A0 NBSP 192 C0 À 224 E0 à
129 81 161 A1 ¡ 193 C1 Á 225 E1 á
130 82 162 A2 ¢ 194 C2 Â 226 E2 â
131 83 163 A3 £ 195 C3 Ã 227 E3 ã
132 84 164 A4 ¤ 196 C4 Ä 228 E4 ä
133 85 165 A5 ¥ 197 C5 Å 229 E5 å
134 86 166 A6 ¦ 198 C6 Æ 230 E6 æ
135 87 167 A7 § 199 C7 Ç 231 E7 ç
136 88 168 A8 ¨ 200 C8 È 232 E8 è
137 89 169 A9 © 201 C9 É 233 E9 é
138 8A 170 AA ª 202 CA Ê 234 EA ê
139 8B 171 AB « 203 CB Ë 235 EB ë
140 8C 172 AC 204 CC Ì 236 EC ì
141 8D 173 AD - 205 CD Í 237 ED í
142 8E 174 AE ® 206 CE Î 238 EE î
143 8F 175 AF ¯ 207 CF Ï 239 EF ï
144 90 176 B0 ° 208 D0 Ð 240 F0 ð
145 91 177 B1 ± 209 D1 Ñ 241 F1 ñ
146 92 178 B2 ² 210 D2 Ò 242 F2 ò
147 93 179 B3 ³ 211 D3 Ó 243 F3 ó
148 94 180 B4 ´ 212 D4 Ô 244 F4 ô
149 95 181 B5 µ 213 D5 Õ 245 F5 õ
150 96 182 B6 214 D6 Ö 246 F6 ö
151 97 183 B7 · 215 D7 × 247 F7 ÷
152 98 184 B8 ¸ 216 D8 Ø 248 F8 ø
153 99 185 B9 ¹ 217 D9 Ù 249 F9 ù
154 9A 186 BA º 218 DA Ú 250 FA ú
155 9B 187 BB » 219 DB Û 251 FB û
156 9C 188 BC ¼ 220 DC Ü 252 FC ü
157 9D 189 BD ½ 221 DD Ý 253 FD ý
158 9E 190 BE ¾ 222 DE Þ 254 FE þ
159 9F 191 BF ¿ 223 DF ß 255 FF ÿ

 possibly used by the operating system

EBCDIC code
EBCDIC code CCSID 500, codepage 500:

Reference Manual: SAP DB 7.4 20

SAP AG April 2003

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
0 00 NUL 32 20 DS 64 40 SP 96 60 -
1 01 SOH 33 21 SOS 65 41 RSP 97 61 /
2 02 STX 34 22 FS 66 42 â 98 62 Â
3 03 ETX 35 23 67 43 ä 99 63 Ä
4 04 PF 36 24 BYP 68 44 à 100 64 À
5 05 HT 37 25 LF 69 45 á 101 65 Á
6 06 LC 38 26 ETB 70 46 ã 102 66 Ã
7 07 DEL 39 27 ESC 71 47 å 103 67 Å
8 08 GE 40 28 72 48 ç 104 68 Ç
9 09 RLF 41 29 73 49 ñ 105 69 Ñ

10 0A SMM 42 2A SM 74 4A [106 6A ¦
11 0B VT 43 2B CU2 75 4B . 107 6B ,
12 0C FF 44 2C 76 4C < 108 6C %
13 0D CR 45 2D ENQ 77 4D (109 6D _
14 0E SO 46 2E ACK 78 4E + 110 6E >
15 0F SI 47 2F BEL 79 4F ! 111 6F ?
16 10 DLE 48 30 80 50 & 112 70 ø
17 11 DC1 49 31 81 51 é 113 71 É
18 12 DC2 50 32 SYN 82 52 ê 114 72 Ê
19 13 TM 51 33 83 53 ë 115 73 Ë
20 14 RES 52 34 PN 84 54 è 116 74 È
21 15 NL 53 35 RS 85 55 í 117 75 Í
22 16 BS 54 36 UC 86 56 î 118 76 Î
23 17 IL 55 37 EOT 87 57 ï 119 77 Ï
24 18 CAN 56 38 88 58 ì 120 78 Ì
25 19 EM 57 39 89 59 ß 121 79 `
26 1A CC 58 3A 90 5A] 122 7A :
27 1B CU1 59 3B CU3 91 5B $ 123 7B #
28 1C IFS 60 3C DC4 92 5C * 124 7C @
29 1D IGS 61 3D NAK 93 5D) 125 7D '
30 1E IRS 62 3E 94 5E ; 126 7E =
31 1F IUS 63 3F SUB 95 5F ° 127 7F "

Reference Manual: SAP DB 7.4 21

SAP AG April 2003

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
128 80 Ø 160 A0 µ 192 C0 { 224 E0 \
129 81 a 161 A1 ˜ 193 C1 A 225 E1 ÷
130 82 b 162 A2 s 194 C2 B 226 E2 S
131 83 c 163 A3 t 195 C3 C 227 E3 T
132 84 d 164 A4 u 196 C4 D 228 E4 U
133 85 e 165 A5 v 197 C5 E 229 E5 V
134 86 f 166 A6 w 198 C6 F 230 E6 W
135 87 g 167 A7 x 199 C7 G 231 E7 X
136 88 h 168 A8 y 200 C8 H 232 E8 Y
137 89 i 169 A9 z 201 C9 I 233 E9 Z
138 8A « 170 AA ¡ 202 CA -(SHY) 234 EA ²
139 8B » 171 AB ¿ 203 CB ô 235 EB Ô
140 8C ð 172 AC Ð 204 CC ö 236 EC Ö
141 8D ý 173 AD Ý 205 CD ò 237 ED Ò
142 8E þ 174 AE Þ 206 CE ó 238 EE Ó
143 8F ± 175 AF ® 207 CF õ 239 EF Õ
144 90 ° 176 B0 ¢ 208 D0 } 240 F0 0
145 91 j 177 B1 £ 209 D1 J 241 F1 1
146 92 k 178 B2 ¥ 210 D2 K 242 F2 2
147 93 l 179 B3 · 211 D3 L 243 F3 3
148 94 m 180 B4 © 212 D4 M 244 F4 4
149 95 n 181 B5 § 213 D5 N 245 F5 5
150 96 o 182 B6 214 D6 O 246 F6 6
151 97 p 183 B7 ¼ 215 D7 P 247 F7 7
152 98 q 184 B8 ½ 216 D8 Q 248 F8 8
153 99 r 185 B9 ¾ 217 D9 R 249 F9 9
154 9A ª 186 BA 218 DA ¹ 250 FA ³
155 9B º 187 BB | 219 DB û 251 FB Û
156 9C æ 188 BC ¯ 220 DC ü 252 FC Ü
157 9D ¸ 189 BD ¨ 221 DD ù 253 FD Ù
158 9E Æ 190 BE ´ 222 DE ú 254 FE Ú
159 9F ¤ 191 BF × 223 DF ÿ 255 FF EO

SERIAL
SERIAL is a number generator that generates positive integers starting with 1 or a specified
value.

SERIAL can be used as a DEFAULT specification [Page 125] for columns (DEFAULT
SERIAL) that can only contain fixed point numbers. The maximum value generated is (10**n)-
1 if DEFAULT SERIAL is defined for a column of the data type FIXED [Page 121] (n).

SERIAL columns can only be assigned a value when a row is inserted. The values of a
SERIAL column cannot be changed with an UPDATE statement. A SERIAL column,
therefore, can be used to determine the insertion sequence and identify a row in a table
uniquely.

Parameter
SQL statements for the database system can be embedded in programming languages such
as C and C++. This enables the database system to be accessed from various programs. The
values to be retrieved from stored in the database system can be transferred with the SQL

Reference Manual: SAP DB 7.4 22

SAP AG April 2003

statements using parameters. The parameters are declared variables (so-called host
variables) within the embedding program.

The data type of the host variables is defined when they are declared in the programming
language. If possible, the values of the host variables are implicitly converted from the
programming language data type to the data type of the database system, and vice versa.

Each parameter can be combined with an indicator variable that indicates irregularities which
may have occurred when the values were assigned, for example, different value and
parameter lengths, NULL value [Page 15], special NULL value [Page 15], etc. Indicator
variables are essential for transferring NULL values and special NULL values. The indicator
variables are declared as variables in the embedding program.

See also:
Parameter name [Page 43]

Indicator name [Page 42]

Table
• A table is a set of rows.

A row is an ordered list of values.
The row is the smallest unit of data that can be inserted in or deleted from a table.
Each row in a table has the same number of columns [Page 24] and contains a value
for each column.

• A base table is a table that usually has a permanent memory representation and
description.
It is also possible to create a base table that has only a temporary memory
representation and description. This table and its description are implicitly dropped
when a user stops working with the database system (end of session).

• A result table is a temporary table that is generated from one or more base table(s) by
means of a SELECT statement.

• A view table is a table derived from base tables. A view table has a permanent
description in the form of a SELECT statement.

Each table has a name that is unique within the overall database system. The names of
existing tables can be used to name result tables. The original tables, however, cannot be
accessed as long as the result tables exist.

If a table name was defined without an owner [Page 41], the catalog sections (part catalogs)
are searched in the following order to locate the specified table name:
...

1. Catalog part of the current owner

2. Set of PUBLIC synonyms

3. Catalog part of the DBA who created the current user

4. Catalog part of the SYSDBA

5. Catalog part of the owner of the system tables

A table of another user can only be used if the relevant privileges have been granted.

See also:
Table name [Page 47]

Result table name [Page 41]

CREATE TABLE statement [Page 115]

CREATE VIEW statement [Page 143]

Reference Manual: SAP DB 7.4 23

SAP AG April 2003

Column
All values in a table [Page 23] column have the same data type [Page 15]. A value in a
column within a row is the smallest unit of data that can be modified or selected from a table
or to which functions can be applied.

• An alphanumeric column is a character string [Page 16] column.
All character strings in an alphanumeric column have the same length.

• A numeric column is either a floating point or a fixed point column.
All numbers in a floating point column (floating point number [Page 16]) have the
same mantissa length.
All numbers in a fixed point column (fixed point number [Page 16]) have the same
format; that is, the same number of digits before and after the decimal point.

Each column in a base table has a name that is unique within the table.

See also:
Column name [Page 46]

Using column definitions in SQL statements: column_definition [Page 118]

Domain
Domain definitions enable ranges of values to be defined and designated for table columns
[Page 24].

Each value range definition has a name that is unique within the overall database system.

If a domain was defined without an owner [Page 41], the catalog sections (part catalogs) are
searched in the following order to locate the specified value range:
...

1. Catalog part of the current owner

2. Catalog part of the DBA who created the current user

3. Catalog part of the SYSDBA

See also:
Domain name [Page 41]

CREATE DOMAIN statement [Page 140]

Index
Indexes speed up access to rows in a table. They can be created for a single column or for a
series of columns. When defining indexes, you specify whether the indexed column values in
the different rows must be unique or not.

The assigned index name [Page 42] and table name [Page 47] must be unique.

See also:
CREATE INDEX statement [Page 148]

Synonym
A synonym is another name for a table [Page 23].

Every synonym has a name that is unique within the entire database system and differs from
all the other table names.

See also:
Synonym name [Page 46]

CREATE SYNONYM statement [Page 142]

Reference Manual: SAP DB 7.4 24

SAP AG April 2003

Users and Usergroups
The following user names and passwords are defined when the database system is installed.

• DBM operator

• Database system administrator (SYSDBA)

• DOMAIN user

There are four database user classes in WARM database mode:

• Database system administrator (SYSDBA)

• Database administrators (DBA users)

• RESOURCE users

• STANDARD users

Usergroups can also be defined. All of the members of a usergroup have the same rights with
regard to data assigned to the group.

See also:

User Manual: SAP DB → User Concept

User Manual: SAP DB → Definition of Terms

User name [Page 40]

Usergroup name [Page 39]

CREATE USER statement [Page 160]

CREATE USERGROUP statement [Page 162]

Privilege
A privilege is used to impose restrictions on operations carried out on certain objects.

Users can only execute operations on objects if they have been granted the privileges to do
so. The owner of an object receives all of the relevant privileges when the object is created.
Privileges can be explicitly granted to other users. Privileges are not granted to other users
implicitly.

Users who are not the owner of an object can only grant privileges to other users if they have
already been granted these privileges and are allowed to pass them on, i.e. with the relevant
option.

See also:
Privilege type [Page 43]

GRANT statement [Page 170]

Role
A role is a collection of privileges [Page 25].

Like a privilege, a role can be assigned to a different role or to a user.

While privileges are always valid, roles are always inactive, that is, the privileges they contain
are not valid. Roles can be activated for individual database sessions. Every user to which
roles were assigned can also define which of the roles should be active in each of his or her

Reference Manual: SAP DB 7.4 25

SAP AG April 2003

database sessions. This definition can be changed after a database session has been
opened.

All roles are inactive for the current database session while data definition commands are
being executed.

See also:
Role name [Page 45]

CREATE ROLE statement [Page 169]

DROP ROLE statement [Page 170]

Role concept

Database Catalog/Application Data
Logical data storage takes place in the following areas of a SAP DB database:

• The database catalog comprises metadata containing the definitions of database
objects such as base tables [Page 23], view tables [Page 23], synonyms [Page 24],
domains [Page 24], indexes [Page 24], and users and usergroups [Page 25].
See also: User Manual: SAP DB, Database Catalog section.

• Application Data: User Manual: SAP DB, Application Data section.

Transaction
A transaction is a sequence of SQL statements that are handled by the database system as a
basic unit, in the sense that any modifications made to the database by the SQL statements
are either all reflected in the state of the database, or else none of the database modifications
are retained.

The first transaction is opened when a database session [Page 27] is opened with the
CONNECT statement [Page 211]. The transaction is concluded with the COMMIT statement
[Page 213] or the ROLLBACK statement [Page 213]. When a transaction is successfully
concluded with a COMMIT statement, all of the changes to the database are retained. If a
transaction is aborted using a ROLLBACK statement, on the other hand, or if it is aborted in
another way, all of the changes to the database made by the transaction are rolled back.

Both the COMMIT and ROLLBACK statements open a new transaction implicitly.

A transaction can be divided into other basic units, subtransactions [Page 27].

Locks
Since the database system permits concurrent transactions on the same database objects,
locks on rows, tables, and the database catalog are necessary to isolate individual
transactions.

For information about the lock concept, see the User Manual: SAP DB, Lock Behavior
section.

• The assignment of implicit locks can be affected by the setting of the isolation level with
the CONNECT statement [Page 211].

• Locks can be assigned explicitly using the LOCK statement [Page 215] or by the
assignment of a LOCK option [Page 203].

• Exclusive locks for rows that have not yet been modified, and share locks on rows can
be released by the UNLOCK statement [Page 216] before the end of the transaction.

Reference Manual: SAP DB 7.4 26

SAP AG April 2003

The locks assigned to a transaction are usually released at the end of the transaction, making
the respective database objects accessible again to other transactions.

SQL statements for transaction management

CONNECT statement [Page
211]

SET statement [Page 212]

COMMIT statement [Page
213]

ROLLBACK statement [Page
213]

SUBTRANS statement [Page
214]

LOCK statement [Page 215] UNLOCK statement [Page
216]

RELEASE statement [Page
217]

Subtransaction
The purpose of closed, nested transactions [Page 210] (subtransactions) is to let a series of
database operations within a transaction appear as a unit with regard to modifications to the
database.

Subtransactions are preceded by SUBTRANS BEGIN and closed by SUBTRANS END or
SUBTRANS ROLLBACK.

• If a subtransaction is concluded with SUBTRANS END, any modifications made are
kept.

• If a subtransaction is closed with SUBTRANS ROLLBACK, all modifications made to
the database system are reversed. Modifications made by subtransactions contained in
this subtransaction are also reversed, even if they were concluded with SUBTRANS
END.

SUBTRANS END and SUBTRANS ROLLBACK do not affect locks. These are only released
by COMMIT or ROLLBACK. COMMIT or ROLLBACK implicitly close all subtransactions.

See also:
SUBTRANS statement [Page 214]

COMMIT statement [Page 213]

ROLLBACK statement [Page 213]

Database Session
You will find an explanation of the term in User Manual: SAP DB → Definition of Terms →
Database session.

See also:
Users and user groups [Page 25]

Password [Page 42]

CONNECT statement [Page 211]

SET statement [Page 212]

Reference Manual: SAP DB 7.4 27

SAP AG April 2003

Data integrity
• Integrity rules: the database system provides a wide range of declarative integrity

rules, thus reducing the programming requirements for applications. Integrity rules that
refer to a table can also be specified (see constraint name [Page 40]).

• Key: a key comprising one or more columns can be defined for each table. The
database system ensures that each key is unique. A key can also consist of columns of
different data types (see key definition [Page 131]).

• UNIQUE definition: the uniqueness of the values in other columns and column
combinations can also be ensured by using other mechanisms (see UNIQUE definition
[Page 132] for "alternate keys").

• NOT NULL: by specifying NOT NULL, you can ensure that the NULL value is not
accepted in individual columns.

• DEFAULT definition: you can define default values for each column (see DEFAULT
specification [Page 125]).

• Referential integrity conditions: by specifying referential integrity conditions, you can
declare deletion and existence dependencies between the rows in two tables (see
name of a referential constraint [Page 44]).

• Database procedures and triggers: complex integrity rules that require access to
further tables can be formulated with database procedures [Page 28] or triggers [Page
29].

Database procedure
In a well-structured database application, SQL statements are typically not distributed over
the entire application but concentrated in a single access layer instead. This access layer has
a procedural interface to the rest of the application at which the operations for application
objects are made available in form of abstract data types.

In client/server configurations, the client and server interact when an SQL statement is
executed in the access layer. The number of these interactions can be reduced considerably
by transferring the SQL access layer from the client to the server.

SAP DB provides a language (special SQL syntax) for this purpose that allows an SQL
access layer to be formulated on the server side. This special SQL syntax can be used to
define database procedures and triggers [Page 29].

This has three main advantages:

• The number of interactions between client and server is reduced considerably (several
factors). Client/server communication is only required for each operation on the
application object, and not for each SQL statement. This enhances the performance of
client-server configurations considerably.

• The SQL access layer contains the procedurally formulated integrity and business
rules. By concentrating these rules on the server side and eliminating them from the
database applications, modifications can be made centrally and thus become valid
immediately in all database applications. In this way, the integrity and decision rules
also become a part of the catalog in the database system.

• An SQL access layer in the form of database procedures transferred to the server side
is an essential customizing tool, as it allows customer-specific database functionality to
be included.

To be able to execute a database procedure, users must have the call privilege. This call
privilege is independent of the user privileges for the tables and columns used in the
database procedure. As a result, users may be able to use a database procedure to execute
SQL statements that they otherwise would not have access to.

Reference Manual: SAP DB 7.4 28

SAP AG April 2003

Database procedures are called explicitly from the programming language of the application.
They can contain parameters, except for LONG column [Page 16]s. The extent to which
LONG columns can be used within database procedures depends on the length of the LONG
columns and the amount of storage space available.

As with any SQL statement, precautions must be taken to ensure that calling a database
procedure has the desired effect, and that errors do not have any lasting effects on the
database system. SAP DB provides nested transactions for this purpose. Each database
procedure call can run in a subtransaction [Page 27] that can be reset without interfering with
transaction control in the database application.

See also:
Name of a database procedure [Page 40]

Trigger
While database procedures [Page 28] are called explicitly from the programming language of
the application, triggers are special procedures that run implicitly on a base table (or a view
table built on this base table) after a data manipulation statement has been executed.

The conditions under which a trigger is to be executed can be restricted further.

The trigger is executed for each row to which the SQL statement refers. The trigger can
access both the old values (values before update or deletion) and the new values (values
after update or insertion) in this row.

A trigger can call further triggers implicitly.

Triggers can be used to check complicated integrity rules, to initiate derived database
modifications for the row in question, or to implement complex access protection rules.

SAP DB provides a language (special SQL syntax) that can be used to define database
procedures and triggers.

See also:
Trigger name [Page 47]

SQL mode
You will find an explanation of the term in User Manual: SAP DB → Definition of Terms →
SQL mode.

This document describes the functionality of the database system provided by the INTERNAL
SQL mode.

Only those SQL statements are described for which the same SQL mode is used to generate
the object and execute the statement for the object. If database objects are created in one
SQL mode and addressed in another, the object may have properties that are not known in
the current SQL mode and, therefore, cannot be described.

SQL statement for specifying the SQL mode
CONNECT statement [Page 211]

Basic Elements
Character [Page 30]

Literal [Page 31]

Reference Manual: SAP DB 7.4 29

SAP AG April 2003

Token [Page 35]

Names [Page 38]

Column spec [Page 47]

Parameter spec [Page 48]

Specifying values [Page 49]

Date and time format [Page 50]

String specification [Page 52]

Key specification [Page 52]

Expression [Page 52]

Predicate [Page 55]

Search condition [Page 70]

Functions: Overview [Page 72]

Function [Page 73]

Set function [Page 105]

Character
A character is an element of a character string [Page 16] or keyword [Page 35].

Syntax
<character> ::= <digit>
 | <letter>
 | <extended_letter>
 | <hex_digit>
 | <language_specific_character>
 | <special_character>

digit [Page 30], letter [Page 30], extended_letter [Page 31], hex_digit [Page 31],
language_specific_character [Page 31], special_character [Page 31]

Digit
A digit is a character [Page 30].

Syntax
<digit> ::= 0 | 1 | 2 | | 3 | 4 | 5 | 6 | 7 | 8 | 9

Letter
A letter is a character [Page 30].

Syntax
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N |
O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q |
r | s | t | u | v | w | x | y | z

Reference Manual: SAP DB 7.4 30

SAP AG April 2003

Extended letter
An extended letter is a character [Page 30].

Syntax
<extended_letter> ::= # | @ | $

hex_digit
A hex_digit is a character [Page 30].

Syntax
<hex digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| A | B | C | D | E | F
| a | b | c | d | e | f

language_specific_character
A language-specific character [Page 30] is any letter that occurs in a northern, southern, or
central European language and is not contained in the list of letters [Page 30].

German umlauts: ä, ö, ü

French letters with a “grave” accent.

If you have installed a UNICODE [Page 18]-enabled database, a language-specific character
is a character that is not included in the ASCII-Code [Page 18] list from 0 to 127.

Special character
A special character is any character [Page 30] that is not contained in the following list:

• digit [Page 30]

• letter [Page 30]

• extended_letter [Page 31]

• hex_digit [Page 31]

• language_specific_character [Page 31]

• Characters that indicate the end of a line in a file

Literal (literal)
A literal is an unknown data object that is defined fully by virtue of its value (specifies a
non-NULL value, see data type [Page 15]). Literal values cannot be modified. A distinction is
made between string literals and numeric literals.

Syntax
<literal> ::= <string literal> | <numeric literal>

string_literal [Page 32], numeric_literal [Page 33]

Reference Manual: SAP DB 7.4 31

SAP AG April 2003

String literals
'69190 Walldorf'
'Anthony Smith'

Numeric literals
+0.58498
1E160
-765E-04

String Literal (string_literal)
A string literal [Page 31] is a sequence of characters in quotation marks. String literals can
also be represented in hexadecimal notation by preceding them with x or X.

Syntax
<string_literal> ::= '' | '<character>...' | <hex_literal>

Character [Page 30], hex_literal [Page 32]

'69190 Walldorf'

'Anthony Smith'

X'12ab'

Explanation
A quotation mark within a character string is represented by two successive quotation marks.

A string literal of the type '<character>...' or '' is only valid for a value referring to an
alphanumeric column with the code attribute [Page 17] ASCII or EBCDIC. A hex literal [Page
32] is only valid for a value referring to a column with the code attribute BYTE.

A string literal of the type '', x'' and X'', and string literals that only contain blanks are not
the same as the NULL value [Page 15].

hex_literal
String literal [Page 32] that contains a value in hexadecimal notation.

Syntax
<hex_literal> ::= x'' | X'' | x'<hex_digit_seq>' | X'<hex_digit_seq>'

hex_digit_seq [Page 32]

x'123F'
X'12ab'

hex_digit_seq
Sequence of hexadecimal digits (hex_digit_seq).

Reference Manual: SAP DB 7.4 32

SAP AG April 2003

Syntax
<hex_digit_seq> ::=
<hex_digit><hex_digit> | <hex_digit_seq><hex_digit><hex_digit>

hex_digit [Page 31]

Numeric Literal (numeric_literal)
A numeric literal [Page 31] is a number [Page 16] represented as a fixed or floating point
number.

Syntax
<numeric_literal> ::= <fixed_point_literal> |
<floating_point_literal>

fixed_point_literal [Page 33], floating_point_literal [Page 33]

Fixed point literal
Numeric literal [Page 33] that specifies a number [Page 16] as a fixed point number.

Syntax
<fixed_point_literal> ::=
 [<sign>]<digit_sequence>[.<digit_sequence>]
| [sign]<digit_sequence>. | [sign].<digit_sequence>

sign [Page 33], digit_sequence [Page 33]

+123.12
1234.

Sign
Sign

Syntax
<sign> ::= + | -

Digit sequence
Sequence of digits

Syntax
<digit_sequence> ::= <digit>...

digit [Page 30]

Floating point literal
Numeric literal [Page 33] that specifies a number [Page 16] as a floating point number.

Reference Manual: SAP DB 7.4 33

SAP AG April 2003

Syntax
<floating_point_literal> ::= <mantissa>E<exponent> |
<mantissa>e<exponent>

mantissa [Page 34], exponent [Page 34]

1e160
-765E-04

Mantissa
Mantissa

Syntax
<mantissa> ::= <fixed_point_literal>

fixed_point_literal [Page 33]

Exponent
Exponent

Syntax
<exponent> ::= [<sign>][[<digit>]<digit>]<digit>

sign [Page 33], digit [Page 30]

Unsigned integer
An unsigned_integer is a special numeric literal.

Syntax
<unsigned_integer> ::= <numeric_literal>

numeric_literal [Page 33]

Explanation
An unsigned integer can be represented in any way but must be a positive integer.

Integer
An integer is a special numeric_literal [Page 33]. This integer can be displayed in any number
of ways.

Syntax
<integer> ::= [sign]<unsigned_integer>

sign [Page 33], unsigned_integer [Page 34]

Reference Manual: SAP DB 7.4 34

SAP AG April 2003

Token
A character set or token comprises a series of characters that are combined to form a lexical
unit. A distinction is made between regular and delimiter tokens.

Syntax
<token> ::= <regular token> | <delimiter token>

regular_token [Page 35], delimiter_token [Page 38]

SELECT * FROM reservation
ALTER TABLE reservation DROP FOREIGN KEY
customer_reservation

Explanation
Each token can be followed by any number of blanks. Each regular_token must be
followed by a delimiter_token or a blank.

Double quotes [Page 37] within a special identifier [Page 37] are represented by two
consecutive quotes.

Regular token
Normal character set (token [Page 35]) (regular_token)

Syntax
<regular_token> ::= <literal> | <keyword> | <identifier> |
<parameter_name>

Literal [Page 31], key_word [Page 35], identifier [Page 36], parameter_name [Page 43]

SELECT

'Tours10'

Keyword
Keyword. A distinction is made between „normal“ and reserved keywords.

Syntax
<keyword> ::= <not_reserved_key_word> | <reserved_keyword>

Not_reserved_keyword [Page 36], reserved_keyword [Page 36]

Explanation
Keywords can be entered in uppercase/lowercase characters.

Reserved keywords must not be used in simple identifiers [Page 36]. Reserved keywords,
however, can be specified in the form of special identifiers [Page 37].

Reference Manual: SAP DB 7.4 35

SAP AG April 2003

Not reserved keyword
Keywords [Page 35] (not reserved keywords). If possible, these key words should not
be used to designate objects.

You can find a list of all keywords in the syntax directory: not_reserved_key_word

Reserved keyword
Reserved keywords [Page 35] (reserved key_word). These key words must not be used
to designate objects.

You can find a list of all keywords in the syntax directory: reserved_key_word

Identifier
Identifier (identifier). A distinction is made between simple identifiers and special
identifiers.

Syntax
<identifier> ::= <simple identifier> | <double quotes><special
identifier><double quotes>

simple_identifier [Page 36], double_quotes [Page 37], special_identifier [Page 37]

Explanation
Identifiers can be entered in uppercase/lowercase characters. When you specify simple
identifiers, upper and lower case are ignored, as the system always converts the identifier to
upper case letters.

Reserved keywords [Page 36] must not be used in simple identifiers. Reserved keywords,
however, can be specified in the form of special identifiers.

Double quotation marks within a special identifier are represented by two consecutive
quotation marks.

Simple identifier: reservation

Special identifier: "ADD"

Simple Identifier (simple_identifier)
Simple identifier [Page 36]. The first character in a simple identifier must not be a digit or
underscore [Page 37].

Syntax
<simple_identifier> ::=
<first_character>[<identifier_tail_character>...]

first_character [Page 37], identifier_tail_character [Page 37]

Reference Manual: SAP DB 7.4 36

SAP AG April 2003

Explanation
Simple identifiers are always converted into uppercase characters in the database. For this
reason, simple identifiers are not case sensitive.

Reserved keywords [Page 36] must not be used in simple identifiers.

If the name of a database object is to contain lowercase letters, special characters, reserved
keywords, or blanks, the identifier must be specified as a special identifier [Page 37]
(enclosed in double quotation marks).

First character
First character in a simple identifier [Page 36].

Syntax
<first_character> ::= <letter> | <extended_letter> |
<language_specific_character>

letter [Page 30], extended_letter [Page 31], language_specific_character [Page 31]

Identifier tail character
Character allowed after the first character in a simple identifier [Page 36] or password [Page
38].

Syntax
<identifier_tail_character> ::=
<letter> | <extended_letter> | <language_specific_character>
| <digit> | <underscore>

letter [Page 30], extended_letter [Page 31], language_specific_character [Page 31], digit
[Page 30], underscore [Page 37]

Underscore
Underscore

Syntax
<underscore> ::= _

Double quotes
Quotation marks (double_quotes)

Syntax
<double_quotes> ::= "

Special Identifier (special_identifier)
Special identifier (special_identifier). A special identifier must be entered in double
quotation marks if it is to be used as an identifier [Page 36].

Syntax
<special_identifier> ::= <special_identifier_character>...

Reference Manual: SAP DB 7.4 37

SAP AG April 2003

<special_identifier_character> ::= any characters [Page 30], that can be linked in
any sequence

Explanation
Special identifiers are always used as specified in the database; that is upper and lower case
characters are taken into account. Special identifiers are case-sensitive.

If the name of a database object is to contain lowercase letters, special characters, reserved
keywords (reserved_key_word [Page 36]), or blanks, the identifier must be specified as a
special identifier (enclosed in double quotation marks).

“ADD”, “Example_1”

Delimiter token
Delimiter token [Page 35]

Syntax
<delimiter_token> ::=
 (|) | , | . | + | - | * | / | < | > | <> | != | = | <= | >=
| ¬= | ¬< | ¬> (for machines with EBCDIC code [Page 20])

| ~= | ~< | ~> (for machines with ASCII code [Page 18])

Names
Names identify objects. The following list contains names that are frequently used in the
syntax description of the SQL statements.

Name

Alias name [Page 39] alias_name

Column name [Page 46] column_name

Constraint name [Page 40] constraint_name

Name of a database procedure [Page
40]

dbproc_name

Domain name [Page 41] domain_name

Index name [Page 42] index_name

Indicator name [Page 42] indicator_name

Mapchar set name [Page 42] mapchar_set_name

Owner [Page 41] owner

Parameter name [Page 43] parameter_name

Password [Page 42] password

Reference name [Page 45] reference_name

Name of a referential constraint [Page
44]

referential_constraint_name

Result table name [Page 41] result_table_name

Reference Manual: SAP DB 7.4 38

SAP AG April 2003

Role name [Page 45] role_name

Sequence name [Page 45] sequence_name

Synonym name [Page 46] synonym_name

Table name [Page 47] table_name

Trigger name [Page 47] trigger_name

Usergroup name [Page 39] usergroup_name

User name [Page 40] user_name

Explanation
For all names consisting of several identifiers that are separated by a ".", any number of
blanks can be specified before and after the dot.

Alias name
An alias name is a new column name [Page 46] that specifies the name of a column in the
following types of tables:

• View tables

• Tables defined with a recursive DECLARE CURSOR statement

Syntax
<alias_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining an alias name
CREATE VIEW statement [Page 143]

Recursive DECLARE CURSOR statement [Page 186]

Usergroup name
A usergroup name identifies a usergroup [Page 25].

Syntax
<usergroup_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a usergroup name
CREATE USERGROUP statement [Page 165]

Reference Manual: SAP DB 7.4 39

SAP AG April 2003

User name
A user name defines a user [Page 25].

Syntax
<user_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a user name
CREATE USER statement [Page 160]

Constraint name
A constraint name defines a condition (data integrity [Page 28]) that must be satisfied by the
rows in a table.

Syntax
<constraint_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statements for defining a constraint name
CONSTRAINT definition [Page 127]

CREATE TABLE statement [Page 115]

ALTER TABLE statement [Page 133]

Name of a database procedure (dbproc_name)
The name of a database procedure (dbproc_name) designates a database procedure [Page
28].

Syntax
<dbproc_name> ::= [<owner>.]<procedure_name>

<procedure_name> ::= <identifier>

owner [Page 41], identifier [Page 36]

Explanation
You cannot specify TEMP as the owner in a database procedure.

SQL statements for creating, calling, and dropping a database procedure
CREATE DBPROC statement [Page 152]

CALL statement [Page 183]

DROP DBPROC statement [Page 158]

Reference Manual: SAP DB 7.4 40

SAP AG April 2003

Domain name
A domain name identifies a domain [Page 24] in a table column [Page 24].

Syntax
<domain_name> ::= [<owner>.]<identifier>

owner [Page 41], identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a domain name
CREATE DOMAIN statement [Page 140]

You cannot specify TEMP as the owner in a domain name.

Owner
The owner of an object is defined by specifying the name of owner name.

Syntax
<owner> ::= <user_name> | <usergroup_name> | TEMP

user_name [Page 40], usergroup_name [Page 39]

Explanation
If the owner is not a member of a usergroup, the owner name and usergroup name are
identical.

If TEMP is specified as the owner in a table name [Page 47], the table is a temporary table.
The owner of this temporary table is the current owner.

An error message is output if the name of the owner has more than 32 characters.

Result table name
A result table name identifies a result table (see table [Page 23]).

Syntax
<result_table_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a result table name
QUERY statement [Page 184]

Reference Manual: SAP DB 7.4 41

SAP AG April 2003

Index name
An index name identifies an index [Page 24].

Syntax
<index_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for creating an index
CREATE INDEX statement [Page 148]

Indicator name
An indicator name designates an indicator variable in an application that can be specified
together with a parameter name.

Syntax
<indicator_name> ::= <parameter_name>

parameter_name [Page 43]

Explanation
The indicator variable of a parameter [Page 22] provides information on any irregularities (e.g.
NULL value, difference value and parameter lengths).

Mapchar Set Name (mapchar_set_name)
A Mapchar set name (mapchar_set_name) identifies a Mapchar set.

Syntax
<mapchar_set_name> ::= <identifier>

identifier [Page 36]

Function in which Mapchar sets are used
MAPCHAR [Page 86]

See also:

User Manual: SAP DB, Language Support (Mapchar Set) section

Password
Users require a password to connect to the database instance (start a database session
[Page 27]).

Syntax
<password> ::= <identifier> |
<first_password_character>[<identifier_tail_character>...]

Reference Manual: SAP DB 7.4 42

SAP AG April 2003

identifier [Page 36], identifier_tail_character [Page 37]
<first_password_character> ::= <letter> | <extended_letter> |
<language_specific_letter> | <digit>

letter [Page 30], extended_letter [Page 31], language_specific_letter [Page 31], digit [Page
30]

Explanation
Passwords are truncated after 18 characters.

SQL statement for defining a user password
CREATE USER statement [Page 160]

SQL statement for changing a user password
ALTER PASSWORD statement [Page 169]

Parameter name
A parameter name identifies a parameter [Page 22] (host variable) in an application
containing SQL statements from the database system.

Syntax
<parameter_name> ::= :<identifier> | :<identifier>(<identifier>) |
:<identifier>(.<identifier>.)

identifier [Page 36]

Explanation
The conventions of the programming language in which the SQL statements of the database
system are embedded determine the number of significant characters in the parameter name.

Identifiers for parameter names may contain the characters "." and "_", but not as the first
character.

Privilege type (privilege)
A privilege type (privilege) identifies a certain privilege [Page 25].

Syntax
<privilege> ::= INSERT | UPDATE [(<column_name>,...)]
| SELECT [(<column_name>,...)] | SELUPD [(<column_name>,...)]
| DELETE | INDEX | ALTER | REFERENCES [(<column_name>,...)]

column_name [Page 46]

Explanation
Privilege Explanation

INSERT Allows the identified user to insert rows in the specified table. The
current user must be authorized to grant the INSERT privilege.

Reference Manual: SAP DB 7.4 43

SAP AG April 2003

UPDATE Allows the identified user to update rows in the specified table. If
column names are specified, the rows may only be updated in the
columns identified by these names. The current user must be
authorized to grant the UPDATE privilege.

SELECT Allows the identified user to select rows in the specified table. If
column names are specified, the rows may only be selected in the
columns identified by these names. The current user must be
authorized to grant the SELECT privilege.

SELUPD The SELECT and UPDATE privileges are granted. If column names
are specified, the rows may only be selected or updated in the
columns identified by these names. The current user must be
authorized to grant both the SELECT and the UPDATE privileges.

DELETE Allows the identified user to delete rows from the specified table.
The current user must be authorized to grant the DELETE privilege.

INDEX Allows the identified user to execute the CREATE INDEX and
DROP INDEX statements for the specified tables. The INDEX
privilege can only be granted for base tables. The current user must
be authorized to grant the INDEX privilege.

ALTER Allows the identified user to execute the ALTER TABLE statement
for the specified tables. The ALTER privilege can only be granted
for base tables. The current user must be authorized to grant the
ALTER privilege.

REFERENCES Allows the identified user to specify the table as a referenced table
in a column_definition [Page 118] or
referential_constraint_definition [Page 128].

SQL statement for granting or revoking privileges
GRANT statement [Page 170]

REVOKE statement [Page 172]

Name of a referential constraint
(referential_constraint_name)
The name of a referential constraint (referential_constraint_name) identifies a
referential constraint (referential integrity condition, data integrity [Page 28]). This integrity
condition specifies deletion and existence dependencies between two tables.

Syntax
<referential_constraint_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a referential constraint
Referential CONSTRAINT definition [Page 128]

CREATE TABLE statement [Page 115]

ALTER TABLE statement [Page 133]

Reference Manual: SAP DB 7.4 44

SAP AG April 2003

Reference name
The reference name is an identifier that is declared for a certain validity range and associated
with exactly one table [Page 23]. The scope of this declaration is the entire SQL statement.

Syntax
<reference_name> ::= <identifier>

identifier [Page 36]

Explanation
The same reference name specified in various scopes can be associated with different tables
or with the same table.

An error message is output if the name has more than 32 characters.

Role Name (role_name)
A role name identifies a role [Page 25].

Syntax
<role_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statement for defining a role
CREATE ROLE statement [Page 169]

SQL statement to assign privileges to a role
GRANT statement [Page 170]

SQL statement for granting a role
GRANT statement [Page 170]

SQL statements for activating a role
ALTER USER statement [Page 165]

ALTER USERGROUP statement [Page 166]

SET statement [Page 212]

SQL statement for dropping a role
DROP ROLE statement [Page 170]

See also:
Role concept

Sequence name
A sequence name identifies a sequence of values.

Reference Manual: SAP DB 7.4 45

SAP AG April 2003

Syntax
<sequence_name> ::= <identifier>

identifier [Page 36]

Explanation
A sequence is a series of values that are generated in accordance with certain rules. The step
width between these values can be defined, among other things.

Sequences can be used to generate unique values. These are not uninterrupted, because
values generated within a transaction that was rolled back cannot be used again.

An error message is output if the name has more than 32 characters.

SQL statement for defining a sequence name
CREATE SEQUENCE statement [Page 140]

Column name
A column name identifies a column [Page 24].

Syntax
<column_name> ::= <identifier>

identifier [Page 36]

Explanation
An error message is output if the name has more than 32 characters.

SQL statements for defining a column name
CREATE TABLE statement [Page 115]

CREATE VIEW statement [Page 143]

ALTER TABLE statement [Page 133]

QUERY statement [Page 184]

Synonym name
A synonym name identifies a synonym [Page 24] for a table name.

Syntax
<synonym_name> ::= <identifier>

identifier [Page 36]

Explanation
If the synonym is not a PUBLIC synonym, it is only known by one user or usergroup [Page
25]. A PUBLIC synonym is known by every user and user group.

An error message is output if the name has more than 32 characters.

SQL statement for defining a synonym name
CREATE SYNONYM statement [Page 142]

Reference Manual: SAP DB 7.4 46

SAP AG April 2003

Table name
A table name identifies a table [Page 23].

Syntax
<table_name> ::= [<owner>.]<identifier>

owner [Page 41], identifier [Page 36]

Explanation
The database system uses certain table names for internal purposes. The identifiers [Page
36] of these tables begin with SYS. To avoid naming conflicts, therefore, you should not use
table names that start with SYS.

If the name of the owner [Page 41] was not specified in the table name, the catalog parts are
searched for the table name in the following order:
...

1. Catalog part of the current owner

2. Set of PUBLIC synonyms

3. Catalog part of the DBA who created the current user

4. Catalog part of the SYSDBA

5. Catalog part of the owner of the system tables

An error message is output if the name has more than 32 characters.

SQL statements for defining a table name
CREATE TABLE statement [Page 115]

CREATE VIEW statement [Page 143]

CREATE SYNONYM statement [Page 142]

Trigger Name (trigger_name)
A trigger name identifies a trigger [Page 29] that is defined for a table.

Syntax
<trigger_name> ::= <identifier>

identifier [Page 36]

Explanation
A trigger name must not exceed 32 characters in length.

SQL statements for creating and dropping a trigger

CREATE TRIGGER statement [Page 158]

DROP TRIGGER statement [Page 159]

Column specification (column_spec)
A column specification (column_spec) specifies a column in a table.

Reference Manual: SAP DB 7.4 47

SAP AG April 2003

Syntax
<column_spec> ::= <column_name> | <table_name>.<column_name>
| <reference_name>.<column_name> | <result_table name>.<column_name>

column_name [Page 46], table_name [Page 47], reference_name [Page 45],
result_table_name [Page 41]

Explanation
For all names consisting of several identifiers [Page 36] separated by a ".", any number of
blanks can be specified before and after the dot.

Parameter specification (parameter spec)
A parameter specification (parameter spec) identifies the parameter name and, if
necessary, the indicator name that are necessary to specify a parameter.

Syntax
<parameter spec> ::= <parameter name> [<indicator name>]

parameter_name [Page 43], indicator name [Page 42]

Explanation
The indicator must be declared as a variable in the embedding programming language. It
must be possible to assign at least four-digit integers to this variable.

A distinction is made between output parameters and input parameters:

• Output parameters: parameters that are to receive values retrieved from the database
system.

− An indicator parameter with the value 0 indicates that the transferred value is not
a NULL value and that the parameter value is the transferred value.

− An indicator with the value –1 indicates that the parameter value is the NULL
value.

− Alphanumeric output parameters: an indicator with a value greater than 0
indicates that the assigned character string was too long and was truncated as a
result. The indicator indicates the untruncated length of the original output
column.

− Numeric output parameters: an indicator with a value greater than 0 indicates that
the assigned value has too many significant digits and decimal places have been
truncated. The indicator indicates the number of digits in the original value.

− With numeric output parameters, an indicator with the value -2 indicates that the
parameter value is the special NULL value [Page 15].

• Input parameters: parameters containing values that are to be transferred to the
database system.

− An indicator with a value greater than or equal to 0 indicates that the specified
parameter value is the value that is to be transferred to the database system.

− An indicator with the value less than 0 indicates that the specified parameter
value is the NULL value.

Reference Manual: SAP DB 7.4 48

SAP AG April 2003

Specifying values (extended value spec)
Values can be specified (extended value spec) by specifying values (value spec) or
with one of the keywords DEFAULT or STAMP.

Syntax
<extended value spec> ::= <value spec> | DEFAULT | STAMP

value_spec [Page 49]

Explanation
• DEFAULT keyword

DEFAULT identifies the default value for the column in a CREATE TABLE statement
[Page 115] or ALTER TABLE statement [Page 133]. DEFAULT cannot be used to
specify values if one of these values is not defined.
The DEFAULT keyword can be used in the following SQL statements:
INSERT statement [Page 173]
UPDATE statement [Page 178]
The DEFAULT keyword can be used in a DEFAULT predicate [Page 60].

• STAMP key word
The database system is able to generate unique values. This is a serial number that
starts with X'000000000001'. The values are assigned in ascending order. It cannot be
ensured that a sequence of values is uninterrupted. The STAMP key word supplies the
next value generated by the database system.
The STAMP keyword can be used in the following SQL statements (only on columns
of the data type CHAR(n) BYTE with n>=8, see DEFAULT specification [Page 125]):
INSERT statement [Page 173]
UPDATE statement [Page 178]
If the user wants to find out the generated value before it is applied to the column, the
following SQL statement must be used:
NEXT STAMP statement [Page 183]

Specifying Values (value_spec)
Values can be specified (value_spec) by specifying literals, parameter specifications, or a
series of keywords.

Syntax
<value_spec> ::= <literal> | <parameter_spec>
| NULL | USER | USERGROUP | SYSDBA | UID
| [<owner>.]<sequence_name>.NEXTVAL |
[<owner>.]<sequence_name>.CURRVAL
| <table_name>.CURRVAL
| DATE | TIME | TIMESTAMP | UTCDATE | TIMEZONE | UTCDIFF
| TRUE | FALSE | TRANSACTION

literal Literal [Page 31]

parameter_spec Parameter specification [Page 48]

NULL NULL value [Page 15]

USER Current user name [Page 40]

USERGROUP Name of the user group [Page 39] to which the
user calling the SQL statement belongs. If the
user does not belong to a user group, the user
name is displayed.

Reference Manual: SAP DB 7.4 49

SAP AG April 2003

SYSDBA SYSDBA of the database instance

UID Identification of the current user. This is a
whole number.

[<owner>.]<sequence_name>.NEXTVAL Next value generated for the specified
sequence name [Page 45] (of the owner [Page
41] in question).

[<owner>.]<sequence_name>.CURRVAL Value that was generated using
[<owner>.]<sequence_name>.NEXTVAL
as the final value for the specified sequence
name.

<table_name>.CURRVAL Last assigned value of the serial column in the
table_name [Page 47] table in the current
database session.

DATE Current date [Page 17]

TIME Current time [Page 17]

TIMESTAMP Current timestamp [Page 17]

UTCDATE Current UTC time stamp (Greenwich Mean
Time)

TIMEZONE Time difference in hours in the format hhmmss
(in data type FIXED(6)) between your local
time value and the UTC time value (Greenwich
Mean Time)

UTCDIFF Time difference in hours (in data type
FIXED(4,2)) between your local time and the
UTC time value.

TRUE | FALSE Corresponding value of a column of the data
type BOOLEAN [Page 17]

TRANSACTION Identification of the current transaction [Page
210]. This is a value of data type CHAR(10)
BYTE.

Date and time format (datetimeformat)
The date and time format (datetimeformat) specifies the way in which date values [Page
17], time values [Page 17], and timestamp values [Page 17] are represented.

Syntax
<datetimeformat> ::= EUR | INTERNAL | ISO | JIS | USA

Date value

'YYYY' Four-digit year format

'MM' Two-digit month format (01-12)

'DD' Two-digit day format (01-31)

Format General Format Example

Reference Manual: SAP DB 7.4 50

SAP AG April 2003

EUR 'DD.MM.YYYY' '23.01.1999'

INTERNAL 'YYYYMMDD' '19990123'

ISO/JIS 'YYYY-MM-DD' '1999-01-23'

USA 'MM/DD/YYYY' '01/23/1999'

In all formats, with the exception of INTERNAL, leading zeros may be omitted in the identifiers
for the month and day.

Time value
'HHHH' Four-digit hour format

'HH' Two-digit hour format

'MM' Two-digit minute format (00-59)

'SS' Two-digit second format (00-59)

Format General Format Example
EUR 'HH.MM.SS' '14.30.08'

INTERNAL 'HHHHMMSS' '00143008'

JIS/ISO 'HH:MM:SS' '14:30:08'

USA 'HH:MM AM (PM)' '2:30 PM'

In all time formats, the identifier of the hour must consist of at least one digit. In the USA time
format, the minute identifier can be omitted completely. In all the other formats, with the
exception of INTERNAL, the minute and second identifiers must comprise at least one digit.

Timestamp value
'YYYY' Four-digit year format

'MM' Two-digit month format (01-12)

'DD' Two-digit day format (01-31)

'HH' Two-digit hour format (0-24)

'MM' Two-digit minute format (00-59)

'SS' Two-digit second format (00-59)

'MMMMMM' Six-digit microsecond format

Format General Format Example
EUR/JIS/USA 'YYYY-MM-DD-

HH.MM.SS.MMMMMM'
'1999-01-23-
14.30.08.456234'

ISO 'YYYY-MM-DD
HH:MM:SS.MMMMMM'

'1999-01-23
14:30:08.456234'

INTERNAL 'YYYYMMDDHHMMSSMMMMMM' '19990123143008456234'

The microsecond identifier can be omitted in all timestamp formats. In all formats, with the
exception of INTERNAL, the month and day identifiers must consist of at least one digit.

Reference Manual: SAP DB 7.4 51

SAP AG April 2003

Explanation
The date and time format determines the format in which the date, time, and timestamp
values may be represented in SQL statements and the way in which results are to be
displayed.

The date and time format is determined when the database system is installed.

Users can change the date and time format for the current session by setting the relevant
parameters in the database tools or by specifying the corresponding parameters when using
programs.

The ISO date and time format is used by ODBC and JDBC applications and cannot be
replaced with a different date and time format.

Specifying a string (string spec)
Only expressions [Page 52] that have an alphanumeric value as a result are allowed as a
string specification (string_spec).

Specifying a Key (key_spec)
A key specification (key_spec) allows rows in a table to be located whose key column values
match the values in the key specification. A row with the specified key values does not have
to exist.

Syntax
<key_spec> ::= <column_name> = <value_spec>

column_name [Page 46], value_spec [Page 49]

Explanation
The value specification (value_spec) must not be NULL.

The column name must identify a key column in the table.

The key specification must contain all the key columns in a table. The individual key
specifications (key_spec) must be separated by commas.

For tables defined without key columns, there is the implicitly generated column SYSKEY
CHAR(8) BYTE which contains a key generated by the database system. This column can
only be used in a key specification.

Expression
An expression specifies a value that is generated, if required, by applying arithmetic operators
to values.

A distinction is made between the following arithmetic operators:

• Additive operators
+ Addition
- Subtraction

• Multiplicative operators
* Multiplication
/ Division

Reference Manual: SAP DB 7.4 52

SAP AG April 2003

DIV integer division
MOD remainder after integer division

Syntax
<expression> ::= <term> | <expression> + <term> | <expression> -
<term>
<expression_list> ::= (<expression>,...)

<term> ::= <factor>
| <term> * <factor> | <term> / <factor>
| <term> DIV <factor>| <term> MOD <factor>

factor [Page 54]

Explanation
The arithmetic operators can only be applied to numeric data types.

 Result of an expression
expression Value of any data type [Page 15]

factor supplies a NULL value NULL value [Page 15]

factor supplies a special NULL value Special NULL value [Page 15]

expression leads to a division by 0 Special NULL value

expression leads to an overflow of the
internal temporary result

Special NULL value

If no parentheses are used, the operators have the following precedence:
...

1. The sign [Page 33] has a higher precedence than the additive and multiplicative
operators.

2. The multiplicative operators have a higher precedence than the additive operators.

3. The multiplicative operators have different priorities.

4. The additive operators have different priorities.

5. Operators with the same precedence are evaluated from left to right.

Operands are fixed point numbers

Operand1 (a) Operand2 (b) Result

Fixed point number [Page 16]
(p precision
s number of decimal places

Fixed point number
(p' precision
s' number of decimal places)

Fixed point number
(p" precision
s" number of decimal places)
or floating point number

The data type of the result depends on the operation as well as on the precision and number
of decimal places of the operands.

Note that the data type of a column determines its name, and not the precision and number of
decimal places in the current value.

Operands are fixed point numbers, operands are +, - , * or /
The result of addition, subtraction, and multiplication is generated from a temporary result
which can have more than 38 valid digits. If the temporary result has no more than 38 valid
digits, the final result is equal to the temporary result. Otherwise, a result is generated as a
floating point number with 38 places. Decimal places are truncated if necessary.

Reference Manual: SAP DB 7.4 53

SAP AG April 2003

Condition Operator Result

max(p-s,p'-s') +, - Fixed point number
p''=max(p-s,p'-s')+max(s,s')+1
s''=max(s,s')

(p+p')<=38 * Fixed point number
p''=p+p'
s''=s+s'

(p-s+s')<=38 / Fixed point number
p''=38
s''=38-(p-s+s')
Special NULL value, if b=0

Operands are integers, operators are DIV, MOD

Condition Operator Result

ABS [Page 74](a)<1E38 and
ABS(b)<1E38 and
b<>0

DIV TRUNC [Page 79](a/b)

b=0 DIV Special NULL value

ABS(a)>=1E38 and
b<>0 or
ABS(b)>=1E38

DIV Error message

ABS(a)<1E38 and
ABS(b)<1E38 and
b<>0

MOD a-b*(a DIV b)

b=0 MOD a

ABS(a)>=1E38 and
b<>0 or
ABS(b)>=1E38

MOD Error message

An operand is a floating point number
If an operand is a floating point number [Page 16], the result of the arithmetic operation is a
floating point number.

factor
Specifies how the values are determined that are to be linked in an expression [Page 52] by
means of arithmetic operators.

Syntax
<factor> ::= [<sign>] <value_spec> | [<sign>] <column_spec>
| [<sign>] <function_spec> | [<sign>] <set_function_spec>
| <scalar_subquery> |<expression>

sign [Page 33], value_spec [Page 49], column_spec [Page 47], function_spec [Page 73],
set_function_spec [Page 105], scalar_subquery [Page 201], expression [Page 52]

Reference Manual: SAP DB 7.4 54

SAP AG April 2003

Predicate (predicate)
A predicate is specified in a WHERE condition [Page 198] in a statement which is "true",
"false", or "unknown". The result is generated by applying the predicate to a specific row in a
result table (see result table name [Page 41]) or to a group of rows in a table that was formed
by the GROUP clause [Page 199].

Syntax
<predicate> ::=
 <between_predicate> | <bool_predicate> | <comparison_predicate>
| <default_predicate> | <exists_predicate> | <in_predicate>
| <join_predicate> | <like_predicate> | <null_predicate>
| <quantified_predicate> | <rowno_predicate> | <sounds_predicate>

between_predicate [Page 56], bool_predicate [Page 57], comparison_predicate [Page 58],
default_predicate [Page 60], exists_predicate [Page 60], in_predicate [Page 61],
join_predicate [Page 62], like_predicate [Page 64], null_predicate [Page 67],
quantified_predicate [Page 67], rowno_predicate [Page 69], sounds_predicate [Page 70]

Explanation
• Columns in a table with the same code attribute are comparable.

• Columns with different code attributes ASCII and EBCDIC (see code tables [Page 18])
can be compared.

• Columns with the code attributes ASCII and EBCDIC can be compared with date
values [Page 17], time values [Page 17], or timestamp values [Page 17].

• LONG columns [Page 16] can only be used in the NULL predicate.

Example table: customer [Page 111]

Selection without a condition:
SELECT city, name, firstname FROM customer

CITY NAME FIRSTNAME

New York Porter Jenny

Dallas DATASOFT ?

Los Angeles Porter Martin

Los Angeles Peters Sally

Hollywood Brown Peter

New York Porter Michael

New York Howe George

Los Angeles Randolph Frank

Los Angeles Peters Joseph

Los Angeles Brown Susan

Los Angeles Jackson Anthony

Los Angeles Adams Thomas

New York Griffith Mark

Los Angeles TOOLware ?

Reference Manual: SAP DB 7.4 55

SAP AG April 2003

Hollywood Brown Rose

Selection with restricting condition:
SELECT city, name, firstname FROM customer
WHERE city = 'Los Angeles'

CITY NAME FIRSTNAME

Los Angeles Porter Martin

Los Angeles Peters Sally

Los Angeles Randolph Frank

Los Angeles Peters Joseph

Los Angeles Brown Susan

Los Angeles Jackson Anthony

Los Angeles Adams Thomas

Los Angeles TOOLware ?

BETWEEN predicate (between_predicate)
The BETWEEN predicate [Page 55] (between_predicate) checks whether a value is
within a specified range.

Syntax
<between_predicate> ::= <expression> [NOT] BETWEEN <expression> AND
<expression>

expression [Page 52]

Explanation
Let x, y, and z be the results of the first, second, and third expression. The values x,y,z must
be comparable.

 Result of the specified predicate

x BETWEEN y AND z x>=y AND x<=z

x NOT BETWEEN y AND z NOT(x BETWEEN y AND z)

x, y, or z are NULL value [Page
15]s

x [NOT] BETWEEN y AND z is undefined

Example table: customer [Page 111]

Finding customers with a credit balance between –420 and 0:
SELECT title, name, city, account FROM customer
WHERE account BETWEEN -420 AND 0

TITLE NAME CITY ACCOUNT

Mr Porter Los Angeles 0.00

Reference Manual: SAP DB 7.4 56

SAP AG April 2003

Mrs Peters Los Angeles

Mr Brown

0.00

Hollywood 0.00

Mr Porter New York 0.00

Mr Howe -315.40

Randolph Los Angeles

Mr Los Angeles 0.00

New York

Mr 0.00

Jackson

Mr Adams Los Angeles -416.88

Mr Griffith New York 0.00

You want to list the customers who have either a credit balance or a significant
debit balance:
SELECT title, name, city, account FROM customer
WHERE account NOT BETWEEN -10 AND 0

TITLE NAME ACCOUNT

Mrs

CITY

Porter New York 100.00

Comp DATASOFT Dallas 4813.50

Mr Howe -315.40

Mr Peters Los Angeles

New York

650.00

Mrs Brown Los Angeles -4167.79

Mr Adams Los Angeles -416.88

Comp TOOLware Los Angeles 3770.50

Mrs Brown Hollywood 440.00

Boolean predicate (bool_predicate)
Boolean values (BOOLEAN [Page 17]) are compared in a boolean predicate [Page 55].

Syntax
<bool_predicate> ::= <column_spec> [IS [NOT] <TRUE | FALSE>]

column spec [Page 47]

Explanation
If only one column specification (column_spec) is specified, the syntax is identical to
<column_spec> IS TRUE.

The column_spec must always denote a column with the data type BOOLEAN.

The following rules apply to the result of a boolean predicate:

Column value IS TRUE IS NOT TRUE IS FALSE IS NOT FALSE

false false true true false

undefined undefined undefined undefined undefined

true true false false true

Reference Manual: SAP DB 7.4 57

SAP AG April 2003

Comparison Predicate (comparison_predicate)
A comparison predicate [Page 55] specifies a comparison between two values or lists of
values.

Syntax
<comparison_predicate> ::= <expression> <comp_op> <expression>
| <expression> <comp_op> <subquery>
| <expression_list> <equal_or_not> (<expression_list>)
| <expression_list> <equal_or_not> <subquery>

expression [Page 52], expression_list [Page 52], subquery [Page 200]

The following operators are available for comparing two values:
<, >, <>, !=, =, <=, >= (comp_op [Page 59])

Value lists can only be compared with the = and <> operators (equal_or_not [Page 59]).

Explanation
The subquery (subquery) must supply a result table (see result table name [Page 41]) that
contains the same number of columns as the number of values on the left of the operator.
The result table may contain no more than one row.

The list of values specified to the right of the equal_or_not operator (expression_list)
must contain the same number of values as specified in the value list in front of the
equal_or_not operator.

The JOIN predicate [Page 62] is a special case.

Comparing two values
Let x be the result of the first expression and y the result of the second expression or of the
subquery.

• The values x and y must be comparable with one another.

• Numbers are compared to one another according to their algebraic values.

• Character strings are compared character by character.
Any blanks (code attribute [Page 17] ASCII, EBCDIC, UNICODE) or binary zeros (code
attribute BYTE) at the end of one or both of the character strings are removed.
If the character strings have the different code attributes ASCII and EBCDIC, one of the
two strings is converted implicitly so that they both have the same code attribute.
If the character strings have the different code attributes ASCII or EBCDIC and
UNICODE, the character string with the code attribute ASCII or EBCDIC is implicitly
converted into a character string with the code attribute UNICODE.
Two character strings are identical if they have the same characters in all positions.
The relationship between two character strings that are not identical is defined by the
first character that differs in a comparison from left to right. This comparison is
performed in accordance with the code attribute selected for this column (ASCII,
EBCDIC, UNICODE, or BYTE).

• If x or y are NULL value [Page 15]s, or if the result of the subquery is empty, (x
<comp_op> y) is not defined.

Comparing two value lists
If a value list (expression_list) is specified on the left of the comparison operator
equal_or_not, x is the value list that comprises the results of the values x1, x2, ..., xn in

Reference Manual: SAP DB 7.4 58

SAP AG April 2003

this list. y is the result of the subquery or the result of the second value list. A value list y
consists of the results of the values y1, y2, ..., yn.

• A value xm must be comparable with the associated value ym.

• x=y is true if for xm=ym for all m=1, ..., n.

• x<>y is true if at least xm<>ym for at least one m.

• (x <equal_or_not> y) is undefined (not known) if there is no m for which (xm
<equal_or_not> ym) is false and if there is at least one m for which (xm
<equal_or_not> ym) is undefined.

• If one xm or one ym is a NULL value, or if the result of the subquery is empty, (x
<equal_or_not> y) is undefined.

Example table: customer [Page 111]

Which customers are female?
SELECT title, firstname, name FROM customer
WHERE title = 'Mrs'

TITLE FIRSTNAME NAME

Mrs Jenny Porter

Mrs Sally Peters

Mrs Susan Brown

Mrs Rose Brown

Comparison operators (comp_op)
Operators for comparing values (comp_op)

Syntax
<comp_op> ::= < | > | <> | != | = | <= | >=
| ¬= | ¬< | ¬> (for machines with EBCDIC code [Page 20])
| ∼= | ∼< | ∼> (for machines with ASCII code [Page 18])

Comparison operators (equal_or_not)
Operators for comparing value lists (equal_or_not)

Syntax
<equal_or_not> ::= <> |=
| ¬= (for machines with EBCDIC code [Page 20])
| ∼= (for machines with ASCII code [Page 18])

Reference Manual: SAP DB 7.4 59

SAP AG April 2003

DEFAULT predicate
By specifying a DEFAULT predicate [Page 55], you can check whether a column contains the
default value defined for this column.

Syntax
<default_predicate> ::= <column_spec> <comp_op> DEFAULT

column_spec [Page 47], comp_op [Page 59]

Explanation
A DEFAULT specification [Page 125] must be made for the specified column. This can be
done in the following SQL statements:

• CREATE TABLE statement [Page 115]

• ALTER TABLE statement [Page 133]

If the column contains the NULL value [Page 15], <column_spec> <comp_op> DEFAULT
is undefined.

The rules for comparing values or value lists, as defined under comparison predicate [Page
58], apply here.

EXISTS Predicate (exists_predicate)
The EXISTS predicate [Page 55] (exists_predicate) checks whether a result table (see
result table name [Page 41]) contains at least one row.

Syntax
<exists_predicate> ::= EXISTS <subquery>

subquery [Page 200]

Explanation
The truth content of an EXISTS predicate is either true or false.

The subquery generates a result table. If this result table contains at least one row, EXISTS
<subquery> is true.

Example tables: customer [Page 111], reservation [Page 114]

Only select customers that have one or more reservations:
SELECT * FROM customer WHERE EXISTS
(SELECT * FROM reservation WHERE customer.cno =
reservation.cno)

CNO TITLE NAME FIRSTNAME ZIP CITY ACCOUNT

3000 Mrs Porter Jenny 80335 New York 100.00

3100 Comp DATASOFT ? 50933 Dallas 4813.50

3200 Mr Porter Martin 10969 Los Angeles 0.00

3600 Mr Howe George 81737 New York -315.40

3900 Mrs Brown Susan 13599 Los Angeles -
4167.79

4100 Mr Adams Thomas 13355 Los Angeles -416.88

Reference Manual: SAP DB 7.4 60

SAP AG April 2003

4300 Comp TOOLware ? 13629 Los Angeles 3770.50

4400 Mrs Brown Rose 40233 Hollywood 440.00

IN Predicate (in_predicate)
The IN predicate [Page 55] checks whether a value or a value list is contained in a specified
set of values or value lists.

Syntax
<in_predicate> ::=
 <expression> [NOT] IN <subquery>
| <expression> [NOT] IN <expression_list>
| <expression_list> [NOT] IN <subquery>
| <expression_list> [NOT] IN (<expression_list>,...)

expression [Page 52], expression_list [Page 52], subquery [Page 200]

Explanation
The subquery must supply a result table (see result table name [Page 41]) that contains the
same number of columns as the number of values specified by the expression on the left-
hand side of the IN operator.

Each value list specified on the right-hand side of the IN operator must contain the same
number of values as specified in the value list on the left-hand side of the IN operator.

• x [NOT] IN S, whereby x <expression> and S <subquery> or
<expression_list>
The value x and the values in S must be comparable.

• x [NOT] IN S, whereby x <expression_list> with the values x1, x2, ..., xn and S
<subquery> (set of value lists s) or (<expression_list>,...) (Range of values
lists s) with the value lists s: s1, s2, ..., sn
A value xm must be comparable with all values sm.
x=s is true if xm=sm, m=1,...,n
x=s is false if there is at least one m for which xm=sm is false
x=s is undefined if there is no m for which xm=sm is false and there is at least one m
for which xm=sm is undefined.

The entry '------' in the list below means that no statement can be made if only the result of the
comparison with one s is known.

 Result of the function x IN S

x=s is true for at least one s true

x=s is true for all s true

S contains NULL values and x=s is true for the remaining s true

S is empty false

x=s is false for at least one s ------

x=s is false for all s false

S contains NULL values and x=s is false for the remaining s undefined

x=s is not true for any s and is undefined for at least one
value s

undefined

x NOT IN S has the same result as NOT(x IN S)

Reference Manual: SAP DB 7.4 61

SAP AG April 2003

Example table: customer [Page 111]

Choosing all customers who are natural persons (not companies):
SELECT title, firstname, name, city FROM customer
WHERE title IN ('Mr','Mrs')

TITLE FIRSTNAME NAME CITY

Mrs Jenny Porter New York

Mr Martin Porter Los Angeles

Mrs Sally Peters Los Angeles

Mr Peter Brown Hollywood

Mr Michael Porter New York

Mr George Howe New York

Mr Frank Randolph Los Angeles

Mr Joseph Peters Los Angeles

Mrs Susan Brown Los Angeles

Mr Anthony Jackson Los Angeles

Mr Thomas Adams Los Angeles

Mr Mark Griffith New York

Mrs Rose Brown Hollywood

JOIN Predicate (join_predicate)
A JOIN predicate [Page 55] specifies a JOIN. A JOIN predicate can be specified with or
without one or with two OUTER JOIN indicators.

Syntax
<join_predicate> ::=
<expression> [<outer_join_indicator>] <comp_op> <expression>
[<outer_join_indicator>]

<outer_join_indicator> ::= (+)

expression [Page 52], comp_op [Page 59]

Explanation
Each expression must contain a column specification [Page 47]. A column specification
must exist for the first and second expression so that both specifications refer to different
table names or reference names.

Let x be the value of the first expression and y the value of the second expression. The
values x and y must be comparable with one another.

The rules outlined under comparison predicate [Page 58] apply here.

If at least one OUTER JOIN indicator is specified in a JOIN predicate of a search condition
[Page 70], the corresponding table expression must be based on exactly two tables, or the
following has to apply:

Reference Manual: SAP DB 7.4 62

SAP AG April 2003

• OUTER JOIN indicators are only specified for one of the tables in the FROM clause
[Page 196].

• All of the JOIN predicates in this table to just one other table contain the OUTER JOIN
indicator.

• All other JOIN predicates contain no OUTER JOIN indicators.

If a JOIN requires more than two tables for the QUERY specification [Page 192] and if one of
the rules above cannot be observed, a QUERY expression [Page 189] can also be used in
the FROM clause.

Only those rows from the table that have a counterpart of the comparison operator in the
JOIN predicate specified in the table are transferred to the result table.

The OUTER JOIN indicator must be specified on the side of the comparison operator where
the other table is specified if each row in a table is to appear at least once in the result table.
If it is not possible to find at least one counterpart for a table row in the other table, this row is
used to build a row for the result table. The NULL value is then used for the output columns
which are formed from the columns in the other table.
Since the OUTER JOIN indicator can be specified on both sides of the comparison operator if
the table expression [Page 195] is based on just two tables, it can be ensured that each line
in both tables appears at least once in the result table.

The JOIN predicate is a special case of the comparison predicate [Page 58]. The number of
JOIN predicates in a search condition is limited to 128.

JOIN predicate
Example tables: customer [Page 111], reservation [Page 114]

Is there a reservation for the customer 'Porter'? If so, for what date?
SELECT reservation.rno, customer.name,customer.firstname,
reservation.arrival, departure

FROM customer, reservation

WHERE customer.name = 'Porter' AND customer.cno =
reservation.cno

RNO NAME FIRSTNAME ARRIVAL DEPARTURE

100 Porter Jenny 13/11/2001 15/11/2001

110 Porter Jenny 24/12/2001 06/01/2002

120 Porter Martin 14/11/2001 18/11/2002

Specifying an OUTER JOIN indicator
Example tables: hotel [Page 112], reservation [Page 114]

List all the hotels in Los Angeles for which a reservation exists and those for
which a reservation does not exist. Missing reservation numbers are assigned a
NULL value.
SELECT hotel.hno, hotel.name, reservation.rno

FROM hotel, reservation

WHERE hotel.city = 'Los Angeles' AND hotel.hno =
reservation.hno (+)

HNO NAME RNO

80 Midtown 100

50 Lake Michigan 120

Reference Manual: SAP DB 7.4 63

SAP AG April 2003

80 Midtown 140

120 Sunshine 180

40 Eight Avenue ?

LIKE Predicate (like_predicate)
A LIKE predicate [Page 55] is used to search for character strings [Page 16] that have a
particular pattern. This pattern can be a certain character string or any sequence of
characters (whose length may or may not be known).

Syntax
<like_predicate> ::= <expression> [NOT] LIKE <like_expression>
[ESCAPE <expression>]

<like_expression> ::= <expression> | '<pattern_element>...'

expression [Page 52], pattern_element [Page 65]

Explanation
The expression in the like_expression must supply an alphanumeric value or a date or
time value.

x NOT LIKE y has the same result as NOT(x LIKE y).

 Result of x LIKE y

x or y are NULL value [Page 15]s x LIKE y is undefined

x and y are non-NULL values x LIKE y is either true or false

x can be split into substrings with the result that:

A substring of x is a sequence of 0,1, or more
contiguous characters, and each character of x belongs
to exactly one substring.

The number of substrings of x and y is identical.

If the nth pattern element of y is a sequence of
characters and the nth substring of x is a sequence of 0
or more characters.

x LIKE y is true

ESCAPE
An escape character (ESCAPE <expression>) must be used if a search is to be performed
for an <underscore [Page 37]>, '%', or the hexadecimal value X'1E' or X'1F' in the LIKE
predicate.

If ESCAPE <expression> is specified, the corresponding expression (expression) must
supply an alphanumeric value that consists of just one character. If this escape character is
contained in the LIKE expression (like_expression), the following character must be one
of the special characters <underscore>, %, X’1E’, or X’1F’. This special character is then
viewed as standing for itself.

Search for any character string with a minimum length of 1: LIKE '%_'
Search for a character string in which a fixed number of characters is known:
LIKE'_c_'

Reference Manual: SAP DB 7.4 64

SAP AG April 2003

Search for a character string with any number of characters, whereby the
character string must contain an <underscore>: LIKE '%:_%'ESCAPE':'

Example table: customer [Page 111]

Customers whose name ends with 'FT':
SELECT name, city FROM customer
WHERE name LIKE '%FT'

NAME CITY

DATASOFT Dallas

Finding all customers whose names consist of six letters and begin with 'P':
SELECT name, firstname, city FROM customer
WHERE name LIKE 'P_ _ _ _ _'

NAME FIRSTNAME CITY

Porter Jenny New York

Porter Martin Los Angeles

Peters Sally Los Angeles

Porter Michael New York

Peters Joseph Los Angeles

Customers with a 'p' in their name from the second position:
SELECT name, city FROM customer
WHERE name LIKE '_%p%'

NAME CITY

Randolph Los Angeles

Pattern element
Element for specifying a comparison pattern (for a LIKE predicate [Page 64]). A comparison
can be carried out with a string of characters or a set of characters.

Syntax
<pattern_element> ::= <match_string> | <match_set>

match_string [Page 65], match_set [Page 66]

match_string
If a match_string is specified, this position in the search pattern can be replaced by any
number of characters.

Reference Manual: SAP DB 7.4 65

SAP AG April 2003

Syntax
<match_string> ::= % | X'1F'

Explanation
A LIKE predicate [Page 64] is used to search for character strings [Page 16] that have a
certain pattern. Match_string can be used to specify the pattern (pattern element [Page
65]).

Example table: customer [Page 111]

Finding all customers whose first names have any lengths and begin with 'M':
SELECT firstname, name FROM customer
WHERE firstname LIKE 'M%'

FIRSTNAME NAME

Martin Porter

Michael Porter

Mark Griffith

match_set
If a match_set is specified, this position in the search pattern can be replaced by the exact
number of characters specified in the match_set.

Syntax
<match_set> ::= <underscore> | X'1E' | <match_char>

<match_char> ::= Every character [Page 30] other than %, X'1F', underscore, X'1E'

underscore [Page 37]

Explanation
A LIKE predicate [Page 64] is used to search for character strings [Page 16] that have a
certain pattern. Match_set can be used to specify the pattern (pattern element [Page 65]).

• <underscore> | X'1E' : this position in the pattern can be replaced by any one
character

• match_char : this position in the pattern can be replaced by the specified character
itself.

Example table: customer [Page 111]

Finding all customers whose names consist of six letters and begin with 'P':
SELECT name, firstname, city FROM customer
WHERE name LIKE 'P_ _ _ _ _'

NAME FIRSTNAME CITY

Porter Jenny New York

Reference Manual: SAP DB 7.4 66

SAP AG April 2003

Porter Martin Los Angeles

Peters Sally Los Angeles

Porter Michael New York

Peters Joseph Los Angeles

NULL predicate
By specifying a NULL predicate [Page 55], you can test whether the value is a NULL value
[Page 15].

Syntax
<null_predicate> ::= <expression> IS [NOT] NULL

expression [Page 52]

Explanation
The truth content of a NULL predicate is either true or false.

 Result of the function x IS NULL

x is NULL value true

x is a special NULL value [Page 15] false

x IS NOT NULL has the same result as NOT(x IS NULL).

Quantified Predicate (quantified_predicate)
By specifying a quantity predicate [Page 55], you can compare a value or list of values to a
set of values or value lists.

Syntax
<quantified_predicate> ::=
 <expression> <comp_op> <quantifier> <expression_list>
| <expression> <comp_op> <quantifier> <subquery>
| <expression_list> <equal_or_not> <quantifier>
(<expression_list>,...)
| <expression_list> <equal_or_not> <quantifier> <subquery>

subquery [Page 200], expression_list [Page 52]

The following operators are available for comparing values:
<, >, <>, !=, =, <=, >= (comp op [Page 59])

Value lists can only be compared with the = and <> operators (equal_or_not [Page 59]).

The quantified predicate can be qualified with ALL, SOME, or ANY (quantifier [Page 69]).

Reference Manual: SAP DB 7.4 67

SAP AG April 2003

Explanation
The subquery must supply a result table (see result table name [Page 41]) that contains the
same number of columns as the number of values specified by the expression or expression
list on the left-hand side of the operator.

Each list of values specified to the right of the equal_or_not operator (expression_list)
must contain the same number of values as specified in the value list in front of the
equal_or_not operator.

• Let x be the result of the first expression and S the result of the subquery or sequence
of values. S is a set of values s. The value x and the values in S must be comparable
with each other.

• If a value list (expression_list) is specified on the left of the comparison operator
equal_or_not, then let x be the value list comprising the results of the values x1, x2,
..., xn of this value list. Let S be the result of the subquery consisting of a set of value
lists s or a sequence of value lists s. A value list s consists of the results of the values
s1, s2, ..., sn. A value xm must be comparable with all values sm.
x=s is true if xm=sm, m=1,...,n
x<>s is true if there is at least one m for which xm<>sm
x <equal or not> s is undefined if there is no m for which xm <equal or not> sm
is false and if there is at least one m for which xm <equal_or_not> sm is undefined.
If one xm or one ym is a NULL value, or if the result of the subquery is empty, x
<equal_or_not> y is undefined.

The entry '------' in the list below means that no statement can be made if only the result of the
comparison with one s is known.

x <compare> <quantifier> S, whereby compare ::= comp_op | equal_or_not

 quantifier ::= ALL quantifier ::= ANY | SOME

S is empty true false

x <compare> S is true for at
least one s from S

------ true

x <compare> S is true for all
s from S

true true

x <compare> S is not false
for any value from S and is
undefined for at least one
value s

undefined

S contains NULL values and x
<compare> S is true for all
other s

undefined true

x <compare> S is false for
at least one value s from S

false ------

x <compare> S is false for
all s from S

false false

x <compare> S is not true
for any value s from S and is
undefined for at least one
value s

 undefined

S contains NULL values and x
<compare> S is false for all
other s

false undefined

Reference Manual: SAP DB 7.4 68

SAP AG April 2003

Example table: hotel [Page 112]

List of hotels that have the same name as other cities in the base table.
SELECT name, city FROM hotel
WHERE name = ANY (SELECT city FROM hotel)

The subquery SELECT city FROM hotel determines the list of city names that
are compared with the hotel names.

NAME CITY

Los Angeles Cincinatti

Long Beach Long Beach

Dallas Dallas

Quantifier
The quantified predicate [Page 67] can be qualified with ALL, SOME, or ANY.

Syntax
<quantifier> ::= ALL | SOME | ANY

ROWNO Predicate (rowno_predicate)
The ROWNO predicate [Page 55] restricts the number of lines in a result table (see result
table name [Page 41]).

Syntax
<rowno_predicate> ::= ROWNO < <unsigned_integer>
| ROWNO < <parameter_spec>
| ROWNO <= <unsigned_integer>
| ROWNO <= <parameter_spec>

unsigned_integer [Page 34], parameter_spec [Page 48]

Explanation
A ROWNO predicate may only be used in a WHERE clause [Page 198] that belongs to a
QUERY statement. The ROWNO predicate can be used like any other predicate [Page 55] in
the WHERE clause if the following restrictions are observed:

• The ROWNO predicate must be linked to the other predicates by a logic AND

• The ROWNO predicate must not be negated

• The ROWNO predicate may not be used more than once in the WHERE clause

You can specify the maximum number of lines in the result table using an unsigned integer or
a parameter specification. If more lines are found, they are simply ignored and do not lead to
an error message. Specifying a ROWNO predicate of the type ROWNO <= 0 results in an
empty results table.

If a ROWNO predicate and an ORDER clause [Page 202] are specified, only the first n result
lines are searched and sorted. The result usually differs from that which would have been
obtained if a ROWNO predicate had not been used and if the first n result rows had been
considered.

Reference Manual: SAP DB 7.4 69

SAP AG April 2003

If a ROWNO predicate and a set function [Page 105] are specified, the set function is only
applied to the number of lines restricted by the ROWNO predicate.

SOUNDS predicate
A SOUNDS predicate [Page 55] is used to perform a phonetic comparison.

Syntax
<sound_predicate> ::= <expression> [NOT] SOUNDS [LIKE] <expression>

expression [Page 52]

Explanation
Specifying LIKE in the SOUNDS predicate has no effect.

The values in the expressions must be alphanumeric (code attribute ASCII, EBCDIC, see
code tables [Page 18]).

A phonetic comparison between values is carried out according to the SOUNDEX algorithm.
First, all vowels and some consonants are eliminated, then all consonants which are similar in
sound are mapped to each other.

x [NOT] SOUNDS [LIKE] y

 Result of the predicate

x or y is the NULL value [Page 15] x SOUNDS y is undefined

x and y are non-NULL values x SOUNDS y is true or false

x and y are phonetically identical x SOUNDS y is true

x NOT SOUNDS y has the same result as NOT (x SOUNDS y).

See also:
SOUNDEX(x) [Page 88] string function

Search Condition (search_condition)
A search_condition links statements that can be true, false, or undefined. Rows in a table
may be found that fulfill several conditions that are linked with AND or OR.

Syntax
<search_condition> ::= <boolean_term> | <search_condition> OR
<boolean_term>

<boolean_term> ::= <boolean_factor> | <boolean_term> AND
<boolean_factor>

boolean factor [Page 72]: determine the boolean values (BOOLEAN [Page 17]) to be linked or
their negation (NOT).

Explanation
Predicates in a WHERE clause [Page 198] are applied to the specified row or a group of rows
in a table formed with the GROUP clause [Page 199]. The results are linked using the
specified Boolean operators (AND, OR, NOT).

Reference Manual: SAP DB 7.4 70

SAP AG April 2003

If no parentheses are used, the precedence of the operators is as follows: NOT has a higher
precedence than AND and OR, AND has a higher precedence than OR. Operators with the
same precedence are evaluated from left to right.

NOT

x NOT(x)

true false

false true

undefined undefined

x AND y

x y false undefined true

false false false false

undefined false undefined undefined

true false undefined true

x OR y

x y false undefined true

false false undefined true

undefined undefined true

true true true true

undefined

Example table: customer [Page 111]

Customers who live in New York or have a credit balance:
SELECT firstname, name, city, account FROM customer
WHERE city = 'New York' OR account > 0

FIRSTNAME NAME CITY ACCOUNT

Jenny Porter New York 100.00

Dallas 4813.50

Michael Porter New York 0.00

George Howe New York -315.40

Joseph Peters Los Angeles 650.00

Mark Griffith New York 0.00

TOOLware Los Angeles 3770.50

Rose Brown Hollywood 440.00

? DATASOFT

?

Customers who live in Hollywood and have a credit balance:
SELECT firstname, name, city, account FROM customer
WHERE city = 'Hollywood' AND account > 0

FIRSTNAME NAME CITY ACCOUNT

Rose Brown Hollywood 440.00

Reference Manual: SAP DB 7.4 71

SAP AG April 2003

Boolean factor
Specifies how the Boolean values are determined that are to be linked in a search condition
[Page 70] by AND or OR.

Syntax
<boolean_factor> ::= [NOT] <predicate> | [NOT] (<search_condition>)

predicate [Page 55], search_condition [Page 70]

 Functions: Overview
List of all function names

ABS [Page 74] ACOS [Page 80] ADDDATE [Page 93]

ADDTIME [Page 95] ALPHA [Page 81] ASCII [Page 82]

ASIN [Page 80] ATAN [Page 80] ATAN2 [Page 80]

AVG [Page 108]

CEIL [Page 74] CHAR [Page 103]

CHR [Page 10]4 COS [Page 80] COSH [Page 80]

COT [Page 80] COUNT [Page 108]

DATE [Page 97] DATEDIFF [Page 93] DAY [Page 99]

DAYNAME [Page 94] DAYOFMONTH [Page 94] DAYOFWEEK [Page 94]

DAYOFYEAR [Page 94] DECODE [Page 100] DEGREES [Page 80]

EBCDIC [Page 82] EXP [Page 74] EXPAND [Page 82]

FIXED [Page 75] FLOAT [Page 75] FLOOR [Page 75]

GET_OBJECTNAME [Page
82]

GET_OWNER [Page 83] GREATEST [Page 100]

HEX [Page 104] HEXTORAW [Page 104] HOUR [Page 98]

INDEX [Page 75] INITCAP [Page 84]

LEAST [Page 100] LENGTH [Page 76] LFILL [Page 84]

LN [Page 77] LOG [Page 77] LOWER [Page 91]

LPAD [Page 85] LTRIM [Page 86]

MAKEDATE [Page 94] MAKETIME [Page 96] MAX [Page 109]

MAPCHAR [Page 86] MICROSECOND [Page 98] MIN [Page 109]

MINUTE [Page 98] MONTH [Page 99] MONTHNAME [Page 94]

NOROUND [Page 78] NUM [Page 105]

PI [Page 78] POWER [Page 78]

RADIANS [Page 80] REPLACE [Page 86] RFILL [Page 87]

ROUND [Page 78] RPAD [Page 88] RTRIM [Page 88]

SECOND [Page 98] SIGN [Page 79] SIN [Page 80]

CASE [Page 101]

Reference Manual: SAP DB 7.4 72

SAP AG April 2003

SINH [Page 80] SOUNDEX [Page 88]

SQRT [Page 79] SUBDATE [Page 93] SUBSTR [Page 89]

SUBTIME [Page 95] STDDEV [Page 109] SUM [Page 109]

TAN [Page 80] TANH [Page 80] TIME [Page 98]

TIMEDIFF [Page 96] TIMESTAMP [Page 98] TRANSLATE [Page 90]

TRIM [Page 90] TRUNC [Page 79]

UPPER [Page 91]

VALUE [Page 101] VARIANCE [Page 109]

WEEKOFYEAR [Page 94]

YEAR [Page 99]

|| [Page 91] & [Page 91]

Function (function_spec)
There is a series of functions that can be applied to a value (row) as an argument
(function_spec) and supply a result.

Syntax
<function_spec> ::= <arithmetic_function> | <trigonometric_function>
| <string_function> | <date_function> | <time_function>
| <extraction_function> | <special_function>
| <conversion_function>

arithmetic_function [Page 73], trigonometric_function [Page 80], string_function [Page 81],
date_function [Page 92], time_function [Page 95], extraction_function [Page 97],
special_function [Page 99], conversion_function [Page 103]

Explanation
The arguments and results of the functions are numeric, alphanumeric or Boolean values that
are subject to certain restrictions. LONG columns [Page 16] are not allowed as arguments.

Arithmetic function
An arithmetic function is a function [Page 73] that supplies a numeric value as a result.

Syntax
<arithmetic_function> ::=
 TRUNC (<expression>[, <expression>])
| ROUND (<expression>[, <expression>])
| NOROUND (<expression>)
| FIXED (<expression>[, <unsigned_integer> [, <unsigned_integer]]
)
| FLOAT (<expression>[, <unsigned_integer>])
| CEIL (<expression>)
| FLOOR (<expression>)
| SIGN (<expression>)
| ABS (<expression>)
| POWER (<expression>, <expression>)
| EXP (<expression>)

Reference Manual: SAP DB 7.4 73

SAP AG April 2003

| SQRT (<expression>)
| LN (<expression>)
| LOG (<expression>, <expression>)
| PI
| LENGTH (<expression>)
| INDEX (<string_spec>, <string_spec> [,<expression>[,
<expression>]])

expression [Page 52], unsigned_integer [Page 34], string_spec [Page 52]

TRUNC(a,n) [Page 79], ROUND(a,n) [Page 78], NOROUND(a) [Page 78], FIXED(a,p,s)
[Page 75], FLOAT(a,s) [Page 75], CEIL(a) [Page 74], FLOOR(a) [Page 75], SIGN(a) [Page

], ABS(a) [Page 74], POWER(a,n) [Page 78], EXP(a) [Page 74], SQRT(a) [Page 79], LN(a)
[Page 77], LOG(a,b) [Page 77], PI [Page 78], LENGTH(a) [Page 76], INDEX(a,b,p,s) [Page

]75

79

ABS(a)
ABS(a) is an arithmetic_function [Page 73] that determines the unsigned value (absolute
value) of the number a.

 Result of the ABS(a) function

a is NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

CEIL(a)
CEIL(a) is an arithmetic function [Page 73] that calculates the smallest integer value that is
greater than or equal to the number a.

The result is a fixed point number with 0 decimal places.

An error message is output if it is not possible to represent the result of CEIL(a) as a fixed
point number.

 Result of CEIL(a) function

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

EXP(a)
EXP(a) is an arithmetic function [Page 73] that calculates the power from base e
(2.71828183) and the exponent a ("e to the power of a").

 Result of EXP(a) function

a is NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

Reference Manual: SAP DB 7.4 74

SAP AG April 2003

FIXED(a,p,s)
FIXED(a,p,s) is an arithmetic function [Page 73] that is used to output the number a in a
format of the data type FIXED [Page 121](p,s).

Digits after the decimal point are rounded to s decimal places, if necessary.

 Result of the FIXED(a,p,s) function

s not specified Result as for s=0

p not specified Result as for p=38

Special NULL value [Page 15]

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value

ABS(a)>10exp(p-s)

FLOAT(a,s)
FLOAT(a,s) is an arithmetic function [Page 73] that outputs the figure a in a format of the data
type FLOAT [Page 122](s). It is rounded to s places if necessary.

 Result of the FLOAT(a,s) function

a is NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

FLOOR(a)
FLOOR(a) is an arithmetic function [Page 73] that calculates the largest integer value that is
less than or equal to the number a.

The result is a fixed point number with 0 decimal places.

An error message is output if it is not possible to represent the result of FLOOR(a) as a fixed
point number.

 Result of the FLOOR(a) function

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

INDEX(a,b,p,s)
INDEX(a,b,p,s) is an arithmetic function [Page 73] that determines the position of the
substring specified in b within the character string a.

The parameter p is optional. If p is specified (p>=1), it defines the start position for the search
for the substring b. If p is not specified, the search is started at position 1.

The parameter s is optional. If s is specified, it determines the number of searches for the
substring b. If s is not specified, the search is carried out for the first occurrence.

 Result of the INDEX(a,b,p,s) function

Reference Manual: SAP DB 7.4 75

SAP AG April 2003

a, b character strings and b
not less than s times
substring of a

0

a character string and b
empty character string

p

a,b,p or s is NULL value NULL value [Page 15]

p or s is special NULL value
[Page 15]

Error Message

Example table: customer [Page 111]

The position of the character string ‘er’ is to be determined in all customer
surnames.
SELECT name, INDEX(name,'er') position_er FROM customer

NAME POSITION_ER

Porter 5

DATASOFT 0

Porter 5

Peters 4

Brown 0

Porter 5

Howe 0

Randolph 0

Peters 4

Brown 0

Jackson 0

Adams 0

Griffith 0

0

Brown

TOOLware

0

LENGTH(a)
LENGTH(a) is an arithmetic function [Page 73] that specifies the number of characters or
bytes that are required to represent the value a internally. The function can be used for all
data types except LONG [Page 121].

 Result of the LENGTH(a) function

a is a value of data type CHAR [Page 120]|VARCHAR
[Page 120] <ASCII|EBCDIC|UNICODE> with n
characters

Number of characters n

a is a value of another data type (other than LONG) of
length n

Length n in bytes

Reference Manual: SAP DB 7.4 76

SAP AG April 2003

a is a NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

The length of the number of characters or the length in bytes is determined without any
consideration of trailing blanks (code attribute ASCII, EBCDIC, UNICODE) or binary zeros
(code attribute BYTE).

Example table: customer [Page 111]

The customer table is sorted according to the length of the surnames, with
names with the same length sorted in alphabetical order.
SELECT name, LENGTH(name) mylength
FROM customer ORDER BY mylength, name

NAME MYLENGTH

Howe 4

Adams 5

Brown 5

5

Brown 5

Peters 6

Peters 6

6

Porter 6

Porter 6

Jackson 7

8

Griffith 8

Randolph 8

8

Brown

Porter

DATASOFT

TOOLware

LN(a)
LN(a) is an arithmetic function [Page 73] that calculates the natural logarithm of the number a.

 Result of the LN(a) function

a is NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

LOG(a,b)
LOG(a,b) is an arithmetic function [Page 73] that calculates the logarithm of the number b to
base a.

Reference Manual: SAP DB 7.4 77

SAP AG April 2003

 Result of the LOG(a,b) function

a or b is the NULL value NULL value [Page 15]

b is special NULL value Special NULL value [Page 15]

NOROUND(a)
NOROUND(a) is an arithmetic function [Page 73] that prevents the result of an UPDATE or
INSERT statement from being rounded so that it matches the data type of the target column.

If the non-rounded number does not correspond to the data type of the target column, an
error message is output.

 Result of the NOROUND(a) function

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

PI
PI is an arithmetic function [Page 73] that outputs the value π.

POWER(a,n)
POWER(a,n) is an arithmetic function [Page 73] that calculates the nth power of the number
a.

An error message is output if n is not an integer.

 Result of the POWER(a,n) function

a or n is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

ROUND(a,n)
ROUND(a,n) is an arithmetic function [Page 73] with the following result (for the values a and
n):

ROUND(a) – round decimal places up and down
ROUND(a,n) – round up and down to the nth place on the right of the decimal point
ROUND(a,-n) – round up and down to the nth place on the left of the decimal point

 Result of the ROUND(a,n) function

a>=0 TRUNC [Page 79](a+0.5*10E-n,n)

a<0 TRUNC(a-0.5*10E-n,n)

n not specified Result as for n=0

n is not an integer The integer component of n is used and the result is as with a>=0
or a<0

a is floating point number Floating point number

a is fixed point number Fixed point number

Reference Manual: SAP DB 7.4 78

SAP AG April 2003

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

SIGN(a)
SIGN(a) is an arithmetic function [Page 73] that indicates the sign of the number a.

 Result of the SIGN(a) function

a<0 -1

a=0 0

a>0 1

a is the NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

SQRT(a)
SQRT(a) is an arithmetic function [Page 73] that calculates the square root of the number a.

 Result of the SQRT(a) function

a>0 Square root of a

a=0 0

a<0 or a is NULL value NULL value [Page 15]

a is special NULL value Special NULL value [Page 15]

TRUNC(a,n)
TRUNC(a,n) is an arithmetic function [Page 73] with the following result (for the values a and
n):

TRUNC(a) – truncate the decimal places of a
TRUNC(a,n) – truncate the number a after n decimal places
TRUNC(a,-n) – set n places in the number a before the decimal point to 0

 Result of the TRUNC(a,n) function

n>0 Number a that is truncated n places after the decimal point

n=0 Integer component of a

n<0 Number a that is truncated s places in front of the decimal point

n not specified As with n=0

n is not an integer The integer component of n is used and the result is as with n>0,
n=0, or n<0

Floating point number [Page 16]

a is fixed point number Fixed point number [Page 16]

a is the NULL value NULL value [Page 15]

a is floating point number

Reference Manual: SAP DB 7.4 79

SAP AG April 2003

a is special NULL value Special NULL value [Page 15]

Trigonometric function
A trigonometric function is a function [Page 73] that supplies a numeric value as a result.

Syntax
<trigonometric_function> ::=
 COS (<expression>)
| SIN (<expression>)
| TAN (<expression>)
| COT (<expression>)
| COSH (<expression>)
| SINH (<expression>)
| TANH (<expression>)
| ACOS (<expression>)
| ASIN (<expression>)
| ATAN (<expression>)
| ATAN2 (<expression>, <expression>)
| RADIANS (<expression>)
| DEGREES (<expression>)

expression [Page 52]

All of the values (expression) in every trigonometric function identify an angle in radians.
The only exception to this is the RADIANS function.

 Result of the trigonometric function

<expression> is NULL
value

NULL value [Page 15]

<expression> is special
NULL value

Special NULL value [Page 15]

Cosine of number a

Sine of number a

Tangent of number a

COT(a) Cotangent of number a

Hyperbolic cosine of number a

SINH(a) Hyperbolic sine of number a

TANH(a) Hyperbolic tangent of number a

ACOS(a) Arc cosine of number a

ASIN(a) Arc sine of number a

ATAN(a) Arc tangent of number a

ATAN2(a,b) Arc tangent of the value a/b, where -π<=a<=+π and -π<=b<=+π

ASIN(a) Arc sine of number a

RADIANS(a) Angle in radians of the number a

DEGREES(a) Value in degrees of the number a

COS(a)

SIN(a)

TAN(a)

COSH(a)

Reference Manual: SAP DB 7.4 80

SAP AG April 2003

String Function (string_function)
A string function is a function [Page 73] that supplies an alphanumeric value as a result.

Syntax
<string_function> ::=
 <string_spec> || <string_spec>
| <string_spec> & <string_spec>
| SUBSTR (<string_spec>,<expression>[,<expression>])
| LFILL (<string_spec>,<string_literal>[,<unsigned_integer>])
| RFILL (<string_spec>,<string_literal>[,<unsigned_integer>])
| LPAD (<string_spec>,<expression>,<string_literal>[,<unsigned_i
nteger>])
| RPAD (<string_spec>,<expression>,<string_literal>[,<unsigned_i
nteger>])
| TRIM (<string_spec>[,<string_spec>])
| LTRIM (<string_spec>[,<string_spec>])
| RTRIM (<string_spec>[,<string_spec>])
| EXPAND (<string_spec>,<unsigned_integer>)
| UPPER (<string_spec>)
| LOWER (<string_spec>)
| INITCAP (<string_spec>)
| REPLACE (<string_spec>,<string_spec>[,<string_spec>])
| TRANSLATE (<string_spec>,<string_spec>,<string_spec>)
| MAPCHAR (<string_spec>[,<unsigned_integer>][,<mapchar_set_name>])
| ALPHA (<string_spec>[,<unsigned_integer>])
| ASCII (<string_spec>)
| EBCDIC (<string_spec>)
| SOUNDEX (<string_spec>)
| GET_OBJECTNAME (<string_literal>)
| GET_OWNER (<string_literal>)

string_spec [Page 52], expression [Page 52], string_literal [Page 32], unsigned_integer [Page
], mapchar_set_name [Page 42] 34

Concatenation (x||y and x&y) [Page 91], SUBSTR(x,a,b) [Page 89], LFILL(x,a,n) [Page 84],
RFILL(x,a,n) [Page 87], LPAD(x,a,y,n) [Page 85], RPAD(x,a,y,n) [Page 88], TRIM(x,y) [Page
90], LTRIM(x,y) [Page 86], RTRIM(x,y) [Page 88], EXPAND(x,n) [Page 82],
UPPER(x)/LOWER(x) [Page 91], INITCAP(x) [Page 84], REPLACE(x,y,z) [Page 86],
TRANSLATE(x,y,z) [Page 90], MAPCHAR(x,n,i) [Page 86], ALPHA(x,n) [Page 81],
ASCII(x)/EBCDIC(x) [Page 82], SOUNDEX(x) [Page 88], GET_OBJECTNAME(x,o) [Page
82], GET_OWNER(x,o) [Page 83]

 ALPHA(x,n)
ALPHA(x,n) is a string function [Page 81] that enables a character x in ASCII or EBCDIC
code (code tables [Page 18]) to be converted to a different one or two-character
representation in the DEFAULTMAP (mapchar_set_name [Page 42]). ALPHA(x,n) is used to
define the sort sequence.

The function ALPHA(x,n) uses the MAPCHAR(x,n,i) [Page 86] function internally (where i is
the DEFAULTMAP) and also performs a conversion to uppercase letters (UPPER(x) [Page
91]).

The parameter n is optional and specifies the maximum length of the result.

 Result of the ALPHA(x,n) function

Reference Manual: SAP DB 7.4 81

SAP AG April 2003

ALPHA(x,n) UPPER(MAPCHAR(x,n,DEFAULTMAP))

The function ALPHA enables an appropriate sort, e.g. if "ü" is to be treated for as
"UE" sorting purposes. The MAPCHAR SET with the name DEFAULTMAP is
used.
SELECT...,ALPHA(<column name>) sort,...FROM...ORDER BY sort

ASCII/EBCDIC(x)
ASCII(x) or EBCDIC(x) is a string function [Page 81] that converts a character string [Page
16] x in ASCII code [Page 18] to EBCDIC code [Page 20] and vice versa.

 Result of the ASCII(x) or EBCDIC(x) function

Code attribute for x is
ASCII or EBCDIC

ASCII(x) is a character string in ASCII notation

Code attribute for x is
ASCII or EBCDIC

EBCDIC(x) is a character string in EBCDIC notation

x is NULL value NULL value [Page 15]

The ASCII and EBCDIC functions are useful when a specific code is to be used for sorting or
comparison purposes.

Output of a sorted result table in EBCDIC order:
SELECT EBCDIC(name) FROM...WHERE...ORDER BY 1

EXPAND(x,n)
EXPAND(x,n) is a string function [Page 81] that inserts as many blanks (code attribute ASCII,
EBCDIC (code tables [Page 18])) or binary zeros (code attribute BYTE) to the end of a
character string [Page 16] x as are needed to give the string the length specified by n.

 Result of the EXPAND(x,n) function

x is NULL value NULL value [Page 15]

See also:
LFILL(x,a,n) [Page 84]

RFILL(x,a,n) [Page 87]

 GET_OBJECTNAME(x,o)
The string function [Page 81] GET_OBJECTNAME(x,o) returns the name of the database
object.

x: Identifier of the object
The argument x is a string literal [Page 32] in the format[<owner>.]<identifier> or a

Reference Manual: SAP DB 7.4 82

SAP AG April 2003

character parameter of this type.
<owner> and <identifier> [Page 36] can be special identifiers [Page 37].

o: Object type
You can use one of the following key words:
DBPROC[EDURE]: database procedure [Page 28]
DOMAIN: domain [Page 24]
SEQUENCE: sequence [Page 45]
SYNONYM: synonym [Page 24]
VIEW: view table [Page 23]
TABLE: table [Page 23]

 Result of the Function
GET_OBJECTNAME(x,o)

x identifies an object that is not of object type o NULL value [Page 15]

Object x does not exist NULL value

Object x exists, however the current user does not
have any privileges for this object

NULL value

Object x exists for the owner specified under
<owner> and the current user has a privilege for
this object

<identifier>

Object x exists, and the current user has a
privilege for this object

First object name found in the search hierarchy

For some object types, there is no search hierarchy. In this case, the function only searches
for the object in the schema of the current user.

 GET_OWNER(x,o)
The string function [Page 81] GET_OWNER(x,o) returns the name of the owner [Page 41] of
the specified database object.

x: Identifier of the object
The argument x is a string literal [Page 32] in the format[<owner>.]<identifier> or a
character parameter of this type.
<owner> and <identifier> [Page 36] can be special identifiers [Page 37].

o: Object type
You can use one of the following key words:
DBPROC[EDURE]: database procedure [Page 28]
DOMAIN: domain [Page 24]
SEQUENCE: sequence [Page 45]
SYNONYM: synonym [Page 24]
VIEW: view table [Page 23]
TABLE: table [Page 23]

 Result of the Function GET_OWNER(x,o)

x identifies an object that is not of object type o NULL value [Page 15]

Object x does not exist NULL value

Object x exists, however the current user does not
have any privileges for this object

NULL value

Object x exists for the owner specified under
<owner> and the current user has a privilege for

<owner>

Reference Manual: SAP DB 7.4 83

SAP AG April 2003

this object

Object x exists, and the current user has a
privilege for this object

First owner of this object found in the search
hierarchy

For some object types, there is no search hierarchy. In this case, the function only searches
for the object in the schema of the current user.

INITCAP(x)
INITCAP(x) is a string function [Page 81] that changes a character string [Page 16] in such a
way that the first character of a word is an uppercase letter and the rest of the word consists
of lowercase characters. Words are separated by one or more characters which are neither
letters [Page 30] nor digits [Page 30].

 Result of the Function INITCAP(x)

x is NULL value NULL value [Page 15]

Example table: customer [Page 111]

Standardizing the notation for names
SELECT name, INITCAP(name) new_name
FROM customer WHERE firstname IS NULL

NAME NEW_NAME

DATASOFT Datasoft

TOOLware TOOLware

LFILL(x,a,n)
LFILL(x,a,n) is a string function [Page 81] that inserts the character string a at the start of the
character string [Page 16] x as often as required until the character string has reached the
length n. If the character string a cannot be completely inserted without exceeding the
specified total length, only the part that is needed to reach the total length is inserted.

 Result of the LFILL(x,a,n) function

LFILL(x,a)
x must identify a CHAR or
VARCHAR column.

The column x is filled with the characters of a until its maximum
length is reached.

x is NULL value NULL value [Page 15]

Error Message a or n is the NULL value

Example table: customer [Page 111]
SELECT LFILL (firstname,' ',8) firstname, name, city
FROM customer
WHERE firstname IS NOT NULL AND city = 'Los Angeles'

FIRSTNAME NAME CITY

Martin Porter Los Angeles

Reference Manual: SAP DB 7.4 84

SAP AG April 2003

Sally Peters Los Angeles

Frank Randolph Los Angeles

Joseph Peters Los Angeles

Los Angeles

Los Angeles

Los Angeles

Susan Brown

Anthony Jackson

Thomas Adams

RFILL(x,a,n) [Page 87]

EXPAND(x,n) [Page 82]

 LPAD(x,a,y,n)
LPAD(x,a,y,n) is a string function [Page 81] that inserts the character string y at the start of
the character string [Page 16] x as often as specified by the parameter a. Leading and
subsequent blanks in the character string x are truncated. The optional parameter n defines
the maximum total length of the character string created.

The result of the parameter a must be a positive integer.

The optional parameter n must be greater than or equal to the total LENGTH [Page
](x)+a*LENGTH(y). 76

 Result of the LPAD(x,a,y,n) function

LPAD(x,a,y)
x must identify a CHAR or
VARCHAR column.

The maximum length of the character string is the length of the
character string x.

x or a is the NULL value NULL value [Page 15]

special NULL value
[Page 15]

Error Message a is the

Example table: customer [Page 111]

Creating bar charts: LPAD inserts asterisks in front of the first parameter (in this
case, a blank). This is done according to the number equal to account divided
by 100.
SELECT name, account, LPAD(' ',TRUNC(account/100),'*',50)
graph
FROM customer WHERE account > 0 ORDER BY account DESC

NAME ACCOUNT GRAPH

DATASOFT 4813.50 **

TOOLware 3770.50 *************************************

Peters 650.00 ******

Brown 440.00 ****

100.00 * Porter

See also:
RPAD(x,a,y,n) [Page 88]

Reference Manual: SAP DB 7.4 85

SAP AG April 2003

LTRIM(x,y)
LTRIM(x,y) is a string function [Page 81] that removes all of the characters specified in the
character string y from the start of the character string [Page 16] x. The result of LTRIM(x,y),
therefore, starts with the first character that was not specified in y.

 Result of the LTRIM(x,y) function

LTRIM(x) Only blanks (code attribute ASCII, EBCDIC (code tables [Page
])) or binary zeros (code attribute BYTE) are removed from x.

x is NULL value NULL value [Page 15]

18

See also:
TRIM(x,y) [Page 90]

RTRIM(x,y) [Page 88]

MAPCHAR(x,n,i)
MAPCHAR(x,n,i) is a string function [Page 81] that converts country-specific letters to a
different format (such as German umlauts, French letters with a grave accent). These letters
are located in the ASCII code [Page 18] and EBCDIC code [Page 20] at positions that can
seldom be used for sorting purposes. The MAPCHAR(x,n,i) function cannot be used for
UNICODE databases.

MAPCHAR(x,n,i) uses the MapChar set with the name i (mapchar set name [Page 42]) to
convert the character string x. If you do not specify a MapChar set name, the MapChar set
with the name DEFAULTMAP is used.

The parameter n is optional and specifies the maximum length of the result.

 Result of the MAPCHAR(x,n,i) function

MAPCHAR(x,n,i), whereby n is the length of the character string x

MAPCHAR(x,i)
x is CHAR or VARCHAR
column

MAPCHAR(x,n,i), whereby n is the length of the column x

MAPCHAR(x) MAPCHAR(x,DEFAULTMAP)

x is a NULL value NULL value [Page 15]

MAPCHAR(x,i)

The function MAPCHAR enables data to be sorted correctly, e.g. if "ü" is to be
treated for as "UE" sorting purposes. The MAPCHAR SET with the name
DEFAULTMAP is used.
SELECT...,MAPCHAR(<column name>) sort,...FROM...ORDER BY
sort

REPLACE(x,y,z)
REPLACE(x,y,z) is a string function [Page 81] that replaces the character string y in the
character string [Page 16] x with the character string z.

Reference Manual: SAP DB 7.4 86

SAP AG April 2003

 Result of the REPLACE(x,y,z) function

REPLACE(x,y) The character string y in x is deleted

x is a NULL value NULL value [Page 15]

y is NULL value x remains unchanged

The character string y in x is deleted z is NULL value

Example table: hotel [Page 112]

The abbreviated notation for Street (St.) is to be written out in full (Street) for the
sake of uniformity.
SELECT hno, zip, city, REPLACE (address,' t.' ,' treet')
address

FROM hotel where address like '%tr%'

CITY HNO ZIP ADDRESS

89477 Detroit 155 Beechwood Street

20 86159 Cincinnati 1499 Grove Street

80 20251 Los Angeles 12 Barnard Street

100 50668 Dallas 1980 34th Street

110 81245 New York 111 78th Street

10

See also:
TRANSLATE(x,y,z) [Page 90]

 RFILL(x,a,n)
RFILL(x,a,n) is a string function [Page 81] that inserts the character string a at the end of the
character string [Page 16] x as often as required until the character string has reached the
length n. If the character string a cannot be completely inserted without exceeding the
specified total length, only the part that is needed to reach the total length is inserted.

 Result of the RFILL(x,a,n) function

RFILL(x,a)
x must identify a CHAR or
VARCHAR column.

The column x is filled with the characters of a until its maximum
length is reached.

NULL value [Page 15]

a or n is the NULL value Error message

x is NULL value

See also:
LFILL(x,a,n) [Page 84]

EXPAND(x,n) [Page 82]

Reference Manual: SAP DB 7.4 87

SAP AG April 2003

RPAD(x,a,y,n)
RPAD(x,a,y,n) is a string function [Page 81] that inserts the character string y at the end of
the character string [Page 16] x as often as specified by the parameter a. Leading and
subsequent blanks in the character string x are truncated. The optional parameter n defines
the maximum total length of the character string created.

The result of the parameter a must be a positive integer.

The optional parameter n must be greater than or equal to the total LENGTH [Page
](x)+a*LENGTH(y). 76

 Result of the RPAD(x,a,y,n) function

The maximum length of the character string is the length of the
character string x.

x or a is the NULL value NULL value [Page 15]

a is the special NULL value
[Page 15]

Error message

RPAD(x,a,y)
x must identify a CHAR or
VARCHAR column.

See also:
LPAD(x,a,y,n) [Page 85]

RTRIM(x,y)
RTRIM(x,y) is a string function that removes the blanks (code attribute ASCII, EBCDIC (code
tables [Page 18])) or binary zeros (code attribute BYTE) from the end of the character string
[Page 16] x and then all of the characters specified in the character string y. The result of
RTRIM(x,y), therefore, ends with the last character that was not specified in y.

 Result of the RTRIM(x,y) function

RTRIM(x) Only blanks (code attribute ASCII, EBCDIC or binary zeros (code
attribute BYTE) are removed from x.

NULL value [Page 15] x is NULL value

See also:
TRIM(x,y) [Page 90]

LTRIM(x,y) [Page 86]

SOUNDEX(x)
SOUNDEX(x) is a string function [Page 81] that converts a character string [Page 16] x to a
format that is generated by the SOUNDEX algorithm.

This representation can be used if the user does not know the exact spelling of the search
term.

 Result of the SOUNDEX(x) function

SOUNDEX(x) The SOUNDEX algorithm is used. The result is a value with the
data type CHAR(4).

Reference Manual: SAP DB 7.4 88

SAP AG April 2003

x is NULL value NULL value [Page 15]

The SOUNDS predicate [Page 70] is often applied to a column x.

Since inversions cannot be used here, it is advisable for performance reasons to
define an additional table column x1 with the data type CHAR(4), in which the
result of SOUNDEX(x) is then inserted.

The requests should then refer to x1:
Instead of x SOUNDS LIKE <string literal>,
use x1= SOUNDEX(<string literal>)

SUBSTR(x,a,b)
SUBSTR(x,a,b) is a string function [Page 81] that outputs part of x (character string [Page 16]
with length n).

 Result of the SUBSTR(x,a,b) function

SUBSTR(x,a,b) Part of the character string x that starts at the a cter and is
b characters long.

th chara

SUBSTR(x,a) SUBSTR(x,a,n-a+1) supplies all of the characters in the character
string x from the a haracter to the last (n character. th c th)

unsigned integer
[Page 34]

SUBSTR(x,a,b)

b can also have a value that is greater than (n-a+1).

b is not an unsigned integer SUBSTR(x,a,b)

b must not be greater than (n-a+1).

b>(n-a+1) SUBSTR(x,a)

As many blanks (code attribute ASCII, EBCDIC) or binary zeros
(code attribute BYTE) are appended to the end of this result as are
needed to give the result the length b.

x, a or b is the NULL value NULL value [Page 15]

b is an

Example table: customer [Page 111]

The SUBSTR function is used to reduce the firstname to one letter, add a period
and a blank, and then concatenate it with the name.
SELECT SUBSTR (firstname,1,1)&'. '&name name, city
FROM customer WHERE firstname IS NOT NULL

NAME CITY

J. Porter New York

Los Angeles

S. Peters Los Angeles

P. Brown Hollywood

M. Porter New York

New York

M. Porter

G. Howe

Reference Manual: SAP DB 7.4 89

SAP AG April 2003

F. Randolph Los Angeles

J. Peters Los Angeles

Los Angeles

A. Jackson Los Angeles

Los Angeles

M. Griffith New York

I. Braun Los Angeles

S. Brown

T. Adams

TRANSLATE(x,y,z)
TRANSLATE(x,y,z) is a string function [Page 81 th chara
character string [Page 16] y with the i cter of the character string z in the character
string x. The character strings y and z must have the same length.

Result of the TRANSLATE(x,y,z) function

th chara
] that replaces the i cter of the

x is a NULL value NULL value [Page 15]

y is NULL value x remains unchanged

Example table: customer [Page 111]

Each occurrence of the ith letter in the first character string is replaced by the ith
letter in the second one.
SELECT name, TRANSLATE (name,'or','es') new_name
FROM customer WHERE firstname IS NOT NULL AND city = 'Los
Angeles'

NAME NEW_NAME

Porter Pestes

Peters Petess

Peters Petess

Brown Bsewn

Jackson Jacksen

Randolph Sandelph

Adams Adams

See also:
REPLACE(x,y,z) [Page 86]

TRIM(x,y)
TRIM(x,y) is a string function [Page 81] that removes all of the characters specified in the
character string y from the start of the character string [Page 16] x. The result of TRIM(x,y),
therefore, starts with the first character that was not specified in y.

Reference Manual: SAP DB 7.4 90

SAP AG April 2003

TRIM(x,y) also removes the blanks (code attribute ASCII, EBCDIC (code tables [Page 18])) or
binary zeros (code attribute BYTE) from the end of the character string and then all of the
characters specified in the character string y. The result of TRIM(x,y), therefore, ends with the
last character that was not specified in y.

 Result of the TRIM(x,y) function

TRIM(x) Only blanks (code attribute ASCII, EBCDIC or binary zeros (code
attribute BYTE) are removed from x.

NULL value [Page 15] x is a NULL value

Example table: customer [Page 111]
SELECT name, TRIM(CHR(account)) & ' EURO' account
FROM customer WHERE account > 0.00

NAME ACCOUNT

Porter 100.00 EURO

DATASOFT 4813.50 EURO

Peters 650.00 EURO

EURO

Brown 440.00 EURO

TOOLware 3770.50

See also:
LTRIM(x,y) [Page 86]

RTRIM(x,y) [Page 88]

UPPER/LOWER(x)
UPPER(x) and LOWER(x) are string functions [Page 81] that convert a character string [Page

] to uppercase/lowercase letters. 16

 Result of the Function UPPER(x) or LOWER(x)

x is a NULL value NULL value [Page 15]

Example table: hotel [Page 112]

Refining searches by specifying uppercase/lowercase letters
SELECT * FROM hotel WHERE UPPER(name) = 'REGENCY'

HNO NAME ZIP CITY ADDRESS

30 Regency 48153 Portland 477 17th Avenue

Concatenation (concatenation)
A concatenation (concatenation) x||y or x&y is a string function [Page 81] that supplies the
following results for x (character string [Page 16] with the length n) and y (character string
with the length m):

Reference Manual: SAP DB 7.4 91

SAP AG April 2003

 Result of the concatenation

x||y or x&y x and y are concatenated to a character string with the length n+m.

If a character string originates from a column, its length is
determined without any consideration of trailing blanks (code
attribute [Page 17]. ASCII, EBCDIC, UNICODE) or binary zeros
(code attribute BYTE).

x or y is the NULL value NULL value [Page 15]

Columns with the same code attribute can be concatenated.

Columns with different code attributes (ASCII, EBCDIC and UNICODE) can be concatenated
together as well as with date value [Page 17]s, time value [Page 17]s, and timestamp value
[Page 17]s.

Example table: customer [Page 111]
SELECT name, zip & ' – ' & city address FROM customer
WHERE city = 'New York'

NAME ADDRESS

Porter 80335 – New York

Porter 70596 – New York

Howe 81737 – New York

Griffith 81739 – New York

Date function
A date function is a function [Page 73] that is applied to date or timestamp values or supplies
a date or timestamp value as a result.

Syntax
<date_function> ::=
 ADDDATE (<date_or_timestamp_expression>, <expression>)
| SUBDATE (<date_or_timestamp_expression>, <expression>)
| DATEDIFF (<date_or_timestamp_expression>,
<date_or_timestamp_expression>)
| DAYOFWEEK (<date_or_timestamp_expression>)
| WEEKOFYEAR (<date_or_timestamp_expression>)
| DAYOFMONTH (<date_or_timestamp_expression>)
| DAYOFYEAR (<date_or_timestamp_expression>)
| MAKEDATE (<expression>, <expression>)
| DAYNAME (<date_or_timestamp_expression>)
| MONTHNAME (<date_or_timestamp_expression>)

date_or_timestamp_expression [Page 95], expression [Page 52]

ADDDATE(t,a)/SUBDATE(t,a) [Page 93], DATEDIFF(t,s) [Page 93], DAYOFWEEK(t),
WEEKOFYEAR(t), DAYOFMONTH(t), DAYOFYEAR(t) [Page 94], MAKEDATE(a,b) [Page

], DAYNAME(t), MONTHNAME(t) [Page 94] 94

Reference Manual: SAP DB 7.4 92

SAP AG April 2003

Explanation
Although the Gregorian calendar was not introduced until 1582, it can also be applied to date
functions that use dates prior to that year. This means that every year is assumed to have
either 365 or 366 days.

A variety of date and time formats [Page 50] (ISO, USA, EUR, JIS, INTERNAL) are available
for processing date and time values.

ADDDATE/SUBDATE(t,a)
ADDDATE(t,a) and SUBDATE(t,a) are date functions [Page 92] that calculate a date in the
future or past.

t: date_or_timestamp_expression [Page 95]

a: numeric value that represents the number of days. Any decimal places in a are truncated if
necessary.

 Result of the ADDDATE(t,a)/SUBDATE(t,a) function

Addition of a to t/
subtraction of a from t

Date value [Page 17] or
Time stamp value [Page 17]

t or a is NULL value NULL value [Page 15]

a is special NULL value [Page
15]

Error Message

Example table: reservation [Page 114]

Increasing a reservation date by two days
SELECT arrival, ADDDATE(arrival,2) arrival2, rno
FROM reservation WHERE rno = 130

ARRIVAL ARRIVAL2 RNO

01/02/2002 03/02/2002 130

DATEDIFF(t,s)
DATEDIFF(t,s) is a date function [Page 92] that calculates the number of days between a
start and end date.

t and s: date_or_timestamp_expression [Page 95]

 Result of DATEDIFF(t,s) function

Positive difference between
t and s

Numeric value (number of days)

t or s are timestamp values Only the dates [Page 17] in the timestamp value [Page 17] are
used to calculate DATEDIFF(t,s).

t or s is NULL value NULL value [Page 15]

Example table: reservation [Page 114]

Reference Manual: SAP DB 7.4 93

SAP AG April 2003

SELECT arrival, departure, DATEDIFF(departure,arrival)
difference, rno
FROM reservation WHERE rno = 130

ARRIVAL DEPARTURE DIFFERENCE RNO

01/02/2002 03/02/2002 2 130

DAYNAME/MONTHNAME(t)
DAYNAME(t) and MONTHNAME(t) are date functions [Page 92] that supply the weekday or
month of the specified day.

t: date_or_timestamp_expression [Page 95]

 Result of the function

DAYNAME(t) or
MONTHNAME(t)

Character string [Page 16] that supplies the name of a weekday
(Sunday to Saturday) or month (January to December).

t is NULL value NULL value [Page 15]

DAYOFWEEK/WEEKOFYEAR/DAYOFMONTH/DAYOFY
EAR(t)
DAYOFWEEK(t)/WEEKOFYEAR(t)/DAYOFMONTH(t)/DAYOFYEAR(t) are date functions
[Page 92] that calculate the following:

t: date_or_timestamp_expression [Page 95]

 Result of the function

DAYOFWEEK(t) Numeric value between 1 and 7 (weekday)

The first day is Monday, the second Tuesday, etc.

WEEKOFYEAR(t) Numeric value between 1 and 53 (calendar week of the specified
day)

DAYOFMONTH(t) Numeric value between 1 and 31 (day of the month of the
specified day)

DAYOFYEAR(t) Numeric value between 1 and 366 (day of the year of the specified
day)

t is NULL value NULL value [Page 15]

MAKEDATE(a,b)
MAKEDATE(a,b) is a date function [Page 92] that supplies a date value [Page 17] from a year
and day value.

The values a and b (expression [Page 52]) in MAKEDATE must supply numeric values.
The following restrictions also apply: a>=0 (a represents a year value)

Reference Manual: SAP DB 7.4 94

SAP AG April 2003

b>0 (b represents a day value)
Decimal places in a and b are truncated if necessary.

 Result of the MAKEDATE(a,b) function

a or b is the NULL value NULL value [Page 15]

a or b is the special NULL
value [Page 15]

Error message

MAKEDATE(1999,49) in the INTERNAL date format [Page 50] outputs
'19990218'

date_or_timestamp_expression
When used in a function, the date_or_timestamp_expression argument must supply a
date value [Page 17], a timestamp value [Page 17], or an alphanumeric value that matches
the current date or timestamp format [Page 50].

Time function
A time function is a function [Page 73] that is applied to time or timestamp values or supplies
a time or timestamp value as a result.

Syntax
<time_function> ::=
 ADDTIME (<time_or_timestamp_expression>, <time_expression>)
| SUBTIME (<time_or_timestamp_expression>, <time_expression>)
| TIMEDIFF (<time_or_timestamp_expression>,
<time_or_timestamp_expression>)
| MAKETIME (<hours>, <minutes>, <seconds>)

time_or_timestamp_expression [Page 97], time_expression [Page 96], hours, minutes,
seconds [Page 96]

ADDTIME/SUBTIME(t,a) [Page 95], TIMEDIFF(t,s) [Page 96], MAKETIME(h,m,s) [Page 96]

A variety of date and time formats [Page 50] (ISO, USA, EUR, JIS, INTERNAL) are available
for processing date and time values.

ADDTIME/SUBTIME(t,a)
ADDTIME(t,a) and SUBTIME(t,a) are time functions [Page 95] that calculate a time/timestamp
value in the past or future.

t: time_or_timestamp_expression [Page 97]
a: time_expression [Page 96]

 Result of the ADDTIME(t,a)/SUBTIME(t,a) function

Addition of a to t/
subtraction of a from t

Time value [Page 17] or time stamp value [Page 17]

SUBTIME(t,a) and t and a
are time values

a must be less than t, otherwise an error is output

Reference Manual: SAP DB 7.4 95

SAP AG April 2003

t or a is NULL value NULL value [Page 15]

MAKETIME(h,m,s)
MAKETIME(h,m,s) is a time function [Page 95] that calculates a time value [Page 17] from the
total number of hours, minutes, and seconds [Page 96].

 Result of the MAKETIME(h,m,s) function

h,m,s is NULL value NULL value [Page 15]

h,m,s is special NULL value
[Page 15]

Error message

TIMEDIFF(t,s)
TIMEDIFF(t,s) is a time function [Page 95] that calculates the time value between a start and
end time.

t and s: time_or_timestamp_expression [Page 97]
Both arguments must have the same data type, i.e. they must be either a time value [Page
17] or a timestamp value [Page 17].

 Result of the TIMEDIFF(t,s) function

Positive difference between
t and s

Time value

t or s are timestamp values
for alphanumeric values
that match the current
timestamp format.

The dates [Page 17] contained in the timestamp value are used to
calculate TIMEDIFF(t,s).

Difference of more than
9999 hours

Number of hours modulo 10000

t or s is NULL value NULL value [Page 15]

hours/minutes/seconds
When used in a function, each of these arguments (hours, minutes or seconds) must be
an integer greater than or equal to 0.

Decimal places are truncated.

Time expression
When used in a function, the argument time_expression must supply a time value [Page
17] or an alphanumeric value that is in the current time format [Page 50].

Reference Manual: SAP DB 7.4 96

SAP AG April 2003

Time or timestamp expression
When used in a function, the argument time_or_timestamp_expression must supply a
time value [Page 17], timestamp value [Page 17], or an alphanumeric value that matches the
current time or timestamp format [Page 50].

Extraction function
An extraction function is a function [Page 73] that extracts parts of a date value [Page 17],
time value [Page 17], or timestamp value [Page 17] or that calculates a date, time, or
timestamp value.

Syntax
<extraction_function> ::=
 YEAR (<date_or_timestamp_expression>)
| MONTH (<date_or_timestamp_expression>)
| DAY (<date_or_timestamp_expression>)
| HOUR (<time_or_timestamp_expression>)
| MINUTE (<time_or_timestamp_expression>)
| SECOND (<time_or_timestamp_expression>)
| MICROSECOND (<expression>)
| TIMESTAMP (<expression>[, <expression>])
| DATE (<expression>)
| TIME (<expression>)

date_or_timestamp_expression [Page 95], time_or_timestamp_expression [Page 97],
expression [Page 52]

YEAR(t), MONTH(t), DAY(t) [Page 99], HOUR(t), MINUTE(t), SECOND(t) [Page 98],
MICROSECOND(a) [Page 98], TIMESTAMP(a,b) [Page 98], DATE(a) [Page 97], TIME(a)
[Page 98]

A variety of date and time formats [Page 50] (ISO, USA, EUR, JIS, INTERNAL) are available
for processing date and time values.

DATE(a)
DATE(a) is a function (extraction [Page 97]) that calculates a date value [Page 17].

 Result of DATE(a) function

a is a date value or an
alphanumeric value that matches
the current date format

This date value

a is an alphanumeric value that
does not match the current date
format

Error message

a is a timestamp value [Page 17] or
an alphanumeric value that matches
the current timestamp format

The date value that is part of the timestamp

a is a fixed point or floating point
number [Page 16]

Date value that is equal to the xth day after December 31,
0000 (x=TRUNC(a) [Page 79])

a is NULL value NULL value [Page 15]

Reference Manual: SAP DB 7.4 97

SAP AG April 2003

a is special NULL value [Page 15] Error message

HOUR/MINUTE/SECOND(t)
HOUR(t), MINUTE(t), and SECOND(t) are functions (extraction [Page 97]) that extract the
hours, minutes, or seconds from the specified time or timestamp value.

t: time_or_timestamp_expression [Page 97]

 Result of the function

HOUR(t), MINUTE(t), or
SECOND(t)

Numeric value (hours, minutes, and seconds)

t is NULL value NULL value [Page 15]

MICROSECOND(a)
MICROSECOND(a) is a function (extraction [Page 97]) that extracts the microseconds from a.

The value a must be a timestamp value [Page 17] or supply an alphanumeric value that
matches the current timestamp format.

 Result of MICROSECOND(a) function

MICROSECOND(a) Numeric value (microseconds)

a is NULL value NULL value [Page 15]

TIME(a)
TIME(a) is a function (extraction [Page 97]) that calculates a time value [Page 17].

 Result of TIME(a) function

a is a time value or an alphanumeric
value that matches the current time
format

This time value

a is an alphanumeric value that
does not match the current time
format

Error message

a is a timestamp value [Page 17] or
an alphanumeric value that matches
the current timestamp format

The time value that is part of the timestamp

a is NULL value NULL value [Page 15]

TIMESTAMP(a,b)
TIMESTAMP(a,b) is a function (extraction [Page 97]) that calculates a timestamp value [Page
17] comprising a date value [Page 17], time value [Page 17], and 0 microseconds.

Reference Manual: SAP DB 7.4 98

SAP AG April 2003

 Result of TIMESTAMP(a,b) function

TIMESTAMP(a) a must be a timestamp value or an alphanumeric value that
matches the current timestamp format

The result is this timestamp value.

TIMESTAMP(a,b) a must be a date value and b a time value (or alphanumeric value
that matches the current format for date and time values).

The result is a timestamp value calculated from a date value, time
value, and 0 microseconds.

a or b is the NULL value NULL value [Page 15]

YEAR/MONTH/DAY(t)
YEAR(t), MONTH(t), and DAY(t) are functions (extraction [Page 97]) that extract the year,
month, and day from the specified date or timestamp value.

t: date_or_timestamp_expression [Page 95]

 Result of the function

YEAR(t), MONTH(t), or
DAY(t)

Numeric value (year, month, day)

t is NULL value NULL value [Page 15]

Special Function (special_function)
There are certain special functions [Page 73] (special_function) that are not restricted to
specific data types.

Syntax
<special_function> ::=
 VALUE (<expression>,<expression>,...)
| GREATEST (<expression>,<expression>,...)
| LEAST (<expression>,<expression>,...)
| DECODE (<check_expression>,<search_and_result_spec>,...[,<default
_expression>])
| <case_function>

<check_expression> ::= <expression>
<search_and_result_spec> ::= <search_expression>,<result_expression>
<default_expression> ::= <expression>
<result_expression> ::= <expression>
<case_function> ::= <simple_case_function>|<searched_case_function>

expression [Page 52]

VALUE(x,y,...) [Page 101], GREATEST(x,y,...), LEAST(x,y,...) [Page 100], DECODE(x,y,...,z)
[Page 100], simple_case_function [Page 102], searched_case_function [Page 10]1

Reference Manual: SAP DB 7.4 99

SAP AG April 2003

DECODE(x,y(i),...,z)
DECODE(x,y(i),...,z) is a special function [Page 99] that decodes expressions [Page 52] in
accordance with their values.

x check_expression Expression (expression) for which a comparison is to be carrie
the values in y(i)

y(i) search_and_result_spec <search_and_result_spec> ::= <search_expression>
<result_expression> (y(i)=u(i),v(i), i=1,...)

Combination of the comparison value u(i) and the value v(i) that
replace this comparison value

z default_expression Optional default value

u(i) search_expression Comparison value that is to be replaced by v(i) if it matches x

v(i) result_expression Value that is to be replace u(i)

The data types of x and u(i) must be comparable. The data types of v(i) and z must be
comparable. The data types of u(i) and v(i) do not have to be comparable.

DECODE compares the values of x with the values u(i) consecutively. If a match is found, the
result of DECODE is the value v(i) in the combination y(i)=u(i),v(i).

A match is present if x and u(i) are NULL values. The comparison of the special NULL value
with any other value never results in a match.

If a match is not found, DECODE supplies the result of z. If z is not specified, the NULL value
is the result of DECODE.

Example table: room [Page 113]

The room type identifiers are to be replaced in the output by an identifier declared
in the DECODE function.
SELECT hno, price, DECODE (roomtype,
'SINGLE', 1, 'DOUBLE', 2, 'SUITE', 3) room_code
FROM room

GREATEST/LEAST(x,y,...)
GREATEST(x,y,...) or LEAST(x,y) is a special function [Page 99] that calculates the maximum
or minimum value of all arguments.

The functions can be applied to any data type. The data types of the individual arguments
must be comparable.

 Result of the function

At least one argument is the
NULL value

NULL value [Page 15]

At least one argument is the
special NULL value

Special NULL value [Page 15]

Reference Manual: SAP DB 7.4 100

SAP AG April 2003

VALUE(x,y,...)
VALUE(x,y,...) is a special function [Page 99] that can be used to replace NULL values [Page
15] with a non-NULL value.

The arguments of the VALUE function must be comparable. The arguments are evaluated
one after the other in the specified order.

 Result of the VALUE(x,y) function

One of the arguments is
a non-NULL value

The first non-NULL value that occurs

Each argument is a
special NULL value
[Page 15]

Special NULL value

Each argument is a
NULL value

NULL value

Example table: customer [Page 111]

The title does not occur in the output list. The word company is to be output for
companies in the firstname column instead of a NULL value.

SELECT VALUE(firstname, 'company') firstname, name FROM
customer

FIRSTNAME NAME

Jenny Porter

Company DATASOFT

Martin Porter

Sally Peters

Peter Brown

Michael Porter

George Howe

Frank Randolph

Joseph Peters

Susan Brown

Anthony Jackson

Thomas Adams

Mark Griffith

Company TOOLware

Rose Brown

General CASE Function (searched_case_function)
The general CASE function (searched_case_function) is a special function [Page 99]
that analyzes a quantity of search conditions to determine a result_expression.

Reference Manual: SAP DB 7.4 101

SAP AG April 2003

Syntax
<searched_case_function> ::=
CASE
 WHEN <search_condition> THEN <result_expression>
 [...]
 [ELSE <default_expression>])
END

<result_expression> ::= <expression>
<default_expression> ::= <expression>

search_condition [Page 70], expression [Page 52]

Explanation
u(i) search_condition Search conditions u(i). All search conditions without ROWNO

Predicate [Page 69] are permissible.

v(i) result_expression Value v(i) that is to be accepted, if the search condition u(i) is
true

z default_expression Value z, optional default value

CASE checks the search conditions u(i) in succession. As soon as a search condition that is
true is found, the result of the general CASE function is the value v(i) that belongs to u(i).

The data types of v(i) and z must be comparable.

If no search condition that is true is found, CASE returns the result of z. If z is not specified,
the NULL value [Page 15] is the result of CASE.

CASE
 WHEN price IS NULL THEN 'Not yet priced'
 WHEN price < 10 THEN 'Very Reasonable Title'
 WHEN price >= 10 and price < 20 THEN 'Coffee Table Title'
 ELSE 'Expensive book!'
END

See also:
Simple CASE function (simple_case_function) [Page 102]

Simple CASE Function (simple_case_function)
The simple CASE function (simple_case_function) is a special function [Page 99] that
analyzes a quantity of simple expressions to determine a (result_expression [Page 52]).

Syntax
<simple_case_function> ::=
CASE <check_expression>,
 WHEN <search_expression> THEN <result_expression>
 [...]
 [ELSE <default_expression>])
END

<check_expression> | <search_expression> | <result_expression> |
<default_expression> ::= <expression>

expression [Page 52]

Reference Manual: SAP DB 7.4 102

SAP AG April 2003

Explanation
x check_expression Expression x for which a comparison is to be carried out with the

comparison values u(i)

u(i) search_expression Comparison value u(i). The function delivers v(i) as the result at
the first match of u(i) with x.

v(i) result_expression Value v(i) that is to be accepted, if u(i) matches x

z default_expression Value z, optional default value

CASE compares the values of x with the values u(i) consecutively. If a match is determined,
the result of the simple CASE function is the value v(i) associated with u(i).

The data types of x and u(i) must be comparable. The data types of v(i) and z must be
comparable. The data types of u(i) and v(i) do not have to be comparable.

A match is present if x and u(i) are NULL values. The comparison of the special NULL value
with any other value never results in a match.

If a match is not found, CASE supplies the result of z. If z is not specified, the NULL value
[Page 15] is the result of CASE.

See also:
General CASE Function (searched_case_function) [Page 101]

Conversion Function (conversion_function)
A conversion function is a function [Page 73] that converts a value from one data type to
another.

Syntax
<conversion_function> ::=
 NUM (<expression>)
| CHR (<expression>[, <unsigned_integer>])
| HEX (<expression>)
| HEXTORAW (<expression>)
| CHAR (<expression>[, <datetimeformat>])

expression [Page 52], unsigned_integer [Page 34], datetimeformat [Page 50]

NUM(a) [Page 105], CHR(a,n) [Page 104], HEX(a) [Page 104], HEXTORAW(a) [Page 104],
CHAR(a,t) [Page 10]3

CHAR(a,t)
CHAR(a,t) is a function (conversion function [Page 103]) that converts the date values [Page
17], time values [Page 17], or timestamp values [Page 17] to a character string with the
format for date values, time values, or timestamp values [Page 50] specified in t.

 Result of the CHAR(a,t) function

CHAR(a) The current date and time format is used for the value a.

a is the NULL value NULL value [Page 15]

Reference Manual: SAP DB 7.4 103

SAP AG April 2003

CHR(a,n)
CHR(a,n) is a function (conversion function [Page 103]) that converts numbers into character
strings.

The CHR function can only be applied to numeric values, character strings [Page 16], and
boolean values [Page 17].

 Result of the CHR(a,n) function

a is a numeric value Character string that matches the CHAR representation of the
numeric value a.

The code attribute of the character string corresponds to the code
type of the computer.

a is character string Identical character string

a is a boolean value T, if a=TRUE
F, if a=FALSE

a is not a numeric value, a
character string, or a
boolean value

Error message

CHR(a,n), n>=1 Output with the length attribute n

CHR(a) The length attribute n is calculated as a function of the data type
and the length of a.

CHR(a) and a if of the data
type FLOAT(p)

If p=1, then n=6
If p>1, then n=p+6

CHR(a) and a is of the data
type FIXED(p,s)

If p=s, then n=p+s
If s=0, then n=p+1

a is the NULL value NULL value [Page 15]

a is the special NULL value
[Page 15]

Error message

HEX(a)
HEX(a) is a function (conversion function [Page 103]) that converts the argument a to
hexadecimal notation. The function can be applied to any data type.

 Result of the HEX(a) function

a is the NULL value NULL value [Page 15]

a is the special NULL value
[Page 15]

Error message

 HEXTORAW(a)
HEXTORAW(a) is a function (conversion function [Page 103]). Arguments of the function
must be hexadecimal characters (hex_digit [Page 31]). The argument a is converted to a
character string with the code attribute [Page 17] BYTE that contains the corresponding

Reference Manual: SAP DB 7.4 104

SAP AG April 2003

characters. During this conversion, two hexadecimal characters are converted to one
character.

 Result of the HEXTORAW(a) Function

a is the NULL value NULL value [Page 15]

a is the special NULL value
[Page 15]

Error message

NUM(a)
NUM(a) is a function (conversion function [Page 103]) that converts the argument a to a
numeric value.

NUM can be applied to character string [Page 16]s with the code attributes ASCII or EBCDIC
(see code tables [Page 18]), date value [Page 17]s, time value [Page 17]s, time stamp value
[Page 17]s, and to numeric and boolean values (BOOLEAN [Page 17]).

 Result of the NUM(a) function

a is a character string and can be interpreted as a numeric
value

Corresponding numeric value

a is a numeric value Identical numeric value
(unchanged)

a is a boolean value 1, if a=TRUE
0, if a=FALSE

a is a character string that cannot be interpreted as a numeric
value; a is a character string that does not have the code
attribute ASCII or EBCDIC; a is neither a numeric nor a
Boolean value.

Error message

a is a character string that can be interpreted as a numeric
value outside the range
–9.9999999999999999999999999999999999999E+62,
9.9999999999999999999999999999999999999E+62

Special NULL value [Page 15]

a is the NULL value NULL value [Page 15]

a is the special NULL value Special NULL value

Set Function (set_function_spec)
There is a series of functions that can be applied to a set of values (rows) as an argument
and supply a result. These functions are referred to as set functions (set function spec).

Syntax
<set_function_spec> ::= COUNT (*) | <distinct_function> |
<all_function>

COUNT (*) [Page 10]8 , distinct_function [Page 106], all_function [Page 107]

Reference Manual: SAP DB 7.4 105

SAP AG April 2003

Explanation
Set functions operate across groups of values but only return one value. The result comprises
one row. If a set function is used in a statement, a similar function must also be applied to
each of the other columns in the request. This, however, does not apply to columns that were
grouped using GROUP BY. In this case, the value of the set function can be defined for each
group.

The argument of a DISTINCT function or an ALL function is a result table [Page 23] or a
group (the result table can be grouped using a GROUP condition).

With the exception of the COUNT(*) function, no NULL value [Page 15]s are included in the
calculation.

No locks are set for certain set functions, irrespective of the isolation level specified when the
user connected to the database.

Example table: customer [Page 111]
SELECT SUM(account) sum_account, MIN(account) min_account,
FIXED (AVG(account),7,2) avg_account,
MAX(account) max_account, COUNT(*) number
FROM customer WHERE city = 'Los Angeles'

SUM_ACCOUN
T

MIN_ACCOUNT AVG_ACCOUNT MAX_ACCOUNT NUMBER

-164.17 -4167.79 -20.52 3770.50 8

DISTINCT Function (distinct_function)
The DISTINCT function (distinct_function) is a set function [Page 105] that removes
duplicated values and all NULLvalue [Page 15]s.

Syntax
<distinct function>::= <set function name> (DISTINCT <expression>)

set_function_name [Page 108], expression [Page 52]

Explanation
The argument of a DISTINCT function is a set of values that is calculated as follows:
...

1. A result table [Page 23] or group (the result table can be grouped with a GROUP
condition) is formed.

2. The expression is applied to each row in this result table or group.
The expression must not contain a set function.

3. All of the NULL values and duplicated values are removed (DISTINCT). Special NULL
value [Page 15]s are not removed and two special NULL values are considered
identical.

The DISTINCT function is executed taking into account the relevant set function name for this
set of values.

 Result of the DISTINCT function

Reference Manual: SAP DB 7.4 106

SAP AG April 2003

Set of values is empty and the
DISTINCT function is applied to the
entire result table

The set functions AVG, MAX, MIN, STDDEV, SUM,
VARIANCE supply the NULL value as their result.

The set function COUNT supplies the value 0.

There is no group to which the
DISTINCT function can be applied.

The result is an empty table.

The set of values contains at least one
special NULL value.

Special NULL value

Example table: customer [Page 111]

In how many cities do the customers live?
SELECT COUNT(DISTINCT city) number_cities FROM customer

number_cities

4

ALL function
The ALL function is a set function [Page 105] that removes the NULL value [Page 15]s.

Syntax
<all_function>::= <set_function_name> ([ALL] <expression>)

set_function_name [Page 108], expression [Page 52]

Explanation
The argument of an ALL function is a set of values that is calculated as follows:
...

1. A result table [Page 23] or group (the result table can be grouped with a GROUP
condition) is formed.

2. The expression is applied to each row in this result table or group.
The expression must not contain a set function.

3. All NULL values are removed. Special NULL value [Page 15]s are not removed and two
special NULL values are considered identical.

The ALL function is executed taking into account the relevant set function name for the set of
values.

The result of an ALL function is independent of whether the keyword ALL is specified or not.

 Result of the ALL function

The set of values is empty and the ALL
function is applied to the entire result
table

The set functions AVG, MAX, MIN, STDDEV, SUM,
VARIANCE supply the NULL value as their result.

The set function COUNT supplies the value 0.

There is no group to which the ALL
function can be applied.

The result is an empty table.

The set of values contains at least one
special NULL value.

Special NULL value

Reference Manual: SAP DB 7.4 107

SAP AG April 2003

Set function name
Set function name is the name of a function that can be specified in a DISTINCT function
[Page 106] and an ALL function [Page 107].

Syntax
<set_function_name> ::= COUNT | MAX | MIN | SUM | AVG | STDDEV |
VARIANCE

COUNT [Page 108], MAX, MIN [Page 109], SUM [Page 109], AVG [Page 108], STDDEV
[Page 109], VARIANCE [Page 10]9

AVG
AVG is a set function [Page 105].

The result of AVG is the arithmetical mean of the values of the argument.

AVG can only be applied to numeric values. The result has the data type FLOAT(38) [Page
122].

Example table: customer [Page 111]

How many corporate customers are taken into account? What is the average
value of their account balance?
SELECT COUNT(*) number, FIXED (AVG(account),7,2)
avg_account
FROM customer WHERE firstname IS NULL

NUMBER AVG_ACCOUNT

2 4292.00

COUNT
COUNT is a set function [Page 105].

COUNT(*) supplies the total number of values (rows in a result table or group). •

• COUNT(DISTINCT <expression>) supplies the total number of different values
(number of values in the argument of the DISTINCT function [Page 106]).

COUNT(ALL <expression>) supplies the number of values that differ from the NULL
value (number of values in the argument of the ALL function [Page 107])

•

The result has the data type FIXED(10) [Page 121].

Example table: customer [Page 111]

How many customers are there?
SELECT COUNT (*) number FROM customer

number

Reference Manual: SAP DB 7.4 108

SAP AG April 2003

15

MAX/MIN
MAX/MIN is a set function [Page 105].

The result of MAX is the largest value of the argument.

The result of MIN is the smallest value of the argument.

STDDEV
STDDEV is a set function [Page 105].

The result of STDDEV is the standard deviation of the values of the argument.

STDDEV can only be applied to numeric values. The result has the data type FLOAT [Page
122](38).

SUM
SUM is a set function [Page 105].

The result of SUM is the sum of the values of the argument.

SUM can only be applied to numeric values. The result has the data type FLOAT [Page
122](38).

VARIANCE
VARIANCE is a set function [Page 105].

The result of VARIANCE is the variance of the values of the argument.

VARIANCE can only be applied to numeric values. The result has the data type FLOAT [Page
122](38).

SQL Statement: Overview
All SQL statements (sql_statement) can be embedded in programming languages. For
more information, see the precompiler documentation. All SQL statements, with the exception
of NEXT STAMP, can be specified interactively.

Comments [Page 111] can be specified for every SQL statement. There are example
statements, using the example tables [Page 111], for many SQL statements.

SQL statements for data definition [Page 115]

CREATE TABLE statement DROP TABLE statement ALTER TABLE statement
RENAME TABLE statement
RENAME COLUMN statement
EXISTS TABLE statement

Reference Manual: SAP DB 7.4 109

SAP AG April 2003

CREATE DOMAIN statement DROP DOMAIN statement

CREATE SEQUENCE
statement

DROP SEQUENCE statement

CREATE SYNONYM
statement

DROP SYNONYM statement RENAME SYNONYM
statement

CREATE VIEW statement DROP VIEW statement RENAME VIEW statement

CREATE INDEX statement DROP INDEX statement ALTER INDEX statement
RENAME INDEX statement

COMMENT ON statement

CREATE TRIGGER statement DROP TRIGGER statement

CREATE DBPROC statement DROP DBPROC statement

SQL statements for authorization [Page 160]

CREATE USER statement DROP USER statement ALTER USER statement
RENAME USER statement
GRANT USER statement

CREATE USERGROUP
statement

DROP USERGROUP
statement

ALTER USERGROUP
statement
RENAME USERGROUP
statement
GRANT USERGROUP
statement

CREATE ROLE statement DROP ROLE statement

ALTER PASSWORD
statement

GRANT statement REVOKE statement

SQL statements for data manipulation [Page 173]

INSERT statement UPDATE statement DELETE statement

NEXT STAMP statement CALL statement

SQL statements for data query [Page 184]

QUERY statement SINGLE SELECT statement EXPLAIN statement

OPEN CURSOR statement FETCH statement CLOSE statement

SQL statements for transaction [Page 210] management

CONNECT statement SET statement

COMMIT statement ROLLBACK statement SUBTRANS statement

LOCK statement UNLOCK statement RELEASE statement

SQL statements for statistics [Page 217] management

UPDATE STATISTICS
statement

MONITOR statement

Reference Manual: SAP DB 7.4 110

SAP AG April 2003

Comment (sql_comment)
A comment (sql_comment) can be included for every SQL statement [Page 109].

Syntax
<sql_comment> ::= /*<comment text>*/ | --<comment text>

Explanation
You can enter any commend text.

If you use the syntax rule --<comment text> in a line, all characters entered in this line
after -- are regarded as comments.

CREATE TABLE person (cno FIXED(4), first name CHAR(7), last
name CHAR(7), account FIXED(7,2)) /*create table person*/

Example Tables
customer [Page 111]

hotel [Page 11]2

room [Page 113]

reservation [Page 114]

customer
Create the table customer and fill it with the values listed below.

Table Structure
CREATE TABLE customer
(cno FIXED(4) PRIMARY KEY CONSTRAINT cno BETWEEN 1 AND 9999,
 title CHAR(5) CONSTRAINT title IN ('Mr','Mrs','Comp'),
 name CHAR(10) NOT NULL,
 firstname CHAR(7),
 zip CHAR(5) CONSTRAINT zip like '(0-9)(0-9)(0-9)(0-9)(0-9)',
 city CHAR(12) NOT NULL,
 account FIXED(7,2) CONSTRAINT account BETWEEN –10000 AND 10000)

Content
CNO TITLE NAME FIRSTNAME ZIP CITY ACCOUNT

3000 Mrs Porter Jenny 80335 New York 100.00

3100 Comp DATASOFT ? 50933 Dallas 4813.50

3200 Mr Porter Martin 10969 Los Angeles 0.00

3300 Mrs Peters Sally 14165 Los Angeles 0.00

3400 Mr Brown Peter 40233 Hollywood 0.00

3500 Mr Porter Michael 70596 New York 0.00

3600 Mr Howe George 81737 New York -315.40

Reference Manual: SAP DB 7.4 111

SAP AG April 2003

3700 Mr Randolph Frank 22525 Los Angeles 0.00

3800 Mr Peters Joseph 10787 Los Angeles 650.00

Mrs Brown Susan 13599 Los Angeles -4167.79

4000 Mr Jackson Anthony 10785 Los Angeles 0.00

4100 Mr Adams Thomas 13355 Los Angeles -416.88

4200 Mr Griffith Mark 81739 New York 0.00

4300 Comp TOOLware ? 13629 Los Angeles 3770.50

4400 Mrs Brown Rose 40233 Hollywood 440.00

3900

Other example tables [Page 111]

hotel
Create the table hotel and fill it with the values listed below.

Table Structure
CREATE TABLE hotel
(hno FIXED(4) PRIMARY KEY CONSTRAINT hno BETWEEN 1 AND 9999,
 name CHAR(20) NOT NULL,
 zip CHAR(5) CONSTRAINT zip like '(0-9)(0-9)(0-9)(0-9)(0-9)',
 city CHAR(12) NOT NULL,
 address CHAR(25) NOT NULL)

Content
HNO NAME ZIP CITY ADDRESS

10 Congress 89477 Detroit 155 Beechwood St.

20 Los Angeles 86159 Cincinatti 1499 Grove Street

30 Regency 48153 Portland 477 17th Avenue

40 Eight Avenue 21109 Los Angeles 112 8th Avenue

50 Lake Michigan 20097 Los Angeles 354 OAK Terrace 43

60 Airport 60313 New Orleans 650 C Parkway

70 Empire State 80805 New York 65 Yellostone Dr.

80 Midtown 20251 Los Angeles 12 Barnard Street

90 Long Beach 45193 Long Beach 200 Yellostone Dr.

100 Dallas 50668 Dallas 1980 34th St.

110 Atlantic 81245 New York 111 78th Street

120 Sunshine 12249 Los Angeles 35 Broadway 77

130 Star 40223 Hollywood 13 Beechwood Place 2

140 River Boat 70469 New York 788 MAIN STREET 14

150 Indian Horse 69117 Santa Clara 16 MAIN STREET

Other example tables [Page 111]

Reference Manual: SAP DB 7.4 112

SAP AG April 2003

room
Create the table room and fill it with the values listed below.

Table Structure
CREATE TABLE room
(hno FIXED(4),
 roomtype CHAR(6) CONSTRAINT roomtype IN ('SINGLE', 'DOUBLE',
'SUITE'),
 max_free FIXED(3) CONSTRAINT max_free>=0,
 price FIXED(6,2) CONSTRAINT price BETWEEN 0.00 AND 1000.00,

 PRIMARY KEY(hno,roomtype))

The room table is linked to the hotel [Page 112] table via the hotel number.

Content
HNO ROOMTYPE MAX_FREE PRICE

10 DOUBLE 45 200.00

20 135.00

13 100.00

20 SINGLE 10 70.00

30 DOUBLE 15 80.00

30 SINGLE 12 45.00

35 140.00

40 SINGLE 20 85.00

50 DOUBLE 230 180.00

50 SINGLE 50 105.00

12 500.00

60 DOUBLE 39 200.00

60 SINGLE 10 120.00

60 SUITE 20 500.00

11 180.00

70 SINGLE 4 115.00

80 DOUBLE 19 150.00

80 SINGLE 15 90.00

5 400.00

90 DOUBLE 145 150.00

90 SINGLE 45 90.00

90 SUITE 60 300.00

100 DOUBLE 24 100.00

100 SINGLE 11 60.00

110 DOUBLE 10 130.00

110 SINGLE 2 70.00

10 SINGLE

20 DOUBLE

40 DOUBLE

50 SUITE

70 DOUBLE

80 SUITE

Reference Manual: SAP DB 7.4 113

SAP AG April 2003

120 DOUBLE 78 140.00

120 SINGLE 34 80.00

120 SUITE 55 350.00

130 DOUBLE 300 270.00

130 SINGLE 89 160.00

130 SUITE 100 700.00

140 DOUBLE 9 200.00

140 SINGLE 10 125.00

140 SUITE 78 600.00

150 DOUBLE 115 190.00

150 SINGLE 44 100.00

6 450.00 150 SUITE

Other example tables [Page 111]

reservation
Create the table reservation and fill it with the values listed below.

Table Structure
CREATE TABLE reservation
(rno FIXED(4) PRIMARY KEY CONSTRAINT rno BETWEEN 1 AND 9999,
 cno FIXED(4) CONSTRAINT cno BETWEEN 1 AND 9999,
 hno FIXED(4) CONSTRAINT hno BETWEEN 1 AND 9999,
 roomtype CHAR(6) CONSTRAINT roomtype IN
('SINGLE','DOUBLE','SUITE'),
 arrival DATE NOT NULL,
 departure DATE CONSTRAINT departure > arrival)

A logical link between the customer [Page 111], hotel [Page 112], and room [Page 113] tables
is established through the reservation table.

Content
RNO CNO HNO ROOMTYPE ARRIVAL DEPARTURE

100 3000 80 SINGLE 13/11/2001 15/11/2001

110 3000 100 DOUBLE 24/12/2001 06/01/2002

120 3200 50 SUITE 14/11/2001 18/11/2001

130 3900 110 SINGLE 01/02/2002 03/02/2002

140 4300 80 DOUBLE 12/04/2001 30/04/2001

150 3600 70 DOUBLE 14/03/2002 24/03/2002

160 4100 70 SINGLE 12/04/2001 15/04/2001

170 4400 150 SUITE 01/09/2001 03/09/2001

180 3100 120 DOUBLE 23/12/2001 08/01/2002

190 4300 140 DOUBLE 14/11/2001 17/11/2001

Other example tables [Page 111]

Reference Manual: SAP DB 7.4 114

SAP AG April 2003

Data definition
The following sections contain an introduction to the data definition language (DDL) used by
the database system.

SQL statements for data definition

CREATE TABLE statement
[Page 115]

DROP TABLE statement
[Page 132]

ALTER TABLE statement
[Page 133]

RENAME TABLE statement
[Page 138]

RENAME COLUMN statement
[Page 139]

EXISTS TABLE statement
[Page 139]

CREATE DOMAIN statement
[Page 140]

DROP DOMAIN statement
[Page 140]

CREATE SEQUENCE
statement [Page 14]0

DROP SEQUENCE statement
[Page 141]

CREATE SYNONYM
statement [Page 14]2

DROP SYNONYM statement
[Page 142]

RENAME SYNONYM
statement [Page 143]

DROP VIEW statement [Page
147]

RENAME VIEW statement
[Page 147]

CREATE INDEX statement
[Page 148]

DROP INDEX statement
[Page 149]

ALTER INDEX statement
[Page 149]

RENAME INDEX statement
[Page 149]

COMMENT ON statement
[Page 150]

CREATE TRIGGER statement
[Page 158]

DROP TRIGGER statement
[Page 159]

CREATE DBPROC statement
[Page 152]

DROP DBPROC statement
[Page 158]

CREATE VIEW statement
[Page 143]

 CREATE TABLE Statement (create_table_statement)
A CREATE TABLE statement (create_table_statement) defines a base table (see Table
[Page 23]).

Syntax
<create table statement> ::=
 CREATE TABLE <table name> (<column definition>[,<table description
element>,...])
 [IGNORE ROLLBACK] [<sample definition>]
| CREATE TABLE <table name> [(<table description element>,...)]
 [IGNORE ROLLBACK] [<sample_definition>] AS <query_expression>

Reference Manual: SAP DB 7.4 115

SAP AG April 2003

[<duplicates_clause>]
| CREATE TABLE <table_name> LIKE <table_name> [IGNORE ROLLBACK]

<table_description_element> ::= <column_definition> |
<constraint_definition> | <referential_constraint_definition> |
<key_definition> | <unique_definition>

table_name [Page 47], sample_definition [Page 117], query_expression [Page 189],
duplicates_clause [Page 176], column_definition [Page 118], constraint_definition [Page 127],
referential_constraint_definition [Page 128], key_definition [Page 131], unique_definition
[Page 132]

SQL statement for creating a table called person:

CREATE TABLE person (cno FIXED(4), firstname CHAR(7), name
CHAR(7), account FIXED(7,2))

This CREATE TABLE statement comprises the keywords CREATE TABLE
followed by the table name and (in parentheses) a list of column names,
separated by commas. You can also define other criteria, such as a primary key,
or referential integrity conditions.

Other examples: customer [Page 111], hotel [Page 112], reservation [Page 114],
room [Page 113]

Explanation
Executing a CREATE TABLE statement causes data that describes the table (or base table)
to be stored in the database catalog. This data is called metadata.

A CREATE TABLE statement cannot contain more than one key definition.

The table name must not be identical with the name of an existing table of the current user.

The current user becomes the owner [Page 41] of the new table. In other words, he or she
obtains the INSERT, UPDATE, DELETE, and SELECT privileges for this table. If the table is
not a temporary table, the owner is also granted the INDEX, REFERENCES, and ALTER
privileges.

See also:
Restrictions [Page 219]

Owner of a table

• The table owner must be specified in front of the table name: temporary tables are
a special type of table. They only exist during a user database session and are deleted
with their entire contents afterwards. Temporary tables are identified by the owner
TEMP in front of the table name.
If a table name has an owner other than TEMP, the owner must be identical to the
name of the current user and the user must have the status DBA or RESOURCE.

• The owner of the table is not specified: the result is the same as if the current user
were the owner.

CREATE TABLE … AS <query_expression> …

If a QUERY expression is not specified, the CREATE TABLE statement must contain
at least one column definition.

•

• If a query expression is specified, a base table is defined with the same structure as
the result table defined by the QUERY expression.
If column definitions are specified, the column definition may only consist of a
column name [Page 46] and the number of column definitions must be equal to the
number of columns in the result table generated by the QUERY expression.
The data_type [Page 119] of the ith column in the base table is identical to that of the ith

Reference Manual: SAP DB 7.4 116

SAP AG April 2003

column in the result table generated by the QUERY expression.
The result table may also contain LONG columns [Page 16].
If no column definitions are specified, the column names of the result table are
used.
The rows of the result table are implicitly inserted in the generated base table. The
DUPLICATES clause [Page 176] can be used to determine how key collisions are
handled.
The QUERY expression is subject to certain restrictions that also apply to the INSERT
statement [Page 17]3 .

LIKE <table_name>
If LIKE <table_name> is specified, an empty base table is created which, from the point of
view of the current user, has the same structure as the source table, that is, it has all the
columns with the same column names and definitions as the source table. This view does not
necessarily have to be identical to the actual structure of the source table, since the user may
not know all the columns because of privilege limitations.

The specified table [Page 23] must be either a base table, a view table, or a synonym [Page
24]. The user must have at least one privilege for this table.

The current user is the owner of the base table.

If all the key columns of the table specified after LIKE are contained in the base table, they
form the key columns in this table. Otherwise, the database system implicitly inserts a key
column SYSKEY CHAR(8) BYTE which then represents the key for the base table.

DEFAULT specification [Page 125]s or CONSTRAINT definitions [Page 127] for columns that
are copied to the base table also apply to the new base table.

IGNORE ROLLBACK
IGNORE ROLLBACK is optional and can only be specified for temporary tables. Temporary
tables with this characteristic are not affected by the transaction mechanism; i.e., changes
affecting these tables are not reversed by rolling back a transaction.

SQL statements for changing table properties
Adding, deleting columns, changing data types, changing the CONSTRAINT definition
ALTER TABLE statement [Page 133]

Renaming columns
RENAME COLUMN Statement [Page 13]9

Renaming tables
RENAME TABLE statement [Page 138]

SAMPLE definition
A SAMPLE definition defines the number of rows in a table that are to be used when statistics
are updated.

Syntax
<sample_definition> ::= SAMPLE <unsigned_integer> ROWS
| SAMPLE <unsigned_integer> PERCENT

unsigned_integer [Page 34]

Reference Manual: SAP DB 7.4 117

SAP AG April 2003

Explanation
The database system manages statistics for each base table. These statistics are used to
determine the best strategy for executing an SQL statement. The statistics are stored in the
catalog by the UPDATE STATISTICS statement [Page 217].

If a SAMPLE definition is specified in an UPDATE STATISTICS statement, it specifies the
number of rows in the table that are to be used to calculate the statistics.

If a SAMPLE definition is not specified in an UPDATE STATISTICS statement and if it is not
mandatory that all of the rows in the table be used to calculate the statistics, the database
system uses the appropriate SAMPLE definition of the CREATE TABLE or ALTER TABLE
statement.

The number of rows for which the UPDATE STATISTICS statement is to be executed can be
defined by specifying a numeric or percentage value.

• If a SAMPLE definition is specified as a PERCENT, the unsigned integer must be
between 1 and 100.

• If a SAMPLE definition is not defined, the database system uses the value 20000
ROWS.

SQL statements in which the SAMPLE definition can be used
CREATE TABLE statement [Page 115]

ALTER TABLE statement [Page 133]

UPDATE STATISTICS statement [Page 217]

Column Definition (column_definition)
A column definition defines a column [Page 24] in a table. The name and data type of each
column are defined by the column name and data type. The column names must be unique
within a base table.

Syntax
<column_definition> ::= <column_name> <data_type>
[<column_attributes>]
| <column_name> <domain_name> [<column_attributes>]

column_name [Page 46], data_type [Page 119], column_attributes [Page 124], domain_name
[Page 41]

Explanation
If the [PRIMARY] KEY column attribute is specified, the CREATE TABLE statement [Page
115] must not contain a key definition [Page 131].

A column definition may only consist of a column name if a QUERY expression is used in the
CREATE TABLE statement.

If a column name and domain name (the name of a value range) are specified, the domain
name must identify an existing domain. The data type and the length of the domain are
assigned to the specified column. If the domain has a constraint_definition [Page 127], the
effect is the same as if the corresponding CONSTRAINT definition were specified in the
column attribute of the column definition.

Columns, which are part of the key, or for which NOT NULL was defined, are called NOT
NULL columns. A NULL value [Page 15] cannot be inserted in these columns.

Reference Manual: SAP DB 7.4 118

SAP AG April 2003

• Mandatory columns: NOT NULL columns for which a DEFAULT specification [Page
125] has not been declared as a column attribute are called mandatory columns.
Whenever rows are inserted, values must be specified for these columns.

Optional columns: columns that are not mandatory are referred to as optional
columns. A value does not have to be specified when a row is inserted in these
columns. If a DEFAULT specification exists for the column, the default value is entered
in the column. If there is no DEFAULT specification, a NULL value is entered in the
column.

•

Memory requirements of a column value as a function of the data type [Page 123]

See also:
Restrictions [Page 219]

Data Type (data_type)
As well as specifying the column name when you define columns [Page 118], you can also
specify data types.

Syntax
<data_type> ::=
 CHAR[ACTER] [(<unsigned_integer>)] [ASCII | BYTE | EBCDIC |
UNICODE]
| VARCHAR [(<unsigned_integer>)] [ASCII | BYTE | EBCDIC | UNICODE]
| LONG [VARCHAR] [ASCII | BYTE | EBCDIC | UNICODE]
| BOOLEAN
| FIXED (<unsigned_integer> [,<unsigned_integer>])
| FLOAT (<unsigned_integer>)
| INT[EGER] | SMALLINT
| DATE | TIME | TIMESTAMP

unsigned_integer [Page 34]

CHAR[ACTER] [Page 120], VARCHAR [Page 120], LONG[VARCHAR] [Page 12]1 ,
BOOLEAN [Page 12]1 , FIXED [Page 12]1 , FLOAT [Page 12]2 , INT[EGER] [Page 122],
SMALLINT [Page 122], DATE [Page 122], TIME [Page 123], TIMESTAMP [Page 123]

Explanation
For the following character strings [Page 16], a code attribute [Page 17] can be entered as
part of a column definition (column_definition), if required: CHAR[ACTER], VARCHAR,
LONG[VARCHAR]

In addition to the data types defined above, the following data types are permitted in a column
definition and are mapped as follows to the data types below:

Data Type Is Mapped To

BINARY(p) FIXED(p)

DEC[IMAL](p) FIXED(p)

DEC[IMAL] FIXED(5)

DOUBLE PRECISION FLOAT(38)

FLOAT FLOAT(16)

FLOAT(39..64) FLOAT(38)

LONG VARCHAR LONG

DEC[IMAL](p,s) FIXED(p,s)

Reference Manual: SAP DB 7.4 119

SAP AG April 2003

NUMERIC(p,s) FIXED(p,s)

NUMERIC(p) FIXED(p)

FIXED(5)

REAL(p) FLOAT(p)

REAL FLOAT(16)

SERIAL FIXED(10) DEFAULT SERIAL [Page 22]

SERIAL(p) FIXED(10) DEFAULT SERIAL(p)

NUMERIC

See also:
Data type [Page 15]

Memory requirements of a column value as a function of the data type [Page 123]

CHAR[ACTER]
Definition
An alphanumerical column is defined. Specification of length attribute n is optional. If no other
length attribute is specified, then n=1.

CHAR[ACTER] [(n)]: 0<n<=8000
CHAR[ACTER] [(n)] UNICODE: 0<n<=4000

The database system determines, in accordance with n, whether the values in the column are
stored with a fixed or variable length. If you want to store the values in a variable length
regardless of the value of n, you must enter a value for VARCHAR [Page 120].

Use
Specification of data type CHAR[ACTER] in column definition [Page 118], with a code
attribute [Page 17], if required.

Integration
Data type (data_type) [Page 119]

VARCHAR [(n)]: 0<n<=8000
VARCHAR [(n)] UNICODE: 0<n<=4000

VARCHAR
Definition
An alphanumerical column is defined. Specification of length attribute n is optional. If no other
length attribute is specified, then n=1.

Use VARCHAR (n) if the values in the column are to be stored with a variable length,
irrespective of n.

Use
Specification of data type VARCHAR in column definition [Page 118], with a code attribute
[Page 17], if required.

Integration
Data type (data_type) [Page 119]

Reference Manual: SAP DB 7.4 120

SAP AG April 2003

LONG[VARCHAR]
Definition

You can only give

An alphanumeric column is defined with any length (not for temporary tables).

LONG[VARCHAR]: A maximum of 2 GB of characters can be written in a LONG column.
LONG[VARCHAR] UNICODE: A maximum of 2 GB bytes can be written in a LONG column.

LONG columns [Page 16] NOT NULL or a DEFAULT specification [Page
] as a 125 column attribute [Page 124].

 Use
Specification of data type LONG in column definition [Page 118], with a code attribute [Page
17], if required.

LONG columns can be used in the following SQL statements:
INSERT statement [Page 173], UPDATE statement [Page 178], NULL predicate [Page 67],
and in selected columns [Page 193].

Integration
Data type (data_type) [Page 119]

BOOLEAN
Definition
BOOLEAN: The column is given the data type BOOLEAN [Page 17].

Use
Specifying the data type BOOLEAN when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

FIXED (p,s): A column with a fixed point number [Page

FIXED
Definition

16] with precision p and with s number
of decimal places (0<p<=38, s<=p). If no s is specified, it is assumed that the decimal places
are 0.

 Use
Specifying the data type FIXED when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

Reference Manual: SAP DB 7.4 121

SAP AG April 2003

FLOAT
 Definition

FLOAT (p): A column with a floating point number [Page 16] with precision p (0<p<=38).

Use
Specifying the data type FLOAT when defining columns [Page 11]8

Integration
Data type (data_type) [Page 119]

INT[EGER]
Definition
INT[EGER]: This data type is the same as FIXED [Page 12]1 (10.0). Its permitted values are
between -2147483648 and 2147483647.

Use
Specifying the data type INT[EGER] when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

SMALLINT
Definition
SMALLINT: This data type is the same as FIXED [Page 121](5.0). Its permitted values are
between -32768 and 32767.

Use
Specifying the data type SMALLINT when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

DATE
Definition
DATE: An alphanumeric column in which you can store date values [Page 17].

Use
Specifying the data type DATE when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

Reference Manual: SAP DB 7.4 122

SAP AG April 2003

TIME
Definition
TIME: An alphanumeric column in which you can store time values [Page 17].

Use
Specifying the data type TIME when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

TIMESTAMP
 Definition

TIMESTAMP: An alphanumeric column in which you can store time stamp values [Page 17].

Use
Specifying the data type TIMESTAMP when defining columns [Page 118]

Integration
Data type (data_type) [Page 119]

Memory requirements of a column value per data
types
Data type [Page 119]

Column definition [Page 11]8

Data Type Memory Requirements of a Column
Value in Bytes for This Data Type

FIXED [Page 121](p,s) (p+1) DIV 2 + 2

FLOAT [Page 122](p) (p+1) DIV 2 + 2

BOOLEAN [Page 12]1 2

DATE [Page 122] 9

TIME [Page 123] 9

TIMESTAMP [Page 123] 21

LONG [Page 121] 9

CHAR [Page 120](n); n<=30 n+1

CHAR(n); 30<n<=254; key column n+1

CHAR(n); 30<n<=254; not key column n+2

CHAR(n); 254<n n+3

CHAR(n) UNICODE; n<=15 2*n+1

CHAR(n) UNICODE; 15<n<=127; key column 2*n+1

CHAR(n) UNICODE; 15<n<=127; not key column 2*n+2

Reference Manual: SAP DB 7.4 123

SAP AG April 2003

CHAR(n) UNICODE; 127<n 2*n+3

VARCHAR [Page 120](n); 30<n<=254; key column n+1

VARCHAR(n); 30<n<=254; not key column n+2

VARCHAR(n); 254<n n+3

2*n+1

2*n+2

2*n+3

VARCHAR(n) UNICODE; 15<n<=127; key column

VARCHAR(n) UNICODE; 15<n<=127; not key column;

VARCHAR(n) UNICODE; 127<n

Column Attributes (column_attributes)
A column_definition [Page 118] can contain the column name and column attributes.

Syntax
<column_attributes> ::= [<key_or_not_null_spec>] [<default_spec>]
[UNIQUE] [<constraint_definition>]
[REFERENCES <referenced_table> [(<referenced_column>)]
[<delete_rule>]]

<key_or_not_null_spec> ::= [PRIMARY] KEY | NOT NULL [WITH DEFAULT]

default_spec [Page 125], constraint_definition [Page 12]7 , delete_rule [Page 130]

A CONSTRAINT definition [Page 127] defines a condition that must be fulfilled by all
the column values in the columns defined by the column definition [Page 118].

•

• [REFERENCES <referenced_table> [(<referenced_column>)]
[<delete_rule>]
has the same effect as specifying the referential CONSTRAINT definition [Page 128]
FOREIGN KEY [<referential_constraint_name>]
(<referencing_column>)
REFERENCES <referenced_table> [(<referenced_column>,...)]
[<delete_rule>]

referenced_table
referenced_column

referenced table
referenced column

Explanation
The [PRIMARY] KEY and UNIQUE column attributes must not be used together in a column
definition.

If the [PRIMARY] KEY column attribute is specified, the CREATE TABLE statement [Page
] must not contain a key definition [Page 13]1 . 115

LONG data type: you may only specify NOT NULL or a DEFAULT specification [Page 125] as
a column attribute for LONG [Page 121] columns.

UNIQUE
The UNIQUE column attribute determines the uniqueness of column values (see also
CREATE INDEX statement [Page 148]).

KEY
If the KEY column attribute is specified, this column is part of the key of a table and is called
the key column. The database system ensures that the key values in a table are unique. To

Reference Manual: SAP DB 7.4 124

SAP AG April 2003

improve performance, the key should start with key columns which can assume many
different values and which are to be used frequently in conditions with the "=" operator.

 See also:
Restrictions [Page 219]

If a table is defined without a key column, the database system implicitly creates a key
column SYSKEY CHAR(8) BYTE. This column is not visible with a SELECT *. However, it
can be specified explicitly and has then the same function as a key column. The SYSKEY
column can be used to obtain unique keys generated by the database system. The keys are
in ascending order, thus reflecting the order of insertion in the table. The key values in the
SYSKEY column are only unique within a table; i.e., the SYSKEY column in two different
tables may contain the same values. If a unique key is desired across the entire database
system, a key column of the data type CHAR(8) BYTE with the DEFAULT specification [Page
125] STAMP can be defined.

 NOT NULL
NOT NULL must not be used together with the DEFAULT specification [Page 125] DEFAULT
NULL.

NOT NULL WITH DEFAULT defines a default value that is dependent on the data type of the
column. NOT NULL WITH DEFAULT must not be used with any of the DEFAULT
specifications.

Column data type DEFAULT value

CHAR [Page 120](n); VARCHAR [Page
120](n)

' '

CHAR(n) BYTE; VARCHAR(n) BYTE X'00'

FIXED [Page 121](p,s), INT [Page 12]2 ,
SMALLINT [Page 12]2 , FLOAT [Page 12]2 (p)

0

DATE [Page 122] DATE

TIME [Page 123] TIME

TIMESTAMP [Page 123] TIMESTAMP

BOOLEAN [Page 12]1 FALSE

DEFAULT Specification (default_spec)
A DEFAULT specification is formed by specifying the keyword DEFAULT and a DEFAULT
value The maximum length of a default value is 254 characters.

Syntax
<default_spec> ::= DEFAULT <literal> | DEFAULT NULL
| DEFAULT USER | DEFAULT USERGROUP
| DEFAULT DATE | DEFAULT TIME | DEFAULT TIMESTAMP
| DEFAULT TRUE | DEFAULT FALSE
| DEFAULT TRANSACTION | DEFAULT STAMP
| DEFAULT SERIAL[(<unsigned_integer>)]

literal [Page 31], unsigned integer [Page 34]

Reference Manual: SAP DB 7.4 125

SAP AG April 2003

Explanation
If a DEFAULT specification has been made for a column, the default value (<literal>,
NULL, USER,...) must be a value that can be inserted in the column.

DEFAULT specification Explanation
DEFAULT <literal> The literal must be comparable with the data type of the

column.

DEFAULT USER Supplies the user name of the current user and can only
be specified for columns of the data type [VAR]CHAR(n)
(n>=32).

DEFAULT USERGROUP Supplies only members of a usergroup, the usergroup
name, or the user name for users that do not belong to a
usergroup. This DEFAULT specification can only be
specified for columns of the data type [VAR]CHAR(n)
(n>=32).

DEFAULT DATE Supplies the current date [Page 17] and can only be
specified for columns of the data type DATE.

DEFAULT TIME Supplies the current time [Page 17] and can only be
specified for columns of the data type TIME.

DEFAULT TIMESTAMP Supplies the current timestamp [Page 17] and can only
be specified for columns of the data type TIMESTAMP.

DEFAULT TRUE/DEFAULT FALSE Can only be specified for columns of the data type
BOOLEAN [Page 17].

DEFAULT TRANSACTION Supplies the identification of the current transaction
[Page 210] and can only be specified for columns of the
data type CHAR(n) BYTE (n>=8).

DEFAULT STAMP Supplies a value of eight characters in length that is
unique within the database system and can only be
specified for columns of the data type CHAR(n) BYTE
(n>=8).

If a table is defined without a key column, the database
system implicitly creates a key column SYSKEY
CHAR(8) BYTE. The key values in the SYSKEY column
are only unique within a table; i.e., the SYSKEY column
in two different tables may contain the same values. If a
unique key is desired across the entire database
system, a key column can be defined with the DEFAULT
specification STAMP.

DEFAULT SERIAL
[(<unsigned_integer)]

Supplies a number generator for positive integers and
can only be specified for columns of the data type
INTEGER, SMALLINT, and FIXED without decimal
places (SERIAL [Page 22]).

The first value generated by the generator can be
defined by specifying an unsigned integer (must be
greater than 0). If this definition is missing, 1 is defined
as the first value.

If the value 0 is inserted in this column by an INSERT
statement, the current number generator value is
supplied and not the value 0.

Each table may not contain more than one column with
the DEFAULT specification DEFAULT SERIAL.

Reference Manual: SAP DB 7.4 126

SAP AG April 2003

CONSTRAINT definition (constraint_definition)
A CONSTRAINT definition defines an integrity condition (restrictions for column values, see
data integrity [Page 28]) that must be fulfilled by all the rows in one table.

Syntax
<constraint_definition> ::= CHECK <search_condition>
| CONSTRAINT <search_condition>
| CONSTRAINT <constraint_name> CHECK <search_condition>

search condition [Page 70], constraint name [Page 40]

Simple constraint (for one column), example table customer [Page 11]1
title CHAR(7) CONSTRAINT title IN ('Mr','Mrs','Comp')

Complex constraint (for several columns), example table reservation [Page 114]
arrival DATE NOT NULL
departure DATE CONSTRAINT departure > arrival

The system checks whether the arrival is before the departure.

Explanation
A CONSTRAINT definition defines an integrity condition that must be fulfilled by all the
column values in the columns defined by the column definition [Page 11]8 with CONSTRAINT
definition.

The CONSTRAINT definition in a column is checked when a row is inserted and a column
changed that occurs in the CONSTRAINT definition. If the CONSTRAINT definition is
violated, the INSERT or UPDATE statement fails.

When you define a constraint, you specify implicitly that the NULL value is not permitted as an
input.

The search condition (search_condition) of the CONSTRAINT definition must not contain
a subquery [Page 200].

The search condition of the CONSTRAINT definition must only contain column names in the
form <column name>.

Constraint name

• Contains only one column name in the table:
When the table is created

• No constraint name:
The database system assigns a constraint name that is unique for the table in question.

• Constraint name is specified:
The constraint name must be different to all other constraint names for this table.

Number of columns in a search condition

(CREATE TABLE statement [Page 115]), you can check
whether an additional DEFAULT value (default_spec [Page 125]) specified as a column
attribute fulfills the search condition. If it is not true, the CREATE TABLE statement
fails.

• Contains more than one column name in the table:
When the table is created (CREATE TABLE statement), it is not possible to decide
whether DEFAULT values of the table columns fulfill the search condition. In this case,

Reference Manual: SAP DB 7.4 127

SAP AG April 2003

an attempt to insert DEFAULT values in the table when an INSERT or UPDATE
statement is executed may fail.

Referential CONSTRAINT definition
(referential_constraint_definition)
A referential CONSTRAINT definition defines an integrity condition (restrictions for columns
values, see data integrity [Page 28]) that must be satisfied by all the rows in two tables. The
resultant dependency between two tables affects changes to the rows contained in them.

Syntax
<referential_constraint_definition> ::=
FOREIGN KEY [<referential_constraint_name>]
(<referencing_column>,...)
REFERENCES <referenced_table> [(<referenced_column>,...)]
[<delete_rule>]

referential_constraint_name [Page 44], delete_rule [Page 130]

referenced_table
referenced_column

Reference table, referenced column
(table/column that is to be addressed)

referencing_column Referencing column (column that establishes
the link to the column that is to be addressed)

Dependency between the model tables customer [Page 111] and reservation
[Page 114]. The referential CONSTRAINT definition is specified when the
reservation table is defined. The reservation table is assigned a foreign
key that corresponds to the key in the customer table.

CREATE TABLE reservation (rno FIXED(4) PRIMARY KEY, cno
FIXED(4), hno FIXED(4), roomtype CHAR(6), arrival DATE,
departure DATE,

FOREIGN KEY customer_reservation (cno) REFERENCES customer
ON DELETE CASCADE)

The defined relationship is called customer_reservation. The DELETE rule
ON DELETE CASCADE specifies that deleting rows in the customer table causes
the associated rows in the reservation table to be deleted automatically.

Explanation
A referential CONSTRAINT definition can be used in a CREATE TABLE statement [Page

] or ALTER TABLE statement [Page 133]. The table specified in the corresponding
statement (table_name) is referred to in the following sections as the referencing table.
115

The referencing columns are specified in the referential CONSTRAINT definition. The
referencing columns must denote columns in the referencing table and must all be different.
They are also called foreign key columns.

Referenced columns (referenced_column)

•

• If referenced columns are specified that are not the key in the referencing table, the
referenced table must have a

If no referencing columns are specified, the result is the same as if the key columns in
the referenced table were specified in the defined sequence.

UNIQUE definition [Page 132] whose column names and
sequence match those of the referenced columns.

Reference Manual: SAP DB 7.4 128

SAP AG April 2003

Relationship between referenced and referencing columns:

• The number of referenced columns is equal to the number of referencing columns.

• The nth referencing column corresponds to the nth referenced column.

Name of a referential constraint (referential_constraint_name)

• The data type and the length of each referencing column must match the data type and
length of the corresponding referenced column.

The referencing table and the referenced table must be base tables, but not temporary base
tables.

The current user must have the ALTER privilege for the referencing table and the
REFERENCE privilege for the referenced table.

The name of a referential constraint [Page 44] can be specified after the keywords FOREIGN
KEY.

• If the name of a referential constraint is specified, it must be different from all other
names of referential constraints for the referencing table.

• If no referential constraint name is specified, the database system assigns a unique
name (based on the referencing table).

• Z is a

Inserting and modifying rows in the referenced table
The following restrictions apply when rows in the referencing table are added or modified:

Let Z be an inserted or modified row. Rows can only be inserted or modified if one of the
following conditions is fulfilled for the associated referenced table:

matching row [Page 131]

• Z contains a NULL value in one of the referencing columns.

• The referential CONSTRAINT definition defines the DELETE rule ON DEFAULT SET
DEFAULT, and Z contains the DEFAULT value in each referencing column.

Further terms

• DELETE rule [Page 130]

CASCADE dependency [Page 13]0 •

• Reference cycle [Page 13]1

• A referential CONSTRAINT definition is self-referencing if the referenced and
referencing tables are identical.
With self-referencing referential CONSTRAINT definitions, the order in which a
DELETE statement is processed can be important.
Specifying CASCADE: all of the rows affected by the DELETE statement are first
deleted irrespective of the referential CONSTRAINT conditions. All matching rows in
the rows that have just been deleted are then also deleted. As a result, all of the
matching rows in the previous deletion operation are deleted, etc.
Specifying SET NULL or SET DEFAULT: all of the rows affected by the DELETE
statement are first deleted irrespective of the referential CONSTRAINT conditions.
Following this, SET NULL or SET DEFAULT is applied to the matching row.

• When rows are deleted from a referenced table, the number of rows deleted is entered
in the third SQLERRD entry in the SQLCA database.

• When an INSERT or UPDATE statement is applied to a referencing table, irrespective
of the isolation level defined for the current session, the database uses a blocking
behavior for the referenced table that corresponds to isolation level 1.
When a DELETE statement is applied to a referenced table, the database system uses
a locking behavior that corresponds to isolation level 3.

Reference Manual: SAP DB 7.4 129

SAP AG April 2003

DELETE rule
The DELETE rule defines the effects that deleting a row in the referenced table has on the
referencing table (see referential_constraint_definition [Page 128]). The DELETE rule is also
used when column attributes [Page 124] are defined.

Syntax
<delete_rule> ::= ON DELETE CASCADE | ON DELETE RESTRICT
| ON DELETE SET DEFAULT | ON DELETE SET NULL

Explanation
• No DELETE rule: deleting a row in the referenced table will fail if matching rows [Page

] exis131 t.

• ON DELETE CASCADE: if a row in the referenced table is deleted, all of the matching
rows are deleted.

• ON DELETE RESTRICT: deleting a row in the referenced table will fails if matching
rows exist.

• ON DELETE SET DEFAULT: if a row in the referenced table is deleted, the associated
DEFAULT value is assigned to each referencing column for each matching row.
A DEFAULT specification [Page 125] must exist for each referencing column.

• ON DELETE SET NULL: if a row in the referenced table is deleted, a NULL value is
assigned to each referencing column of every matching row.
None of these referencing tables may be a NOT NULL column.

CASCADE dependency
A table T* is CASCADE dependent on table T if a series of referential CONSTRAINT
definitions [Page 128] R1, R2, ..., Rn (n>=1) exist where:

• T* is the referencing table of R1

• T is the referenced table of Rn

• All of the referential CONSTRAINT definitions use CASCADE from the DELETE rule
[Page 130] or from the CASCADE option [Page 132].

• For i=1,...,n-1, n>1 is the referenced table of Ri is equal to the referencing table of Ri+1

Let R1 and R2 be two different referential CONSTRAINT definitions with the same
referencing table S. T1 denotes the referenced table of R1, T2 denotes the referenced table
of R2.

If T1 and T2 are identical, or if a table T exists so that T1 and T2 are CASCADE dependent
on T, then R1 and R2 must both specify either CASCADE or RESTRICT.

There are different sequences of referential CONSTRAINT definitions that link
the tables S and T. A DELETE statement on table T results in an action in table
S. In order to ensure that the result of the DELETE statement does not depend
on which of the two sequences of referential CONSTRAINT definitions is
processed, the above restriction was selected for R1 and R2.

See also:
CASCADE option [Page 13]2

Reference Manual: SAP DB 7.4 130

SAP AG April 2003

Reference cycle
A reference cycle is a sequence of referential CONSTRAINT definitions [Page 12]8 R1,
R2,...,Rn where n>1, so that the following applies:

• i=1,...,n-1 the referenced table of Ri is equal to the referencing table of Ri+1

• the reference table of Rn is the referencing table of R1

A reference cycle in which all of the referential CONSTRAINT definitions specify CASCADE
(CASCADE dependency [Page 13]0) is not allowed.

A reference cycle in which one referential CONSTRAINT definition does not specify
CASCADE and all other referential CONSTRAINT definitions specify CASCADE is not
allowed.

Matching row
A row in the referencing table is called a matching row of a row in the referenced table if the
values of the corresponding referencing and referenced columns are identical.

A referential CONSTRAINT definition [Page 12]8 defines a 1:n relationship between two
tables. This means that more than one matching row can exist for each row in the referenced
table.

A row in the referenced table in a referenced column cannot be changed if at least one
matching row exists.

Key Definition (key_definition)
A key definition in a CREATE TABLE statement [Page 115] or an ALTER TABLE statement
[Page 133] defines the key in a base table. The key definition is introduced by the keywords
PRIMARY KEY.

Syntax
<key_definition> :: PRIMARY KEY (<column_name>,...)

column_name [Page 46]

SQL statement for creating a person table with a one-column primary key for
the column cno:

CREATE TABLE person (cno FIXED(4), firstname CHAR(7), name
CHAR(7), account FIXED(7,2), PRIMARY KEY (cno))

Rows are inserted in the same way as in a base table without a key definition.
Double entries for the customer number, however, are rejected.

Explanation
The column name must identify a column in the base table. The specified column names are
key columns in the table.

A key column must not identify a column of the data type LONG [Page 12]1 and is always a
NOT NULL column. The database system ensures that no key column has a NULL value and
that no two rows of the table have the same values in all key columns.

See also:
Restrictions [Page 219]

Reference Manual: SAP DB 7.4 131

SAP AG April 2003

UNIQUE Definition (unique_definition)
A UNIQUE definition in the CREATE TABLE statement [Page 11]5 defines the uniqueness of
column value combinations.

Syntax
<unique_definition> ::= [CONSTRAINT <index_name>] UNIQUE
(<column_name>,...)

index_name [Page 42], column_name [Page 46]

Explanation
Specifying a UNIQUE definition in a CREATE TABLE statement has the same effect as
specifying the CREATE TABLE statement without a UNIQUE definition, but with a CREATE
INDEX statement [Page 14]8 with UNIQUE.

• Index name specified: the generated index is stored under this name in the database
catalog.

• No index name: The database system assigns a unique index name to the index.

DROP TABLE statement
A DROP TABLE statement deletes a base table (see Table [Page 23]).

Syntax
<drop_table_statement> ::= DROP TABLE <table_name> [<cascade_option>]

table_name [Page 47], cascade_option [Page 132]

Explanation
The table name must be the name of an existing base table. The current user must be the
owner of the base table.

All the metadata and rows in the base table and all the view tables (see table [Page 23]),
indexes [Page 24], privileges [Page 25], synonyms [Page 24], and referential CONSTRAINT
definitions [Page 12]8 derived from it are deleted.

CASCADE option RESTRICT: the DROP TABLE statement will fail if view tables or
synonyms are based on the specified table.

No CASCADE option specified: the CASCADE value is accepted.

If all of the data that is linked to this base table by means of a referential_constraint_definition
[Page 128] with a DELETE rule [Page 130], are processed according to the specified
DELETE rule, a DELETE statement [Page 181] must first be executed for this base table and
then the DROP TABLE statement.

A CASCADE option determines the deletion behavior for objects (e.g. tables, users), i.e. it
defined whether certain dependencies are to be taken into account when objects are deleted.

CASCADE option

Syntax
<cascade_option> ::= CASCADE | RESTRICT

See also:
CASCADE dependency [Page 13]0

Reference Manual: SAP DB 7.4 132

SAP AG April 2003

ALTER TABLE statement
An ALTER TABLE statement changes the properties of a base table (see Table [Page 23]).

Syntax
<alter_table_statement> ::=
 ALTER TABLE <table_name> <add_definition>
| ALTER TABLE <table_name> <drop_definition>
| ALTER TABLE <table_name> <alter_definition>
| ALTER TABLE <table_name> <column_change_definition>
| ALTER TABLE <table_name> <modify_definition>
| ALTER TABLE <table_name> <referential_constraint_definition>
| ALTER TABLE <table_name> DROP FOREIGN KEY
<referential_constraint_name>
| ALTER TABLE <table_name> <sample_definition>

table_name [Page 47], add_definition [Page 133], drop_definition [Page 136], alter_definition
[Page 134], column_change_definition [Page 135], modify_definition [Page 137],
referential_constraint_definition [Page 12]8 , referential_constraint_name [Page 44],
sample_definition [Page 11]7

Explanation
The table name must be the name of an existing base table. The table must not be a
temporary base table. The current user must have the ALTER privilege for the specified table.

• If a referential CONSTRAINT definition was specified, a new referential constraint is
defined for the base table. The rules described in the referential CONSTRAINT
definition [Page 128] apply.

• If DROP FOREIGN KEY was specified, the referential CONSTRAINT definition
identified by the name of the referential constraint is dropped.

• If a SAMPLE definition is specified, a new number of rows is defined and is taken into
account by the database system when the table statistics are calculated.

ADD Definition (add_definition)
ALTER You can define additional table properties by specifying an ADD definition in the

. TABLE statement [Page 133]

Syntax
<add_definition> ::= ADD <column_definition>,...
| ADD (<column_definition>,...)
| ADD <constraint_definition>
| ADD <referential_constraint_definition>
| ADD <key_definition>

column_definition [Page 11]8 , constraint_definition [Page 12]7 , key_definition [Page 13]1 ,
referential_constraint_definition [Page 12]8

The following statement adds two columns to the customer [Page 11]1 table.
The columns initially contain the NULL value [Page 15] in all rows.
ALTER TABLE customer ADD (phone_number FIXED (8), street
CHAR (15))

The new columns can be used straight away.

Reference Manual: SAP DB 7.4 133

SAP AG April 2003

Explanation
Adding a column definition: ADD <column_definition>
You can extend the table specified in the ALTER TABLE statement to include these columns
by specifying column definitions [Page 11]8 . These specifications must not exceed the
maximum number of columns allowed and the maximum length of a row.

The memory requirements for each column are increased by one character (for
normal memory requirements, see Memory requirements of a column value as a
function of the data type [Page 123]), if the length described is less than 31
characters and the column does not have the data type VARCHAR [Page 120].

The newly defined columns contain the NULL value in all rows, if no default value has been
specified for these columns using a DEFAULT specification [Page 125]. If the NULL value
violates a CONSTRAINT definition [Page 127] of the table, the ALTER TABLE statement will
fail.

When you add LONG columns, you cannot make a DEFAULT specification. If you want to
define a default value for a LONG column, you can define the LONG column using the ADD
definition and then use MODIFY Definition [Page 137] to define a default value for the
definition.

In every other respect, specifying a column definition has the same effect as specifying a
column definition in a CREATE TABLE statement [Page 11]5 .

• If view tables are defined for the specified table, and if alias names [Page 39] are
defined for one of these view tables, and if the view tables reference the columns in the
table with *, the ALTER TABLE statement will fail.

• If view tables are defined for the specified table, and if no alias names are defined, and
if the view tables reference the columns in the table with *, this view table contains the
columns added to the base table by the ADD definition.

Adding a CONSTANT definition: ADD <constant definition>
All of the rows in the table must satisfy the condition defined by the search condition [Page
70] of the CONSTRAINT definition [Page 127].

Adding a referential CONSTRAINT definition: ADD <referential_constraint_definition>
An integrity condition is defined for the table specified in the ALTER TABLE statement. The
columns specified in the referential CONSTRAINT definition [Page 128] must be columns in
the table. All of the rows in the table must satisfy the integrity condition defined by the
referential CONSTRAINT definition.

Adding a key definition: ADD <key definition>
A key is defined for the table specified in the ALTER TABLE statement. At execution time, the
table must only contain the key column SYSKEY generated by the database system. The
columns specified in the key definition [Page 131] must be columns in the table and must
satisfy the key properties (none of the columns may contain NULL value, and no two rows in
the table may have the same values in all columns of the key definition). The new key is
stored in the metadata of the table. The key column SYSKEY is omitted. This is an extremely
lengthy procedure for tables with a large number of rows, since extensive copy operations are
carried out.

ALTER definition
By specifying an ALTER definition in the ALTER TABLE statement [Page 133], you can
change a CONSTRAINT definition [Page 127] or a key definition [Page 13]1 .

Reference Manual: SAP DB 7.4 134

SAP AG April 2003

Syntax
<alter_definition> ::=
 ALTER CONSTRAINT <constraint_name> CHECK <search_condition>
| ALTER <key_definition>

constraint_name [Page 40], search_condition [Page 70], key_definition [Page 13]1

Explanation
CONSTRAINT <constraint_name>
The constraint name must identify a CONSTRAINT definition in the table. If the specified
search condition is not violated by any row in the table, it replaces the existing search
condition of the CONSTRAINT definition. Otherwise, the ALTER TABLE statement fails.

<key_definition>
The key specified by the key definition replaces the current key in the table. The columns
specified in the key definition must identify columns in the table and must have the key
property (key definition [Page 131]).

If a column of the key to be replaced is a referenced column of a referential CONSTRAINT
definition, the ALTER TABLE statement will fail.

With large tables, in particular, this may take more time, since extensive copy operations have
to be carried out.

 COLUMN change definition
You can modify the properties of a column by specifying a COLUMN change definition in the
ALTER TABLE statement [Page 133].

Syntax
<column_change_definition> ::= COLUMN <column_name> NOT NULL
| COLUMN <column_name> DEFAULT NULL
| COLUMN <column_name> ADD <default_spec>
| COLUMN <column_name> ALTER <default_spec>
| COLUMN <column_name> DROP DEFAULT

column_name [Page 46], default_spec [Page 125]

Explanation
NOT NULL
NOT NULL can only be specified if the column contains no NULL value [Page 15]s. You
cannot add a NULL value to the column once the ALTER TABLE statement has been
successfully executed.

DEFAULT NULL
DEFAULT NULL allows a NULL value for the column. The system does not check whether a
NULL value violates existing CONSTRAINT definitions [Page 127] in the table. For this
reason, inserting the NULL value can fail when an INSERT or UPDATE statement is
executed.

ADD <default_spec>
The column must not contain a DEFAULT specification before the ALTER TABLE statement
is executed with ADD <default spec>. ADD <default spec> assigns a DEFAULT
value to the column.

Reference Manual: SAP DB 7.4 135

SAP AG April 2003

ALTER <default spec>
ALTER <default spec> changes the DEFAULT value assigned to the column. All of the
rows that contain the old default value in the column remain unaltered.

DROP DEFAULT
DROP DEFAULT drops the DEFAULT specification of the column. If the column is the foreign
key column of a referential CONSTRAINT definition [Page 128] with the DELETE RULE
[Page 130] ON DELETE SET DEFAULT, the ALTER TABLE statement will fail.

DROP definition
You can delete table properties by specifying a DROP definition in the ALTER TABLE
statement [Page 133].

Syntax
<drop_definition> ::= DROP <column_name>,... [<cascade_option>]
[RELEASE SPACE]
| DROP (<column_name>,...) [<cascade_option>] [RELEASE SPACE]
| DROP CONSTRAINT <constraint_name> | DROP PRIMARY KEY

column_name [Page 46], cascade_option [Page 132], constraint_name [Page 40]

Explanation
Dropping a column: DROP <column_name>
Each column name must be a column of the table identified by the ALTER TABLE statement.
The column must be neither a key column nor a foreign key column of a referential
CONSTRAINT definition [Page 128] of the table.

The columns are marked as dropped in the metadata of the table. A DROP definition does not
automatically reduce the memory requirements of the underlying table. RELEASE SPACE
forces the column values of the dropped columns to be dropped in every row in the table.
With large tables, in particular, this may take more time, since extensive copy operations have
to be carried out.

Any privileges and comments for the columns to be dropped are dropped as well.

If one of the columns to be dropped occurs as a selected column [Page 193] in a view
definition, the specified column in the view table is dropped.
If this view table is used in the FROM condition of another view table, the described
procedure is recursively applied to this view table.

• If one of the columns to be dropped occurs in the QUERY specification [Page 192] of a
view definition and if no CASCADE condition [Page 132] is specified or if the
CASCADE condition in the DROP is specified in the DROP definition, the view
definition is dropped with all the view tables, privileges, and synonyms that depend on
it.

• The ALTER TABLE statment will fail if one of the columns to be dropped appears in the
QUERY specification of a view definition and the CASCADE condition RESTRICT is
specified in the DROP definition.

Existing indexes referring to columns to be dropped are also dropped. The storage locations
for the dropped indexes are released.

All CONSTRAINT definitions [Page 127] that contain one of the dropped columns are
dropped.

Reference Manual: SAP DB 7.4 136

SAP AG April 2003

Dropping a constraint: DROP CONSTRAINT <constraint_name>
The constraint name must identify a CONSTRAINT definition in the table. The latter is then
removed from the metadata of the table.

Dropping a key: DROP PRIMARY KEY

• The table must have a key defined by the user.

• The table must not contain more than 1023 columns.

The maximum permissible length of a row must not exceed 8088 bytes. •

• The key columns must not be a referenced column of a referential CONSTRAINT
definition [Page 128].

The key is replaced by the key column SYSKEY generated by the database system. With
large tables, in particular, this may take more time, since extensive copy operations have to
be carried out.

MODIFY definition
You can modify data types and properties of table columns by specifying a MODIFY definition
in the ALTER TABLE statement [Page 133].

Syntax
<modify_definition> ::= MODIFY (<column_name> [<data_type>]
[<column_attributes>]...)

column_name [Page 46], data_type [Page 119], column_attributes [Page 124]

The parentheses are not necessary if the MODIFY definition only contains one column name.

Explanation
Each column name must be a column of the base table specified in the ALTER TABLE
statement.

Column attributes
Only the following column attributes are allowed:

• NULL
NULL value [Page 15]

NOT NULL
If NOT NULL is specified, the table must not have any rows that contain a NULL value
in the corresponding column. A NULL value can no longer be inserted into the column
after being modified.

•

• DEFAULT specification [Page 125]
The DEFAULT specification DEFAULT SERIAL is not permitted.
If a DEFAULT specification is specified, it replaces an existing DEFAULT specification
in the corresponding column. The new DEFAULT specification only affects subsequent
INSERT statements and not affect rows that already exist in the table.

Data types
If a DEFAULT specification is not specified and if a DEFAULT specification is defined for the
corresponding column, it must be compatible with the data type.

• Code attribute ASCII or EBCDIC: the corresponding column must have the data type
DATE [Page 122], TIME [Page 123], or TIMESTAMP [Page 123] or the code attribute
[Page 17] ASCII, EBCDIC, or UNICODE before it is modified.

Reference Manual: SAP DB 7.4 137

SAP AG April 2003

• Code attribute UNICODE: A transformation from UNICODE to ASCII must be possible
for the relevant column.

Code attribute BYTE: the corresponding column must have the data type DATE,
TIME, or TIMESTAMP or the code attribute ASCII, EBCDIC, or BYTE before it is
modified.

•

Data type CHAR(n), VARCHAR(n): the corresponding column must have the data type
CHAR [Page 120](n), VARCHAR [Page 120](n), DATE, TIME, or TIMESTAMP. In this case,
the table must not contain a row in which the column has a value with a length greater than n.
If a column had the code attribute UNICODE before the ALTER TABLE statement was
executed, and the new code attribute is not UNICODE, transformation to the new code
attribute must be possible.

Data type DATE: the corresponding column must have the data type CHAR(n),
VARCHAR(n), or DATE [Page 122]. This column must contain a date value in any of the date
formats supported by the database system in all rows of the table.

Data type FIXED(n,m): the corresponding column must have the data type FIXED [Page
121](n,m), FLOAT [Page 122], INT [Page 122], or SMALLINT [Page 122]. In this case, the
table must not contain a row in which the column has a value with more than (n - m) integral
or m fractional digits.

Data type FLOAT(n): the corresponding column must have the data type FIXED(n,m),
FLOAT(n), INT, or SMALLINT.

Data type INT: the corresponding column must have the data type FIXED(n,m), FLOAT(n),
INT, or SMALLINT. In this case, the table must only contain rows in which this column has
integral values in the range between -2147483648 and 2147483647.

Data type SMALLINT: the corresponding column must have the data type FIXED(n,m),
FLOAT(n), INT, or SMALLINT. In this case, the table must only contain rows in which this
column has integral values in the range between -32768 and 32767.

Data type TIME: the corresponding column must have the data type CHAR(n), VARCHAR(n),
or TIME [Page 123]. This column must contain a time value in any of the time formats
supported by the database system in all rows of the table.

Data type TIMESTAMP: the corresponding column must have the data type CHAR(n),
VARCHAR(n), or TIMESTAMP [Page 123]. This column must contain a timestamp value in
any of the timestamp formats supported by the database system in all rows of the table.

Column attribute NULL: a NULL value [Page 15] can be entered in the corresponding column
with a subsequent INSERT or UPDATE statement.

If one of the columns identified by column name is contained in a search condition [Page 70]
for the table, this column must also define a legal search condition after the data type has
been modified.

Others
Depending on the type of modification, the MODIFY definition may result in the table having
to be recopied and/or indexes rebuilt. In such a case, the runtime will be considerably long.

If a table is recopied and the table contains columns marked as deleted, then these columns
are removed from the catalog and from the table rows, thus reducing the space requirements
of the table.

RENAME TABLE statement
A RENAME TABLE statement changes the name of a base table (see Table [Page 23]).

Reference Manual: SAP DB 7.4 138

SAP AG April 2003

Syntax
<rename_table_statement> ::=
RENAME TABLE <old_table_name> TO <new_table_name>

<old_table_name> ::= <table_name>
<new_table_name> ::= <identifier>

table_name [Page 47], identifier [Page 36]

Explanation
The old table name must identify a base table that is not a temporary table. The current user
must be the owner of the table.

The new table name must not already be assigned to a base or view table or a private
synonym [Page 24] of the current user.

The old table is assigned the name specified in the new_table_name. All of the properties of
the table (e.g. privileges, indexes) remain unchanged. The definitions of view tables based on
the old table name are adapted to the new name.

RENAME COLUMN statement
A RENAME COLUMN statement (rename_column_statement) changes the name of a
table column.

Syntax
<rename_column_statement> ::=
RENAME COLUMN <table_name>.<column_name> TO <column_name>

table_name [Page 47], column_name [Page 46]

Explanation
The specified table [Page 23] must be a base or view table. The current user must be the
owner of the table.

The specified table column is given a new name. If the column name of a view table (that was
defined with this table) was derived from the column name of the base table, the old column
name in the view table is replaced by the new name. If the new column name is identical with
an existing column name of the view table, the RENAME COLUMN statement fails.

EXISTS TABLE statement
An EXISTS TABLE statement indicates whether a table exists or not.

Syntax
<exists_table_statement> ::= EXISTS TABLE <table_name>

table_name [Page 47]

Explanation
The specified table [Page 23] must be a base table, view table, or a synonym [Page 24].

The existence or non-existence of the specified table is indicated by the return code 0 or by
the error message -4004 UNKNOWN TABLE NAME.

A table only exists for a user if the user has a privilege on this table.

Reference Manual: SAP DB 7.4 139

SAP AG April 2003

CREATE DOMAIN statement
A CREATE DOMAIN statement defines a value range (domain) [Page 24].

Syntax
<create_domain_statement> ::= CREATE DOMAIN <domain_name> <data_type>
[<default_spec>] [<constraint_definition>]

domain_name [Page 41], data_type [Page 119], default_spec [Page 125],
constraint_definition [Page 127]

Explanation
The CONSTRAINT definition must not contain a constraint name [Page 40].

The CREATE DOMAIN statement can be executed by all users with DBA status.

If the domain name is specified without an owner, the current user is assumed to be the
owner. If you specify the domain name with an owner, this owner must be identical to the
current user. In this case, the current user becomes the owner of the domain.

The name of the domain must differ from all other domain names of the current user.

If a domain is generated with a CONSTRAINT definition, the domain name is included in the
search condition [Page 70] as a column name.

DROP DOMAIN statement
A DROP DOMAIN statement drops the definition of a domain [Page 24].

Syntax
<drop_domain_statement> ::= DROP DOMAIN <domain_name>

domain_name [Page 41]

Explanation
The domain name must identify an existing domain. The current user must be owner of the
domain.

The metadata of the domain is dropped from the catalog. Dropping a domain has no effect on
tables in which this domain was used to define columns.

CREATE SEQUENCE Statement
(create_sequence_statement)
The CREATE SEQUENCE statement defines a database object that supplies integer values
(number generator). In the following description, this object is referred to as a sequence.

Syntax
<create_sequence_statement> ::= CREATE SEQUENCE
[<owner>.]<sequence_name>
[INCREMENT BY <integer>] [START WITH <integer>]
[MAXVALUE <integer> | NOMAXVALUE] [MINVALUE <integer> | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE <unsigned_integer> | NOCACHE]
[ORDER | NOORDER]

Reference Manual: SAP DB 7.4 140

SAP AG April 2003

owner [Page 41], sequence_name [Page 45], integer [Page 34], unsigned_integer [Page 34]

Explanation
The sequence names can be specified in any order.

The current user must have RESOURCE or DBA status. If an owner is specified, it must
identify the current user. The current user becomes the owner of the sequence.

The integer values generated by the sequence can be used to assign key values.

INCREMENT BY
Defines the difference between the next sequence value and the last value assigned. A
negative value for INCREMENT BY generates a descending sequence. The value 1 is used if
no value is assigned.

START WITH
Defines the first sequence value. If no value is specified, the value specified for MAXVALUE
or –1 is used for descending sequences and the value specified for MINVALUE or 1 for
ascending sequences.

MINVALUE
Defines the smallest value generated by the sequence. If no value is defined for MINVALUE,
the smallest integer value that can be represented with 38 digits is used.

MAXVALUE
Defines the largest value generated by the sequence. If no value is defined for MAXVALUE,
the largest integer value that can be represented with 38 digits is used.

CYCLE/NOCYCLE
CYCLE: MINVALUE is produced for ascending sequences after MAXVALUE has been
assigned. MAXVALUE is produced for ascending sequences after MINVALUE has been
assigned.

NOCYCLE: a request for a sequence value fails if the end of the sequence has already been
reached, i.e. if MAXVALUE has been assigned for ascending sequences or MINVALUE for
descending sequences.

If neither CYCLE nor NOCYCLE is specified, NOCYCLE is assumed.

CACHE/NOCACHE
CACHE: access to the sequence can be accelerated because the defined number of
sequence values is held in the memory.

NOCACHE: no sequence values are defined beforehand.

If neither CACHE nor NOCACHE is specified, CACHE 20 is assumed.

ORDER/NOORDER
Specifying ORDER or NOORDER has no effect.

Sequence values can be specified using CURRVAL and NEXTVAL (see
value_spec [Page 49]). In this way, you can interrogate or increase the current
counter value.

DROP SEQUENCE statement
A DROP SEQUENCE statement drops a number generator (sequence).

Reference Manual: SAP DB 7.4 141

SAP AG April 2003

Syntax
<drop_sequence_statement> ::= DROP SEQUENCE [<owner>.]<sequence_name>

owner [Page 41], sequence_name [Page 45]

Explanation
The current user must be the owner. The sequence name must identify a sequence of the
current user.

The metadata of the sequence is removed from the catalog.

CREATE SYNONYM statement
The CREATE SYNONYM statement defines a synonym [Page 24] (alternative name) of a
table name [Page 47].

Syntax
<create_synonym_statement> ::= CREATE [PUBLIC] SYNONYM
[<owner>.]<synonym_name> FOR <table_name>

owner [Page 41], synonym_name [Page 46], table_name [Page 47]

Explanation
The table name must not denote a temporary base table (see Table [Page 23]). The user
must have a privilege for the specified table. The current user must be the owner.

The synonym name can be specified anywhere instead of the table name. This has the same
effect as specifying the table name for which the synonym was defined.

PUBLIC
If PUBLIC is specified, the synonym name must not be identical to the name of a synonym
defined with PUBLIC. A synonym is generated that can be accessed by all users.

If PUBLIC is not specified, a private synonym is generated that is only known by the current
user. In this case, the synonym name must not be identical to the name of an existing base
table, view table, or a private synonym of the current user. If a synonym with the same name
and the PUBLIC attribute exists, it cannot be accessed by the current user until the private
synonym has been dropped.

DROP SYNONYM statement
The DROP SYNONYM statement drops a synonym [Page 24] (alternative name) of a table
name [Page 47].

Syntax
<drop_synonym_statement> ::= DROP [PUBLIC] SYNONYM
[<owner>.]<synonym_name>

owner [Page 41], synonym_name [Page 46]

Explanation
The specified synonym name must identify an existing synonym of the current user.

Reference Manual: SAP DB 7.4 142

SAP AG April 2003

If PUBLIC is specified, the synonym identified by the synonym name must be defined as
PUBLIC.

The synonym definition is removed from the set of table name synonyms available to the
user.

RENAME SYNONYM statement
The RENAME SYNONYM statement changes the name of a synonym [Page 24].

Syntax
<rename_synonym_statement> ::= RENAME [PUBLIC] SYNONYM
<old_synonym_name> TO <new_synonym_name>

old/new_synonym_name [Page 46]

Explanation
The old synonym name must have been generated by the current user.

If PUBLIC is specified, the old must be defined as PUBLIC.

A table of the current user with the new synonym name must not exist already.

CREATE VIEW Statement (create_view_statement)
The CREATE VIEW statement defines a view table (see Table [Page 23]). A view table never
actually exists physically. Instead, it is formed from the rows of the underlying base table(s)
when this view table is specified in an SQL statement.

Syntax
<create_view_statement> ::= CREATE [OR REPLACE] VIEW <table_name>
[(<alias_name>,...)] AS <query_expression> [WITH CHECK OPTION]

table_name [Page 47], alias_name [Page 39], query_expression [Page 189]

Explanation
When the CREATE VIEW statement is executed, metadata that describes the view table is
stored in the catalog.

The view table is always identical to the table that would be obtained as the result of the
QUERY expression. The QUERY expression must not contain a parameter specification
[Page 48]. The QUERY expression must not reference a temporary table or a result table
name [Page 41].

The table expressions [Page 195] of the QUERY specification [Page 192] in the QUERY
statement of the CREATE VIEW statement must not contain a QUERY expression.

If a column selected [Page 193] by the QUERY statement is of the data type LONG, the
FROM clause [Page 196] must contain exactly one table name that is based on exactly one
base table.

The user must have the SELECT privilege for all columns occurring in the view definition. The
user is the owner of the view table and has at least the SELECT privilege for it. The user may
grant the SELECT privilege for any columns in the view table derived from columns for which
the user is authorized to grant the SELECT privilege to others. The user has the INSERT,
UPDATE, or DELETE privilege when he has the corresponding privileges for the tables on
which the view table is based, and when the view table is updateable. The user may only

Reference Manual: SAP DB 7.4 143

SAP AG April 2003

grant these privileges to others if he or she is authorized to grant the corresponding privilege
for all tables on which the view table is based.

OR REPLACE
If OR REPLACE is not specified, the table name must not be identical to the name of an
existing view table.

If OR REPLACE is specified, the table name may be identical to the name of an existing view
table. In this case, the definition of the existing view table is replaced by the new definition.
The database system then attempts to adapt privileges granted for the existing view table to
the new view definition, with the result that the privileges for the view table usually remain
unchanged. Privileges are only removed implicitly if conflicts occur that cannot be resolved by
the database system. If there are major discrepancies between the two view definitions, the
CREATE VIEW statement may fail in the following case: the CREATE VIEW statement of a
view table based on the existing view table cannot be executed correctly for the new view
definition.

Alias names (alias_name)
The column names of the view table must be unique. Otherwise, alias names must be
specified for the result table generated by the QUERY expression. The number of alias
names must be equal to the number of columns in the result table generated by the QUERY
expression. If no alias names are specified, the column names of the result table generated
by the QUERY expression are applied to the view table. The column descriptions for the view
table are taken from the corresponding columns in the QUERY expression. The FROM clause
of the QUERY expression can contain one or more tables.

WITH CHECK OPTION
If the CREATE VIEW statement contains a WITH CHECK OPTION, the owner of the view
table must have the INSERT, UPDATE, or DELETE privilege for the view table.

Specifying WITH CHECK OPTION has the effect that the INSERT statement or UPDATE
statement issued on the view table does not create any rows that could not be selected
subsequently via the view table; i.e. the search condition [Page 70] of the view table must be
true for any resulting rows.

The CHECK OPTION is inherited; i.e. if a view table V was defined WITH CHECK OPTION
and V occurs in the FROM clause of an updateable view table V1, only those rows that can
be selected using V can be inserted or altered using V1.

Further terms and information

• Complex View Table [Page 144]

Updateable View Table [Page 145] •

INSERT Privilege for Owners of the View Table [Page 145] •

UPDATE Privilege for Owner of the View Table [Page 146] •

DELETE Privilege for Owner of the View Table [Page 146] •

• Updateable Join View Table [Page 146]

Complex view table
A view table (see CREATE VIEW statement [Page 143]) is a complex view table if it satisfies
one of the following conditions:

• The definition of the view table contains DISTINCT or GROUP BY or HAVING.

The CREATE VIEW statement contains EXCEPT, INTERSECT, or UNION. •

Reference Manual: SAP DB 7.4 144

SAP AG April 2003

The search condition [Page 70] in the QUERY expression [Page 189] of the CREATE
VIEW statement contains a subquery [Page 200].

•

• The CREATE VIEW statement contains an outer join, that is an OUTER JOIN indicator
in a JOIN predicate [Page 62] of the search condition.

Updateable View Table
A view table (see CREATE VIEW statement [Page 143]) is called updateable if it is not a
complex view table [Page 144], and if it is not based on a complex view table.

For join view tables, that is, view tables whose FROM clause [Page 196] contains more than
one table or join table, the following additional conditions must be satisfied:

Each base table on which the view table is based has a key defined by the user. •

• Referential CONSTRAINT definitions [Page 128] must exist between the base tables
on which the view table is based.

• One of the base tables, on which the view table is based, is not a referenced table of a
referential CONSTRAINT definition for a different base table of the view table. This
table is the key table of the view table.

For each base table on which the view table is based, there is a sequence of referential
CONSTRAINT definitions so that the respective base table can be accessed from the
key table.

•

• The referential CONSTRAINT definitions must be reflected as a JOIN predicate [Page
62] in the search condition [Page 70] of the CREATE VIEW statement, that is, the
condition "key column = foreign key column" must exist for every column in each
referential CONSTRAINT definition.

• The CREATE VIEW statement must contain either the primary key or foreign key
column from each referential CONSTRAINT definition as the selected column [Page
193], but not both.

• The view table must be defined with WITH CHECK OPTION.

INSERT privilege for the owner of the view table
The owner [Page 41] of the view table (see CREATE VIEW statement [Page 143]) has the
INSERT privilege, i.e. he or she can specify the view table as a table in which insertion is to
be made in the INSERT statement if the following conditions are satisfied:

The view table is updateable (updateable view table [Page 145]). •

The owner of the view table has the INSERT privilege for all tables in the FROM clause
[Page 196] of the CREATE VIEW statement.

•

• The selected columns [Page 193] of the CREATE VIEW statement consist of table
columns or column names, not expressions [Page 52] with more than one column
name.

• The CREATE VIEW statement contains every mandatory column from all tables of the
FROM clause as the selected column.

Reference Manual: SAP DB 7.4 145

SAP AG April 2003

UPDATE privilege for the owner of the view table
The owner [Page 41] of the view table (see CREATE VIEW statement [Page 143]) has the
UPDATE privilege for a column in the view table, i.e. he or she can specify the column as a
the column to be updated in an UPDATE statement if the following conditions are satisfied:

• The view table is updateable (updateable view table [Page 145]).

The owner of the view table has the UPDATE privilege for the table columns or the
column name that defines the column.

•

• The column is defined by specifying table columns or by means of a column name, but
not by an expression [Page 52] with more than one column name.

DELETE privilege for the owner of the view table
The owner [Page 41] of the view table (see CREATE VIEW statement [Page 143]) has the
DELETE privilege for the view table, i.e. he or she can specify the view table as a table in
which entries are to be deleted in the DELETE statement if the following conditions are
satisfied:

The view table is updateable (updateable view table [Page 145]). •

• The owner of the view table has the DELETE privilege for all tables in the FROM
clause [Page 196] of the CREATE VIEW statement.

Updateable join view table
It is assumed that the definition of the join table V (see CREATE VIEW statement [Page 143])
in the FROM clause [Page 196] contains the base tables T1,...,Tn (n>1).

• Let Ti and Tj be two base tables selected by V. Let Rij be a referential CONSTRAINT
definition [Page 128] of Ti and Tj in which Ti is the referencing table and Tj the
referenced table.
Let PKj1,...,PKjm be the key columns of Tj.
Let Fki1,...,Fkim be the corresponding foreign key columns of Ti.
The referential CONSTRAINT definition is relevant for V if the JOIN predicate [Page

] (PKj1=Fki1 AND ... AND PKjm=FKjm) is part of the search condition [Page 70] of V. 62

• Let Ti and Tj be two base tables selected by V and Rij a referential CONSTRAINT
definition of Ti and Tj that is relevant for V.
Ti is the predecessor of Tj (Ti<Tj) if Rij is the only referential CONSTRAINT definition
of Ti and Tj that is relevant for V.

Let Rij be a referential CONSTRAINT definition that is relevant for V.
Rij defines a 1 : 1 relationship between Ti and Tj if the foreign key columns of Rij
make up the key columns of Tj.

•

• Let Rij be a referential CONSTRAINT definition that is relevant to V and s a key column
of Tj or a foreign key column of this referential CONSTRAINT definition of Ti. The
column s can be derived from V if exactly one of the following conditions is satisfied:
- s is a selected column [Page 19]3 of V.
– a key column or a foreign key column s' of a referential CONSTRAINT definition that
is relevant to V exists that can be derived from V and the JOIN predicate s=s' is part of
the search condition of V.

• A column v of V corresponds to a column s of a base table T if one of the following
conditions is satisfied
- v is the ith column of V and s is the ith selected column of V
- v corresponds to a key column PK of Tj of a referential CONSTRAINT definition Rij
that is relevant to V and s is the foreign key column of Ti that is assigned to PK

Reference Manual: SAP DB 7.4 146

SAP AG April 2003

- v corresponds to a foreign key column FK of Ti of a referential CONSTRAINT
definition Rij that is relevant to V and s is the key column of Tj that is assigned to FK.

A join view table V is updateable if the following conditions are satisfied:

• Each base table Ti (1 <= i <= n) has a key defined by the user.

• The database system must be able to determine a processing sequence for the
underlying base tables; i.e. an order Ti1,…,Tin of the tables T1,…,Tn must exist so that
j < k can be deduced from Tij<Tik. The columns of V from which the key columns of Ti1
can be derived make up the key of V. Ti1 is called the key table of V. The order of the
tables does not have to be unique.

• Starting with a row in the key table of V, it must be possible to assign each underlying
base table exactly one row; that is, there is a sequence of tables Ti1,...,Tij for each
table Tij (1 <= j <= n) such that Ti1 < .. < Tij
This sequence is unique for each base table referred to by V.

• It must be possible to derive the key columns and foreign key columns of all referential
CONSTRAINT definitions relevant to V from the columns of V.

• The join predicates needed to recognize the relevance of a referential CONSTRAINT
definition must be specified in parts of the search condition defined with the WITH
CHECK OPTION. If the view definition only contains base tables, this means that the
view table must be defined WITH CHECK OPTION. If a view table V is derived from a
view table V' and if V' was defined WITH CHECK OPTION, then V inherits the CHECK
OPTION for the part of the qualification passed on by V'.

DROP VIEW statement
The DROP VIEW statement drops a view table (see Table [Page 23]).

Syntax
<drop_view_statement> ::= DROP VIEW <table_name> [<cascade_option>]

table name [Page 47], cascade option [Page 132]

Explanation
The table name must identify an existing view table.

The user must be the owner of the specified view table.

The metadata of the view table and all dependent synonyms [Page 24], view tables, and
privilege [Page 25]s are dropped. The tables on which the view table was created remain
unaffected.

If the CASCADE option RESTRICT is specified and other view tables or synonyms based on
this view table exist, the DROP VIEW statement will fail.

RENAME VIEW statement
A RENAME VIEW statement changes the name of a view table (see Table [Page 23]).

Syntax
<rename_view_statement> ::= RENAME VIEW <old_table_name> TO
<new_table_name>

Reference Manual: SAP DB 7.4 147

SAP AG April 2003

<old_table_name> ::= <table_name>
<new_table_name> ::= <table_name>
table_name [Page 47]

Explanation
The old_table_name must be a view table. The current user must be the owner of the view
table.

The new_table_name must not yet be used for a table of the current user.

The CREATE VIEW statement [Page 143] of the old_table_name view table is adapted to
the new name. The result of this adaptation can be retrieved from the table
DOMAIN.VIEWDEFS.

The definitions of view tables based on the old_table_name are adapted to the new name.

CREATE INDEX Statement (create_index_statement)
The CREATE INDEX statement creates an index [Page 24] of a base table (see table [Page
23]).

Syntax
<create_index_statement> ::=
CREATE [UNIQUE] INDEX <index_name> ON <table_name> (<column_name>
[ASC|DESC],...)

table_name [Page 47], column_name [Page 46], index_name [Page 42]

Explanation
Indexes provide access to the table data using non-key columns. Maintaining these indexes,
however, can be quite complex in the case of an INSERT, UPDATE, or DELETE statement.

The index is created across the specified table columns. The secondary key consists of the
specified columns of the table, in the specified order.

The specified table must be an existing base table, and not a temporary table. The
index name must not be identical with an existing index name of the table.

•

• The column defined by the column name must be a column in the specified table. This
column must not be a LONG column [Page 16]. All of the column name pairs must be
different.

The current user must have the INDEX privilege type [Page 43] for the columns. •

• Restrictions [Page 219]

UNIQUE
If UNIQUE is specified, the database system ensures that no two rows of the specified table
have the same values in the indexed columns. In this way, if two rows both contain the NULL
value [Page 15] for all columns of an index, the two index values are not considered to be
identical. If there is not at least one column that does not contain the NULL value, two rows
that have the same value in all non-NULL columns are considered to be identical.

ASC | DESC
The index values are stored in ascending or descending order. If the specification of ASC or
DESC is omitted, ASC is implicitly assumed.

Reference Manual: SAP DB 7.4 148

SAP AG April 2003

DROP INDEX Statement (drop_index_statement)
The DROP INDEX statement drops an index [Page 24] for a base table (see table [Page 23]).
The metadata of the index is dropped from the database catalog. The storage space occupied
by the index is released.

Syntax
<drop_index_statement> ::= DROP INDEX <index_name> [ON <table_name>]

index_name [Page 42], table_name [Page 47]

Explanation
The specified index must exist and the specified table name must be the name of an existing
base table.

ON <table name> is not necessary if the index name identifies an index unambiguously.

The current user must be the owner of the specified table or have the INDEX privilege for it.

ALTER INDEX Statement (alter_index_statement)
The ALTER INDEX (alter_index_statement) statement determines how an index [Page
24] is used in data queries.

Syntax
<alter_index_statement> ::= ALTER INDEX <index_name> [ON
<table_name>] ENABLE
| ALTER INDEX <index_name> [ON <table_name>] DISABLE
| ALTER INDEX <index_name> [ON <table_name>] INIT USAGE

index_name [Page 42], table_name [Page 47]

Explanation
When a CREATE INDEX statement [Page 148] is executed, an index is generated across the
specified columns. This index is modified accordingly for all of the following SQL statements
for data manipulation (INSERT statement [Page 173], UPDATE statement [Page 178],
DELETE statement [Page 181]). With all other SQL statements in which individual rows in a
table are specified, the database system can use this index to speed up the search for these
rows.

ALTER INDEX … DISABLE
The index can no longer be used for this search, however it continues to be changed by the
use of the SQL statements INSERT, UPDATE, or DELETE.

ALTER INDEX … ENABLE
The index can be used for the search again.

ALTER INDEX … INIT USAGE
The column INDEX_USED in the system table DOMAIN.INDEXES is initialized with 0; that is,
the count of how often an index is used is restarted.

RENAME INDEX statement
The RENAME INDEX statement changes the name of an index [Page 24].

Reference Manual: SAP DB 7.4 149

SAP AG April 2003

Syntax
<rename_index_statement> ::= RENAME INDEX <old_index_name> [ON
<table_name>] TO <new_index_name>

<old_index_name> ::= <index_name>
<new_index_name> ::= <index_name>

table_name [Page 47], index_name [Page 42]

Explanation
The specified table name must be the name of an existing base table (see table [Page 23]).

The index identified by the old_index_name must exist. ON <table_name> is not
necessary if this index is unique.

The current user must be the owner of the specified table or have the INDEX privilege for it.

The new index name must not be identical to an existing index name for the table.

COMMENT ON Statement (comment_on_statement)
The COMMENT ON statement (comment_on_statement) creates, alters, or drops a
comment for a database object stored in the database catalog.

Syntax
<comment_on_statement> ::= COMMENT ON <object_spec> IS <comment>

<object_spec> ::= see explanation
<comment> ::= <string_literal> | <parameter_name>

string_literal [Page 32], parameter_name [Page 43]

Explanation
Comments can be specified for the following database objects:

<object_spec> ::= Explanation
COLUMN <table_name>.<column_name>

table_name [Page 47], column_name [Page
]

The column must exist in the specified table.
The current user must be the owner of the
table.
The comment for this column can be
interrogated by selecting the system table
DOMAIN. COLUMNS.

DBPROC[EDURE] <dbproc_name>

dbproc_name [Page 40]
dbproc_name must identify an existing
database procedure [Page 28] whose owner is
the current user. A comment is stored for the
DB procedure. The comment can be
interrogated by selecting the system table
DOMAIN. DBPROCEDURES.

domain_name [Page 41]
domain_name must specify a domain [Page
24] of the current user. The comment for this
domain can be interrogated by selecting the
system table DOMAIN. DOMAINS.

46

DOMAIN <domain_name>

Reference Manual: SAP DB 7.4 150

SAP AG April 2003

FOREIGN KEY
<table_name>.<referential_constrain
t_name>

referential constraint name [Page 44]

referential_constraint_name must
specify a referential CONSTRAINT definition
[Page 128] for the specified table of the current
owner.
The comment for this referential CONSTRAINT
definition can be interrogated by selecting the
system table DOMAIN. FOREIGNKEYS.

INDEX <index_name> ON <table_name>

index_name [Page 42]
index_name must specify an index [Page 24]
of the specified table. The current user must be
the owner of the table.
The comment for this index can be interrogated
by selecting the system table DOMAIN.
INDEXES.

SEQUENCE <sequence_name>

sequence_name [Page 45]

An existing sequence must be specified using
sequence_name. The current user must be
the owner of the sequence.
The comment for this sequence can be
interrogated by selecting the system table
DOMAIN. SEQUENCES.

[PUBLIC] SYNONYM <synonym_name>

synonym_name [Page 46]
synonym_name must specify a synonym [Page
24] of the current user.
If PUBLIC is specified, the synonym must have
the PUBLIC attribute.
The comment for this synonym can be
interrogated by selecting the system table
DOMAIN. SYNONYMS.

TABLE <table_name>

table_name [Page 47]

The specified table [Page 23] must identify a
base or view table of the current user that is
not a temporary table.
The comment for this table can be interrogated
by selecting the system table
DOMAIN.TABLES.

TRIGGER <trigger_name>.<table_name>

trigger_name [Page 47]

The specified trigger name must identify a
trigger [Page 29] of the specified table. The
current user must be the owner of the table. A
comment is stored for the trigger. The
comment can be interrogated by selecting the
system table DOMAIN. TRIGGERS.

USER <user_name>

user_name [Page 40]

The specified user [Page 25] must identify an
existing user whose owner is the current user.
The comment for this user can be interrogated
by selecting the system table
DOMAIN.USERS.

USERGROUP <usergroup_name>

usergroup_name [Page 39]

The specified user group [Page 25] must
identify an existing user group whose owner is
the current user.
The comment for this user group can be
interrogated by selecting the system table
DOMAIN. USERS.

Reference Manual: SAP DB 7.4 151

SAP AG April 2003

<parameter_name>

parameter_name [Page 43]

The corresponding variable must contain one
of the values listed in the table. The values
must be encapsulated in quotation marks.

Example of specifying the corresponding
variables:
'COLUMN <table_name>.<column_name>'

CREATE DBPROC Statement
(create_dbproc_statement)
The CREATE DBPROC statement (create_dbproc_statement) defines a database
procedure [Page 28].

Syntax
<create_dbproc_statement> ::= CREATE DBPROC <procedure_name>
[(<formal_parameter>,..)] [RETURNS CURSOR] AS <routine>

<formal_parameter> ::=
 IN <argument> <data_type>
| OUT <argument> <data_type>
| INOUT <argument> <data_type>

<argument> ::= <identifier>

procedure_name [Page 40], data_type [Page 119], identifier [Page 36], routine [Page 153]

The database procedure determines the average price for single rooms in hotels
that are located within the specified zip code range.
CREATE DBPROC avg_price (IN zip CHAR(5), OUT avg_price
FIXED(6,2)) AS
 VAR sum FIXED(10,2); price FIXED(6,2); hotels INTEGER;
TRY
 SET sum = 0; SET hotels = 0;
 SELECT price FROM travel.room,travel.hotel WHERE zip =
:zip AND
 room.hno = hotel.hno AND roomtype = 'SINGLE';
 WHILE $rc = 0 DO BEGIN
 FETCH INTO :price;
 SET sum = sum + price;
 SET hotels = hotels + 1;
 END;
CATCH
 IF $rc <> 100 THEN STOP ($rc, 'unexpected error');
 IF hotels > 0 THEN SET avg_price = sum / hotels
 ELSE STOP (100, 'no hotel found');

Explanation
A database procedure is a subroutine that runs on the SAP DB server. SAP DB provides a
language (special SQL syntax that has been extended to include variables, control structures,
and troubleshooting measures) that can be used to define database procedures and triggers
[Page 29].

Reference Manual: SAP DB 7.4 152

SAP AG April 2003

The current user is the owner of a database procedure. He or she has the EXECUTE
privilege to execute the procedure.

Parameter
When an application invokes the database procedure with the CALL statement [Page 183], it
exchanges data via parameters that are defined by means of the formal parameters. A formal
parameter of the database procedure usually corresponds to a variable in the application.

IN | OUT | INOUT
The parameter mode (IN | OUT | INOUT) specifies the direction in which the data is
transferred when the procedure is invoked.

IN: defines an input parameter, i.e. the value of the variable is transferred to the database
procedure when the procedure is invoked.

OUT: defines an output parameter, i.e. the value of the formal parameter is transferred from
the database procedure to the variable after the procedure has terminated.

INOUT: defines an input/output parameter that combines the IN and OUT functions.

Argument
By specifying an argument, you assign a name to a formal parameter of the database
procedure. This parameter name can then be used as a variable in expressions and
assignments in the database procedure.

Data Type
Only BOOLEAN, CHAR[ACTER], DATE, FIXED, FLOAT, INT[EGER], NUMBER, REAL,
SMALLINT, TIME, TIMESTAMP, and VARCHAR can be used as the data type of a formal
parameter of a database procedure.

RETURNS CURSOR
If RETURNS CURSOR is specified, a database procedure is defined that returns a results
table when called.

The name of this table is defined using the system variable $CURSOR. There must therefore
be a statement in the database procedure that generates a results table with the result set
name $CURSOR.

The value of $CURSOR is already assigned by most programming language embeddings, but
can also be explicitly assigned in the database procedure.

CREATE DBPROC hotels_of_town (IN zip CHAR(5))
RETURNS CURSOR AS
$CURSOR = 'HOTEL_CURSOR';
DECLARE :$CURSOR CURSOR FOR
SELECT * FROM travel.hotel WHERE zip = :zip;

Further information
routine [Page 153]

routine
The part of the CREATE DBPROC [Page 152] or CREATE TRIGGER-statement [Page 158]
referred to as the routine is the implementation of the database procedure [Page 28] or trigger
[Page 29]. . It consists of optional variable declarations and statements.

Reference Manual: SAP DB 7.4 153

SAP AG April 2003

Syntax
<routine> ::= [<local_variables>] <statement_list>;

<local_variables> ::=VAR <local_variable_list>;
<local_variable_list> ::= <local_variable> | <local_variable_list>;
<local_variable>
<local_variable> ::= <variable_name> <data_type>
<variable_name> ::= <identifier>

<statement_list> ::= <statement> | <statement_list> ; <statement>

identifier [Page 36], data_type [Page 119], statement [Page 154]

Explanation
Variables
The local variables of the database procedure must be declared explicitly by specifying a data
type before they are used. Only BOOLEAN, CHAR[ACTER], DATE, FIXED, FLOAT,
INT[EGER], NUMBER, REAL, SMALLINT, TIME, TIMESTAMP, and VARCHAR are permitted
as data types data types [Page 11]9 . Once they have been declared, the variables can be
used in any SQL and other statements.

Every database procedure has the variables $RC, $ERRMSG, and $COUNT implicitly.

The $RC variable returns a numeric error code after an SQL statement has been executed.
The value 0 means that the SQL statement was successfully executed.
In parallel with $RC, the $ERRMSG variable returns an explanation of the error containing a
maximum of 80 characters.
The number of lines processed in an SQL statement is indicated by the $COUNT variable.

Variables can be assigned a value with the assignment_statement (see statement [Page
154]).

Restrictions
The statement list must not contain more than 255 SQL statements.

 statement
statement is a syntax element that is used in a routine [Page 153]. The statements
specified in the statement syntax description can be used to define a database procedure
(see CREATE DBPROC statement [Page 152]) or trigger (see CREATE TRIGGER statement
[Page 158]).

Syntax
<statement> ::= BEGIN <statement_list> END
| BREAK | CONTINUE | CONTINUE EXECUTION
| <if_statement> | <while_statement> | <assignment_statement> |
<case_statement>
| RETURN
| STOP (<expression> [,<expression>])
| TRY <statement_list>; CATCH <statement>
| <routine_sql_statement>

<statement_list> ::= <statement> | <statement_list> ; <statement>

<if_statement> ::= IF <search_condition> THEN <statement> [ELSE
<statement>]
<while_statement> ::= WHILE <search_condition> DO <statement>
<assignment_statement> ::= [SET] <variable_name> = <expression>

Reference Manual: SAP DB 7.4 154

SAP AG April 2003

<case_statement> ::= <simple_case_statement> |
<searched_case_statement>

<routine_sql_statement> ::=
 <call_statement> | <close_statement> | <create_table_temp> |
<drop_table_temp>
| <declare_cursor_statement> | <delete_statement> | <fetch_statement>
| <insert_statement> | <lock_statement>
| <select_statement> | <named_select_statement> |
<single_select_statement>
| <subtrans_statement> | <update_statement>

<variable_name> ::= <identifier>

<create_table_temp> :: = <create_table_statement> for creating temporary
tables, that is the table_name [Page 47] in the CREATE TABLE statement, must have the
format TEMP.<identifier>.

<drop_table_temp> ::= DROP TABLE TEMP.<identifier>

expression [Page 52], search_condition [Page 70], simple_case_statement [Page 157],
searched_case_statement [Page 156], call_statement [Page 183], close_statement [Page
208], create_table_statement [Page 115], declare_cursor_statement [Page 185];
delete_statement [Page 181], fetch_statement [Page 205], insert_statement [Page 173],
lock_statement [Page 215], select_statement [Page 188], named_select_statement [Page
186], single_select_statement [Page 208], subtrans_statement [Page 214], update_statement
[Page 178], identifier [Page 36]

Explanation
Variables specified in a routine [Page 153] can be assigned a value with the assignment
statement.

Control Structures
The IF statement first evaluates the search condition [Page 70]. If this is fulfilled, the
statement specified in the THEN branch is executed. Otherwise, the statement in the ELSE
branch (if defined) is executed.

The WHILE statement enables statements to be repeated in response to certain conditions.
The statement is executed as long as the specified search condition is true. The condition is
checked, in particular, before the statement is executed for the first time. This means that the
statement may not be executed at all. By specifying BREAK, you can exit the loop straight
away, without checking the condition. If CONTINUE is specified in the loop, the condition is
re-evaluated immediately and the loop is processed again or exited, depending on the result.

The CASE statement (case_statement) allows the conditional execution of a statement,
dependent on search conditions or the equality of operators. There are simple and general
CASE statements.

Specifying RETURN allows an immediate error-free of the surrounding database procedure.

Troubleshooting
If an SQL error occurs in the statement list between TRY and CATCH, the system branches
directly to the statement that follows CATCH. The actual troubleshooting routine can be
programmed in this statement. If CONTINUE EXECUTE is executed here, the system jumps
directly to the point after the statement that triggered the error.

The database procedure is interrupted immediately when the STOP function is invoked. The
value of the first parameter of the STOP function is the return or error message that the
application receives as the result of the database procedure call. An error text can also be
returned.

Reference Manual: SAP DB 7.4 155

SAP AG April 2003

SQL Statements (routine_sql_statement)
The tables in the SQL statements of the database procedure must always be complete, that
is, with the owner specified. In the case of SELECT statements, a full statement of the table
name in the FROM clause [Page 196] is sufficient.

Restrictions
The statement list must not contain more than 255 SQL statements.

The length of an SQL statement (routine sql statement) must not exceed approximately 8 KB.

General CASE Statement (searched_case_statement)
The general CASE statement (searched_case_statement) is a syntax element that is
used in a statement [Page 154]. You can use the general CASE statement to define a
database procedure (see CREATE DBPROC statement [Page 152]) or a trigger (see
CREATE TRIGGER statement [Page 158]).

Syntax
<searched_case_statement> ::= CASE
<searched_case_when_clause>...
[<case_else_clause>]
END [CASE]

<searched_case_when_clause> ::= WHEN <search_condition> THEN
<statement>
<case_else_clause> ::= ELSE <statement>

search_condition [Page 70], statement [Page 154]

Explanation
Variables specified in a routine [Page 15]3 can be assigned a value with a statement.

Control Structures
A CASE statement (case_statement) allows the conditional execution of a statement,
dependent on search conditions or the equality of operators.

In the case of a general CASE statement (searched_case_statement), the first fulfilled
search condition is determined, the associated statement executed, and the CASE statement
ends.

CASE
WHEN digit = 0 THEN toCHAR = 'zero';
WHEN digit = 1 THEN toCHAR = 'one';
WHEN digit = 2 THEN toCHAR = 'two';
WHEN digit = 3 THEN toCHAR = 'three';
WHEN digit = 4 THEN toCHAR = 'four';
WHEN digit = 5 THEN toCHAR = 'five';
WHEN digit = 6 THEN toCHAR = 'six';
WHEN digit = 7 THEN toCHAR = 'seven';
WHEN digit = 8 THEN toCHAR = 'eight';
WHEN digit = 9 THEN toCHAR = 'nine';
ELSE STOP(-29000, 'no digit');
END CASE

In a CASE statement, if no matching literal or fulfilled search condition exists, the statement in
the ELSE branch is executed.

Reference Manual: SAP DB 7.4 156

SAP AG April 2003

If there is no ELSE branch, runtime error -28901 is returned.

See also:
Simple CASE statement (simple_case_statement) [Page 157]

Simple CASE Statement (simple_case_statement)
The simple CASE statement (simple_case_statement) is a syntax element that is used in
a statement [Page 154]. You can use the simple CASE statement to define a database
procedure (see CREATE DBPROC statement [Page 152]) or a trigger (see CREATE
TRIGGER statement [Page 158]).

Syntax
<simple_case_statement> ::= CASE <expression>
<simple_case_when_clause>...
[<case_else_clause>]
END [CASE]

<simple_case_when_clause> ::= WHEN <literal>[...] THEN <statement>
<case_else_clause> ::= ELSE <statement>

expression [Page 52], literal [Page 31], statement [Page 154]

Explanation
Variables specified in a routine [Page 15]3 can be assigned a value with a statement.

Control Structures
A CASE statement (case_statement) allows the conditional execution of a statement,
dependent on search conditions or the equality of operators.

In the case of a simple CASE statement (simple_case_statement), the expression is
compared with the literals. If the expression matches a literal, the associated statement is
executed and the CASE statement ends.

CASE digit
WHEN 0 THEN toCHAR = 'zero';
WHEN 1 THEN toCHAR = 'one';
WHEN 2 THEN toCHAR = 'two';
WHEN 3 THEN toCHAR = 'three';
WHEN 4 THEN toCHAR = 'four';
WHEN 5 THEN toCHAR = 'five';
WHEN 6 THEN toCHAR = 'six';
WHEN 7 THEN toCHAR = 'seven';
WHEN 8 THEN toCHAR = 'eight';
WHEN 9 THEN toCHAR = 'nine';
ELSE STOP(-29000, 'no digit');
END CASE

In a CASE statement, if no matching literal or fulfilled search condition exists, the statement in
the ELSE branch is executed.

If there is no ELSE branch, runtime error -28901 is returned.

See also:
General CASE Statement (searched_case_statement) [Page 156]

Reference Manual: SAP DB 7.4 157

SAP AG April 2003

DROP DBPROC statement
The DROP DBPROC statement drops a database procedure [Page 28].

Syntax
<drop_dbproc_statement> ::= DROP DBPROC <dbproc_name>

dbproc_name [Page 40]

Explanation
The specified database procedure name must identify an existing database procedure of the
current user.

The metadata of the database procedure is dropped.

CREATE TRIGGER Statement
(create_trigger_statement)
The CREATE TRIGGER statement defines a trigger [Page 29] for a base table (see Table
[Page 23]).

Syntax
<create_trigger_statement> ::= CREATE TRIGGER <trigger_name> FOR
<table_name>
AFTER <trigger_event,..> EXECUTE (<routine>) [WHENEVER
<search_condition>]

<trigger_event> :: INSERT | UPDATE [(<column_list>)] | DELETE
<column_list> ::= <column_name> | <column_list>,<column_name>

trigger_name [Page 47], table_name [Page 47], search_condition [Page 70], routine [Page
153], column_name [Page 46]

The trigger ensures that the hotel number in the room table is also changed
when a hotel number is changed in the hotel table.

CREATE TRIGGER hotel_update FOR hotel AFTER UPDATE EXECUTE
(
TRY
 IF NEW.hno <> OLD.hno
 THEN UPDATE travel.room SET hno = :NEW.hno WHERE hno =
:OLD.hno;
CATCH
 IF $rc <> 100
 THEN STOP ($rc, 'unexpected error');
)

Explanation
A trigger is a special type of database procedure [Page 28] that is assigned to a base table.
This database procedure cannot be executed explicitly with the CALL statement [Page 183],
but rather automatically by SAP DB when defined events (trigger events) for the table
occur.

SAP DB provides a language (special SQL syntax that has been extended to include
variables, control structures, and troubleshooting measures) that can be used to define
database procedures and triggers.

The specified synonym name must identify an existing base table of the current user.

Reference Manual: SAP DB 7.4 158

SAP AG April 2003

Trigger Event
The trigger event defines what triggers the trigger. The trigger is always invoked if the
triggering event has been processed correctly.

INSERT: the INSERT trigger event causes the trigger to be executed for each row inserted in
the table.

UPDATE: the UPDATE event causes the trigger to be executed for each modification made
to a row in the table. If a column list is specified, the trigger is only called if one of the columns
in the column list was modified.

DELETE: the DELETE trigger event causes the trigger to be executed for every row deleted
from the table.

A maximum of one trigger can be defined for each trigger event in each table.

Trigger Routine
Each INSERT trigger implicitly has a corresponding variable NEW.<column_name> for each
column in the table. When the trigger is executed, this variable has the value of the
corresponding column in the inserted row. It is only permissible to specify NEW for SQL
statements specified in routine_sql_statements. Specifying NEW for the other statements
leads to an error.

Each UPDATE trigger implicitly has a corresponding variable NEW.<column name> and
OLD.<column name> for each column in the table. When the trigger is executed, the
OLD.<column_name> variable has the value of the corresponding column in front of and
NEW.<column_name> after the change in the row. Specifying NEW and OLD is optional.

Each DELETE trigger implicitly has a corresponding variable OLD.<column_name> for each
column in the table. When the trigger is executed, this variable has the value of the
corresponding column in the deleted row. It is only permissible to specify OLD for SQL
statements specified in routine_sql_statements. Specifying OLD for the other statements
leads to an error.

:NEW and :OLD must always be used with a colon in SQL statements that are
used in triggers and that belong to the routine_sql_statements [Page 154]
(For example: UPDATE travel.room SET hno = :NEW.hno WHERE hno
= :OLD.hno).

NEW and OLD must always be used without a colon in SQL statements that are
used in triggers and that do not belong to the routine_sql_statements
(For example: IF NEW.hno <> OLD.hno).

See also:
routine [Page 153]

If the trigger is terminated by STOP with an error number not equal to zero, the entire SQL
statement that triggered the trigger fails.

The SUBTRANS statement [Page 214] is not allowed in a trigger.

If a WHENEVER statement is specified, the trigger is only executed if the search condition
[Page 70] is fulfilled. The condition must not contain a subquery [Page 200] nor any set
function [Page 105]s.

DROP TRIGGER statement
A DROP TABLE statement deletes a trigger [Page 29] for a table.

Reference Manual: SAP DB 7.4 159

SAP AG April 2003

Syntax
<drop_trigger_statement> ::= DROP TRIGGER <trigger_name> OF
<table_name>

trigger_name [Page 47], table_name [Page 47]

Explanation
The specified table name must identify an existing table of the current user.

The specified trigger name must identify an existing trigger of the table.

The metadata of the trigger is dropped.

Authorization
SQL statements for authorization

CREATE USER statement
[Page 160]

DROP USER statement [Page
164]

ALTER USER statement
[Page 165]

RENAME USER statement
[Page 167]

GRANT USER statement
[Page 168]

CREATE USERGROUP
statement [Page 162]

DROP USERGROUP
statement [Page 165]

ALTER USERGROUP
statement [Page 166]

RENAME USERGROUP
statement [Page 168]

GRANT USERGROUP
statement [Page 168]

CREATE ROLE statement
[Page 169]

DROP ROLE statement [Page
170]

ALTER PASSWORD
statement [Page 16]9

GRANT statement [Page 170] REVOKE statement [Page
] 172

CREATE USER Statement (create_user_statement)
The CREATE USER statement (create_user_statement) defines a user [Page 25]. The
existence and the properties of the user are recorded in the database catalog in the form of
metadata.

Syntax
<create_user_statement> ::= CREATE USER <user_name> PASSWORD
<password>
[<user_mode>]
[TIMEOUT <unsigned_integer>] [COSTWARNING <unsigned_integer>]
[COSTLIMIT <unsigned_integer>] [[NOT] EXCLUSIVE] [DEFAULTCODE <ASCII
| EBCDIC | UNICODE>]
| CREATE USER <user_name> PASSWORD <password> LIKE <source_user>
| CREATE USER <user_name> PASSWORD <password> USERGROUP
<usergroup_name>

user_name [Page 40], user_mode [Page 162], unsigned_integer [Page 34], usergroup_name
[Page 39]

Reference Manual: SAP DB 7.4 160

SAP AG April 2003

Explanation
The current user must be a DBA user. The user is the owner of the created user.

The specified user name must not be identical to the name of an existing user, user group, or
role.

The password (password) must be specified when an database session is started. It ensures
that only authorized users can access the database system.

Unsigned integers (unsigned_integer) must always be greater than 0.

Unlimited disk space is available to the user for the storage of his or her private and
temporary tables (in the context of the sizes specified for the data volumes during the
installation).

TIMEOUT
The Timeout value is specified in seconds and must be between 30 and 32400.

Only the SYSDBA user can define users with the timeout value 0.

COSTWARNING/COSTLIMIT
COSTWARNING and COSTLIMIT limit costs by preventing users from executing QUERY
statements or INSERT statements in the form of INSERT...SELECT... beyond a specified
degree of complexity.

Before these SQL statements are executed, the costs expected to result from this statement
are estimated. This SELECT costs estimate can be output with the EXPLAIN statement [Page
209]. In interactive mode, the estimated SELECT cost value is compared with the
COSTWARNING and COSTLIMIT values specified for the user.

The COSTWARNING and COSTLIMIT values are ignored with QUERY statements or
INSERT statements in the form INSERT...SELECT... which are embedded in a programming
language.

COSTWARNING: specifies the estimated SELECT cost value beyond which the user
receives a warning. In this case, the user is asked whether the SQL statement is to be
executed.

COSTLIMIT: specifies the estimated SELECT cost value beyond which the SQL statement is
not executed.

The COSTLIMIT value must be greater than the COSTWARNING value.

EXCLUSIVE
EXCLUSIVE: prevents the user from opening two different database sessions simultaneously.

NOT EXCLUSIVE: allows the user to open several database sessions simultaneously.

If the EXCLUSIVE condition is not specified, EXCLUSIVE is assumed implicitly (without
NOT).

DEFAULTCODE <ASCII | EBCDIC | UNICODE>
The value of the database parameter DEFAULT_CODE is overridden with the code attribute
[Page 17] specified in DEFAULTCODE for the objects of the specified user.

LIKE
The current user must have owner authorization over the source user (source_user).

If the source user is not a member of a user group, the new user receives the same user
class and values for PERMLIMIT, TEMPLIMIT, TIMEOUT, COSTWARNING, COSTLIMIT,
and EXCLUSIVE as the source user. The new user receives all the privileges that the source
user was granted by other users.

Reference Manual: SAP DB 7.4 161

SAP AG April 2003

If the source user is a member of a user group, a new member is created in this user group
with the new user name.

USERGROUP
The user issuing the SQL statement must be the owner of the specified user group. The new
user then becomes a member of this user group.

User mode
User mode is used to specify the user class or status of the defined user when a user [Page
25] is created (CREATE USER statement [Page 160]). The user class specifies the
operations that the defined user can execute.

Syntax
<user_mode> ::= DBA | RESOURCE | STANDARD

Explanation
If no user class is specified, the STANDARD class is assumed implicitly.

DBA
The specified user is authorized to define private data and grant privileges for this data to
other users. The user can define additional users. DBA status may only be assigned by the
SYSDBA that was created when the database system was installed.

RESOURCE
The specified user is authorized to define private data and grant privileges for these objects to
other users.

STANDARD
The specified user can only access private data, which was created by other users and for
which he or she has the appropriate privileges, as well as view tables, synonyms, and
temporary tables.

Dependencies
The user classes are hierarchically ordered as follows:

• The user class RESOURCE encompasses all the rights of STANDARD users.

• The user class DBA encompasses all the rights of RESOURCES users.

• The SYSDBA user can create DBA users. He or she has owner rights over all users.
Otherwise, the SYSDBA has the same function and the same rights as a DBA user, i.e.
whenever a DBA user is allowed to execute an SQL statement, this also applies to a
SYSDBA user.

See also:
Users and user groups [Page 25]

usergroup_mode [Page 16]4

CREATE USERGROUP Statement
(create_usergroup_statement)
The CREATE USERGROUP statement (create_usergroup_statement) defines a user
group [Page 25].

Reference Manual: SAP DB 7.4 162

SAP AG April 2003

Syntax
<create_usergroup_statement> ::= CREATE USERGROUP <usergroup_name>
[<usergroup_mode>]
[TIMEOUT <unsigned_integer>] [COSTWARNING <unsigned_integer>]
[COSTLIMIT <unsigned_integer>] [[NOT] EXCLUSIVE] [DEFAULTCODE <ASCII
| EBCDIC | UNICODE>]

usergroup_name [Page 39], usergroup_mode [Page 164], unsigned_integer [Page 34]

Explanation
The current user must be a DBA user.

The specified user group name must not be identical to the name of an existing user, user
group, or role.

Several users who are members of this user group can be defined using CREATE USER
statement [Page 160]. All private objects created by members of the user group are identified
by the user group name. The owner of a private object is the group, not the user who created
the object. Each user can work with any private object of the group, as if this user were the
owner of the object. Privileges can only be granted or revoked from the group. A privilege
cannot be granted or revoked from a single member of the group.

Unsigned integers (unsigned_integer) must always be greater than 0.

Unlimited disk space is available to the user for the storage of his or her private and
temporary tables (in the context of the sizes specified for the data volumes during the
installation).

TIMEOUT
The Timeout value is specified in seconds and must be between 30 and 32400.

Only the SYSDBA user can define users with the timeout value 0.

COSTWARNING/COSTLIMIT
COSTWARNING and COSTLIMIT limit costs by preventing users in this user group from
executing QUERY statements or INSERT statements in the form of INSERT...SELECT...
beyond a specified degree of complexity and that are therefore cost-intensive.

Before these SQL statements are executed, the costs expected to result from this statement
are estimated. This SELECT costs estimate can be output with the EXPLAIN statement [Page
209]. In interactive mode, the estimated SELECT cost value is compared with the
COSTWARNING and COSTLIMIT values specified for the user.

The COSTWARNING and COSTLIMIT values are ignored with QUERY statements or
INSERT statements in the form INSERT...SELECT... which are embedded in a programming
language.

COSTWARNING: specifies the estimated SELECT cost value beyond which the user
receives a warning. In this case, the user is asked whether the SQL statement is to be
executed.

COSTLIMIT: specifies the estimated SELECT cost value beyond which the SQL statement is
not executed.

The COSTLIMIT value must be greater than the COSTWARNING value.

EXCLUSIVE
EXCLUSIVE: prevents users in this user group from opening two different database sessions
simultaneously.

NOT EXCLUSIVE: allows the user to open several database sessions simultaneously.

If the EXCLUSIVE condition is not specified, EXCLUSIVE is assumed implicitly (without
NOT).

Reference Manual: SAP DB 7.4 163

SAP AG April 2003

DEFAULTCODE <ASCII | EBCDIC | UNICODE>
The value of the database parameter DEFAULT_CODE is overridden with the code attribute
[Page 17] specified in DEFAULTCODE for the objects of the specified user.

Usergroup name
Usergroup mode is used to specify the user class or status of the defined usergroup when a
usergroup [Page 25] is created (CREATE USERGROUP statement [Page 162]).

Syntax
<usergroup_mode> ::= RESOURCE | STANDARD

Explanation
If no user class is specified, the STANDARD class is assumed implicitly.

RESOURCE
A user in the specified usergroup is authorized to define private data and grant privileges for
these objects to other users.

STANDARD
A user in the specified usergroup can only access private data, which was created by other
users and for which he or she has the appropriate privileges, as well as view tables,
synonyms, and temporary tables.

The user class RESOURCE encompasses all the rights of STANDARD users.

See also:
Users and user groups [Page 25]

user_mode [Page 162]

DROP USER statement
A DROP USER statement drops a user [Page 25] definition. The metadata of the user to be
dropped is dropped from the catalog.

Syntax
<drop_user_statement> ::= DROP USER <user_name> [<cascade_option>]

user_name [Page 40], cascade_option [Page 132]

Explanation
The current user must have owner authorization over the user to be dropped.

The specified user must not be logged onto the database system when the DROP USER
statement is executed.

• If the user to be dropped does not belong to a usergroup and is the owner of synonyms
or tables, and if the CASCADE option RESTRICT was specified, the DROP USER
statement fails.

If no CASCADE option or the CASCADE option CASCADE is specified, all the
synonyms and tables of the user to be dropped, as well as all indexes, privileges, view
tables, etc. based on these objects, are dropped.

•

Dropping a user with the user class [Page 162] DBA does not affect any users that were
created by this user. The SYSDBA user then becomes the new owner of these users.

Reference Manual: SAP DB 7.4 164

SAP AG April 2003

DROP USERGROUP statement
The DROP USERGROUP statement drops a usergroup [Page 25] definition. The metadata of
the usergroup to be dropped is dropped from the catalog.

Syntax
<drop_usergroup_statement> ::= DROP USERGROUP <usergroup_name>
[<cascade_option>]

usergroup_name [Page 39], cascade_option [Page 132]

Explanation
The current user must have owner authorization over the usergroup to be dropped.

The users in this usergroup must not be logged onto the database system when the DROP
USERGROUP statement is executed.

• If the usergroup to be dropped does not belong to a usergroup and is the owner of
synonyms or tables, and if the CASCADE option RESTRICT was specified, the DROP
USERGROUP statement fails.

• If no CASCADE option or the CASCADE option CASCADE is specified, all the
synonyms and tables of the usergroup to be dropped, as well as all indexes, privileges,
view tables, etc. based on these objects, are dropped.

ALTER USER Statement (alter_user_statement)
The ALTER USER statement alters the properties assigned to a user [Page 25].

Syntax
<alter_user_statement> ::= ALTER USER <user_name> [<user_mode>]
[TIMEOUT <unsigned_integer> | TIMEOUT NULL]
[COSTWARNING <unsigned_integer> | COSTWARNING NULL]
[COSTLIMIT <unsigned_integer> | COSTLIMIT NULL]
[DEFAULT ROLE ALL [EXCEPT <role_name>] | DEFAULT ROLE NONE
| DEFAULT ROLE <role_name> [IDENTIFIED BY <password>]]
[[NOT] EXCLUSIVE] [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]

user_name [Page 40], user_mode [Page 162], unsigned_integer [Page 34], role_name [Page
45], password [Page 42]

Explanation
At least one of the optional clauses must be specified.

•

The specified user name must identify a defined user, who is not a member of a user group.

The current user must have owner authorization over the user whose properties are to be
altered.

The specified user must not be logged onto the database system when the ALTER USER
statement is executed.

User class (user_mode)

DBA: specifies that the user is to be assigned the user class DBA. The DBA user class
can only be granted by the SYSDBA.

• RESOURCE: specifies that the user is to be assigned the user class RESOURCE. If
the user was previously assigned to the user class DBA, owner authorization for all
users he or she created is revoked. The SYSDBA user then becomes the new owner.

Reference Manual: SAP DB 7.4 165

SAP AG April 2003

• STANDARD: specifies that the user is removed from the current user class and loses
the right to create base tables. All the base tables created by the user are dropped.

• No user class: if no user class is specified, the user class remains unchanged.

NULL

If the NULL value is specified, the value defined previously is cancelled.

DEFAULT ROLE
DEFAULT ROLE defines which of the roles [Page 25] assigned to the user is activated
automatically when a database session is opened.

• ALL: all the roles assigned to the user are activated when a session is opened.
EXCEPT can be used to exclude specified roles from activation.

• NONE: none of the roles is activated when a user database session is opened.

• Role name specified: the roles specified here must exist and be assigned to the user.
They are automatically activated when a user database session is opened.

See also:
Role concept

TIMEOUT, COSTWARNING, COSTLIMIT, [NOT] EXCLUSIVE, and
DEFAULTCODE are described under the CREATE USER statement [Page 160].

ALTER USERGROUP Statement
(alter_usergroup_statement)
The ALTER USERGROUP statement (alter_usergroup_statement) alters the
properties assigned to a user group [Page 25].

Syntax
<alter_usergroup_statement> ::= ALTER USERGROUP <usergroup_name>
[<usergroup_mode>]
[TIMEOUT <unsigned_integer> | TIMEOUT NULL]
[COSTWARNING <unsigned_integer> | COSTWARNING NULL] [COSTLIMIT
<unsigned_integer> | COSTLIMIT NULL]
[DEFAULT ROLE ALL [EXCEPT <role_name>] | DEFAULT ROLE NONE
| DEFAULT ROLE <role_name> [IDENTIFIED BY <password>]]
[[NOT] EXCLUSIVE] [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]

usergroup_name [Page 39], usergroup_mode [Page 164], unsigned_integer [Page 34],
role_name [Page 45], password [Page 42]

Explanation
At least one of the optional clauses must be specified.

The specified user group must identify a defined user group.

The current user must have owner authorization over the user group whose properties are to
be altered.

The members of the specified user group must not be logged onto the database system when
the ALTER USERGROUP statement is executed.

Reference Manual: SAP DB 7.4 166

SAP AG April 2003

User class of the user group (usergroup mode)

• RESOURCE: specifies that the user group is to be assigned to the user class
RESOURCE.

• STANDARD: specifies that the user group is removed from the current user class and
loses the right to create base tables. All the base tables created by the user group are
dropped.

• No user class: if no user class is specified, the user class remains unchanged.

NULL
If the NULL value is specified, the value defined previously is cancelled.

DEFAULT ROLE
DEFAULT ROLE defines which of the roles [Page 25] assigned to the user group is activated
automatically when a session is opened by a group member.

• ALL: all the roles assigned to the user group are activated when a session is opened.
EXCEPT can be used to exclude specified roles from activation.

• NONE: none of the roles is activated when a session is opened by a member of the
user group.

• Role name specified: the roles specified here must exist and be assigned to the user
group. They are automatically activated when a session of a group member is opened.

See also:
Role concept

For information about the specifications TIMEOUT, COSTWARNING,
COSTLIMIT, [NOT] EXCLUSIVE, and DEFAULTCODE, see CREATE
USERGROUP statement [Page 162].

RENAME USER statement
The RENAME USER statement changes the name of a user [Page 25].

Syntax
<rename_user_statement> ::= RENAME USER <user_name> TO
<new_user_name>

user_name [Page 40]

Explanation
The user to be modified must exist. The user name must identify the current user or a user
over whom the current user has the owner privilege.

The new user name must not be identical to the name of an existing user, usergroup, or role.

If the name of the user to be modified is different from that of the current user, the user that is
to be modified must not be logged onto the database system when the RENAME USER
statement is executed. Otherwise, the current transaction is terminated with COMMIT before
executing the RENAME USER statement is executed.

The database system automatically adapts the objects that are dependent on the modified
user to the new user name.

Reference Manual: SAP DB 7.4 167

SAP AG April 2003

RENAME USERGROUP statement
The RENAME USERGROUP statement changes the name of a usergroup [Page 25].

Syntax
<rename_usergroup_statement> ::= RENAME USERGROUP <usergroup_name> TO
<new_usergroup_name>

usergroup_name [Page 39]

Explanation
The usergroup to be modified must exist. The name of the usergroup must identify a
usergroup for which the current user has the owner privilege.

The new usergroup name must not be identical to that of an existing user, usergroup, or role.

The members of this usergroup must not be logged onto the database system when the
RENAME USERGROUP statement is executed.

The database system automatically adapts the objects that are dependent on the modified
usergroup to the new usergroup name.

GRANT USER Statement (grant_user_statement)
The GRANT USER statement grants another user the owner privilege that the SYSDBA or a
DBA user has over a user [Page 25].

Syntax
<grant user statement> ::= GRANT USER <granted users> [FROM
<user_name>] TO <user_name>

<granted users> ::= <user name>,...| *
user name [Page 40]

Explanation
The current user must be a DBA user.

The user names specified after the FROM and TO keywords must be different and must
identify DBA users. If FROM <user name> is not specified, the current user is assumed
implicitly.

The users specified after the GRANT USER keywords must exist and must not be a member
of a usergroup. They must also have the user class RESOURCE or STANDARD. The FROM
user must have the owner privilege for these users. If * is specified, the GRANT USER
statement affects all users for which the FROM user has the owner privilege.

The FROM user grants the TO user the owner privileges which the FROM user has over the
specified users. These rights are revoked from the FROM user. In particular, the TO user is
granted the right to drop any specified user and to alter the user class and other properties of
this user.

GRANT USERGROUP Statement
(grant_usergroup_statement)
The GRANT USERGROUP statement grants the owner privilege that the SYSDBA or a DBA
user has over a usergroup [Page 25] to another user.

Reference Manual: SAP DB 7.4 168

SAP AG April 2003

Syntax
<grant_usergroup_statement> ::= GRANT USERGROUP <granted_usergroups>
[FROM <user_name>] TO <user_name>

<granted usergroups> ::= <usergroup name>,...| *
user name [Page 40], usergroup name [Page 39]

Explanation
The current user must be a DBA user.

The user names specified after the FROM and TO keywords must be different and must
identify DBA users. If FROM <user name> is not specified, the current user is assumed
implicitly.

The usergroup name must identify a usergroups for which the FROM user has the owner
privilege. An asterisk * stands for all usergroups for which the FROM user has the owner
privilege.

The FROM user grants the TO user the owner authorization which the FROM user has over
the specified usergroups. These rights are revoked from the FROM user. In particular, the TO
user is granted the right to drop any usergroup, to alter the user class and properties of this
usergroup, and to drop or create group members.

ALTER PASSWORD statement
The ALTER PASSWORD statement is required to alter a user's password.

Syntax
<alter_password_statement> ::= ALTER PASSWORD <old_password> TO
<new_password>
| ALTER PASSWORD <user_name> <new_password>

<old_password> ::= <password>
<new_password> ::= <password>

user_name [Page 40], password [Page 42]

Explanation
The old password must match the password entered in the catalog for the current user.

If the user_name is specified, the current user must be the SYSDBA.

The new password must be specified in the CONNECT statement [Page 211] the next time
the user starts a session.

CREATE ROLE Statement (create_role_statement)
The CREATE ROLE statement defines a role [Page 25].

Syntax
<create_role_statement> ::= CREATE ROLE <role_name> [IDENTIFIED BY
<password>]

role name [Page 45], password [Page 42]

Explanation
The current user must be a DBA user.

Reference Manual: SAP DB 7.4 169

SAP AG April 2003

The role name must not be the same as the name of an existing role, user, or usergroup.

See also:
Role concept

 DROP ROLE Statement (drop_role_statement)
The DROP ROLE statement drops a role [Page 25].

Syntax
<drop_role_statement> ::= DROP ROLE <role_name>

role_name [Page 45]

Explanation
The current user must be the owner of the role.

The metadata of the role to be dropped is dropped from the database catalog.

GRANT Statement (grant_statement)
The GRANT statement assigns privileges [Page 25] for tables, individual columns and roles,
the SELECT privilege for a sequence, and the execution privilege for a database procedure.

Syntax
<grant_statement> ::= GRANT <priv_spec>,... TO <grantee>,... [WITH
GRANT OPTION]
| GRANT EXECUTE ON <dbproc_name> TO <grantee>,...
| GRANT SELECT ON <sequence_name> TO <grantee>,... [WITH GRANT
OPTION]

priv_spec [Page 171], grantee [Page 17]1 , dbproc_name [Page 40], sequence_name [Page
45]

Explanation
The privileges in the privilege specification are assigned to the users [Page 25], user groups
[Page 25], and roles [Page 25] (see also: Role Concept) specified in the grantee list.

WITH GRANT OPTION
Users or usergroups identified as grantees are allowed to pass on their privileges to other
users. The current user must have the authorization to pass on these privileges.

The WITH GRANT OPTION cannot be specified if grantee identifies a role.

GRANT EXECUTE ON
GRANT EXECUTE ON allow the user identified by grantee to execute the specified
database procedure [Page 28]. The current user must be the owner of the database
procedure.

GRANT SELECT ON
GRANT SELECT ON allows the user identified by grantee to execute the specified
sequence.

Reference Manual: SAP DB 7.4 170

SAP AG April 2003

Privilege specification (priv_spec)
A privilege specification (priv_spec) defines a role or a set of privileges [Page 25] for
specific tables.

Syntax
<priv_spec> ::= ALL [PRIV[ILEGES]] ON [TABLE] <table_name>,...
| <privilege>,... ON [TABLE] <table_name>,... | <role_name>

table_name [Page 47], privilege [Page 43], role_name [Page 45]

Explanation
These tables must not be temporary base tables.

The user [Page 25] must have the authorization to grant (GRANT statement [Page 170]) and
revoke (REVOKE statement [Page 172]).privileges for the specified tables. For base tables,
the owner of the table has this authorization.

In the case of view tables (see Table [Page 23]), the owner may not always be authorized to
assign or revoke all privileges. The database determines the privileges that a user can assign
or revoke for a view table when the table is created. The result depends on the type of table
and on the user's privileges for the tables selected in the view table. The owner of a table can
interrogate the privileges that he or she is allowed to grant or revoke by selecting the system
table DOMAIN.PRIVILEGES.

A list of all the privileges that can be granted is provided in the privilege type [Page 43].

If a role is defined as a privilege specification, it must exist and the current user must be the
owner of the role.

ALL [PRIV[ILEGES]]

All of the privileges that the user can grant for tables are granted (GRANT statement) or
revoked (REVOKE statement) for the specified users, usergroups, and roles.

If a user who is not the owner of the table specifies ALL in a REVOKE statement, all of the
privileges he or she has granted to the specified user for this table are revoked.

grantee
In grantee the user [Page 25] (or several users) or role [Page 25] is specified for which
privileges are to be granted with the GRANT statement [Page 170] or revoked with the
REVOKE statement [Page 172].

Syntax
<grantee> ::= PUBLIC | <user_name> | <usergroup_name> | <role_name>

user_name [Page 40], usergroup_name [Page 39], role_name [Page 45]

Explanation
A user in the grantee list must not be identical to the user name of the current user or the
name of the owner of the table. A user in the grantee list must not denote a member of a
usergroup [Page 25].

Roles
If a role is assigned to a user or usergroup, it extends the set of roles which can be activated
for this user or usergroup. The user activates the role either with the SET statement [Page
212] or by including the role in the set of roles automatically activated when a session was
opened with the ALTER USER statement [Page 165] or ALTER USERGROUP statement
[Page 166].

Reference Manual: SAP DB 7.4 171

SAP AG April 2003

A cycle may not be created when a role is assigned to a role, that is

• a role may not be assigned to itself.

• if a role R1 is assigned to a role R2, R2 may not be assigned to R1.

• if a role R1 is assigned to a role R2 and R2 is assigned to a role R3, R3 may not be
assigned to either R2 or R1.

• etc.

PUBLIC
The listed privileges are granted to all users, both to current ones and to any created later.

A role cannot be assigned to PUBLIC.

REVOKE Statement (revoke_statement)
The REVOKE statement revokes privileges [Page 25].

Syntax
<revoke statement> ::= REVOKE <priv spec>,... FROM <grantee>,...
[<cascade_option>]
| REVOKE EXECUTE ON <dbproc_name> FROM <grantee>,...
| REVOKE SELECT ON <sequence_name> FROM <grantee>,...
[<cascade_option>]

priv_spec [Page 171], grantee [Page 171], cascade_option [Page 132], dbproc_name [Page
40], sequence_name [Page 45]

Explanation
The owner of a table can revoke the privileges granted for this table from any user [Page 25].

If a user is not the owner of the table, he may only revoke the privileges he has granted.

If the SELECT privilege was granted for a table any specified column names, REVOKE
SELECT (<column name>,...) can be used to revoke the SELECT privilege (see privilege type
[Page 43]) for the specified columns; the SELECT privilege for table columns that have not
been specified remains unchanged. The same is true for the UPDATE, REFERENCES, and
SELUPD privileges.

The REVOKE statement can cascade; that is, revoking a privilege from one user can result in
this privilege being revoked from other users who have received the privilege from the user in
question.

Let U1, U2, and U3 be users.
U1 grants U2 the privilege set P WITH GRANT OPTION.
U1 grants U3 the privilege set P' (P'<=P).

If U1 revokes the privilege set P'' (P''<=P) from user U2, the privilege set (P'*P'')
is revoked implicitly from user U3.

• Whenever the SELECT privilege is revoked from the owner of a view table for a
selected that does not occur in the table_expression of the view definition
(CREATE VIEW statement [Page 143]), the column defined by select_column is
dropped from the view table.
If this view table is used in the FROM clause [Page 19]6 of another view table, the
described procedure is applied recursively to this view table.

• If the SELECT privilege is revoked from the owner of a view table for a column or table
occurring in the table_expression of the view definition, the view table is dropped,
along with all view tables (see Table [Page 23]), privileges [Page 25], and synonyms

Reference Manual: SAP DB 7.4 172

SAP AG April 2003

[Page 24] based on this view table, if no CASCADE option [Page 132] or the
CASCADE option CASCADE is specified. The REVOKE statement will fail if the
CASCADE option RESTRICT is specified.

REVOKE EXECUTE
If REVOKE EXECUTE is specified, the authorization to execute the database procedure
[Page 28] is revoked from the user identified by grantee. The authorization for execution
can only be revoked by the owner of the database procedure.

The following sections provide an introduction to the Data Manipulation Language (DML)
used by the database system.

Data Manipulation

Every SQL statement that manipulates data implicitly sets an exclusive lock (see also Lock
Behavior) for each inserted, updated, or deleted row.

SQL statements for data manipulation

INSERT statement [Page
173]

UPDATE statement
[Page 178]

DELETE statement
[Page 181]

NEXT STAMP statement
[Page 183]

CALL statement [Page
183]

INSERT Statement (insert_statement)
The INSERT statement creates new rows in a table [Page 23].

Syntax
<insert_statement> ::=
 INSERT [INTO] <table_name> [(<column_name>,...)] VALUES
(<insert_expression>,...) [<duplicates_clause>]
| INSERT [INTO] <table_name> [(<column_name>,...)] <query_expression>
[<duplicates_clause>]
| INSERT [INTO] <table_name> SET <set_insert_clause>,...
[<duplicates_clause>]

<insert_expression> ::= <extended_expression> | <subquery>

table_name [Page 47], column_name [Page 46], extended_expression [Page 177],
duplicates_clause [Page 176], subquery [Page 200], query_expression [Page 189],
set_insert_clause [Page 178]

Explanation
The table name must denote an existing base table, view table (see Table [Page 23]), or a
synonym [Page 24].

If column names or a SET INSERT clause are specified, all of the specified column names
must be columns in the table. If the table was defined without a key (that is, if the SYSKEY
column is created internally by the database), the SYSKEY column must not occur in the
sequence of column names or in a SET INSERT clause. A column must not occur more than
once in a sequence of column names or in more than one SET INSERT clause.

Reference Manual: SAP DB 7.4 173

SAP AG April 2003

The user must have the INSERT privilege for the table identified by the table name. If the
table name identifies a view table, even the owner of the view table may not have the INSERT
privilege because the view table cannot be changed.

A specified column (identified by column name or the column name in the
set_insert_clause) is a target column. Target columns can be specified in any order.

• If you do not specify a column name and SET INSERT clause, this is the same as
specifying a sequence of columns containing all the columns in the table in the
sequence specified in the CREATE TABLE statement [Page 115] or CREATE VIEW
statement [Page 143]. In this case, every table column defined by the user is a target
column.

• The number of expressions (extended_expressions) must be equal to the number
of target columns. The i xpression is assigned to the i

• You can enter one or more subqueries, but no more than 64 subqueries.

•

th e th column name.

• Expressions (extended_expression) and subqueries (subquery) can be specified
simultaneously.

• Values for any number of target columns can be supplied in a subquery.

The specified subqueries may only supply a single result line.

• The number of selected columns [Page 193] specified in the QUERY expression must
be identical to the number of target columns.

• All mandatory columns of the table identified by table name must be target columns.

• If the table name identifies a view table, rows are inserted the base table(s) on which
the view table is based. In this case, the target columns of the specified table name
correspond to columns of the base tables, on which the view table is based. In the
following paragraphs, the term target column always refers to the corresponding
column in the base table.

Further information

• Data type of the target column and data type of the value to be inserted [Page 174]

Join view table in INSERT statement [Page 175] •

QUERY expression in INSERT statement [Page 175] •

DUPLICATES clause [Page 176] •

Constraint definition in INSERT statement [Page 177] •

• Trigger in INSERT statement [Page 177]

In the case of the INSERT statement, the third entry of SQLERRD in the SQLCA is set to the
number of inserted rows.

Let C be a target column and v a value that is not equal to the NULL value.

If errors occur while inserting rows, the INSERT statement fails, leaving the table unmodified.

Data type of the target column and inserted value

v is to be inserted in C by means of an INSERT statement [Page 173].
v is to be used to modify C with an UPDATE statement [Page 178].

Target column C Required value for v

Reference Manual: SAP DB 7.4 174

SAP AG April 2003

Numeric column Number within the permissible range of C.

INSERT statement: if v is the result of a QUERY
expression, decimal places are rounded off if necessary.

UPDATE statement: if v is the result of an expression that
does not comprise one single numeric literal [Page 33],
decimal places are rounded off if necessary.

Alphanumeric column with the
code attribute ASCII or EBCDIC

Character string [Page 16] whose length is not greater than
the length attribute of C. Subsequent blanks are ignored
when the length of v is calculated. If the length of v is
shorter than the length attribute of C, then v is lengthened
by the corresponding number of blanks. When assigning an
alphanumeric value with the code attribute ASCII (EBCDIC)
to a column with the code attribute EBCDIC (ASCII), the
value is implicitly converted before it is assigned.

Alphanumeric column with the
code attribute BYTE

Hexadecimal character string whose length is not greater
than the length attribute of C. Subsequent binary zeros are
ignored when the length of v is calculated. If the length of v
is shorter than the length attribute of C, then v is
lengthened by the corresponding number of binary zeros.

Data type DATE Date value [Page 17] in the current date format.

Data type TIME Time value [Page 17] in the current time format.

Data type TIMESTAMP Timestamp value [Page 17] in the current timestamp
format.

Data type BOOLEAN One of the values TRUE or FALSE (BOOLEAN [Page 17])

 Join View Table in INSERT Statement
If the table name does not identify a join view table in an INSERT statement [Page 173]
(see CREATE VIEW statement [Page 143]), and a row containing the key of the row to be
inserted already exists, the result will depend on the DUPLICATES clause [Page 176]. The
INSERT statement will fail if no DUPLICATES clause is specified.

If the table name identifies a join view table, a row is inserted into each base table on which
the view table is based. If the key table of the view table already contains a row with the key
of the row to be inserted, the INSERT statement will fail. If any row in a base table, which is
not the key table of the view table, already contains the key of the row to be inserted, the
INSERT statement will fail if the row to be inserted does not match the existing row.

 QUERY Expression in INSERT Statement
If a QUERY expression [Page 189] is specified in the INSERT statement [Page 173] , the
specified table must not be a join view table.

The QUERY expression defines a result table (see result table name [Page 41]) whose ith
column is assigned to the ith target column. A row is formed from each row in the result table
and inserted in the base table. Each of these rows has the following contents:

• Each base table column that is a target column of the INSERT statement contains the
value of the corresponding column in the current result table row.

If a QUERY expression is not specified in the INSERT statement, exactly one row is
inserted in the specified table. The inserted row has the following contents:

Reference Manual: SAP DB 7.4 175

SAP AG April 2003

• Each base table column that is a target column of the INSERT statement contains the
value assigned to the respective target column.

The following still applies to the inserted row(s):

All columns of the base table that are not target columns of the INSERT statement and
for which a DEFAULT specification [Page 125] exists contain the DEFAULT value.

•

• All columns of the base table that are not target columns of the INSERT statement and
for which no DEFAULT specification exists contain the NULL value [Page 15].

DUPLICATES clause
The DUPLICATES clause can be used to determine how key collisions are handled.

Syntax
<duplicates_clause> ::= REJECT DUPLICATES | IGNORE DUPLICATES |
UPDATE DUPLICATES

Explanation
SQL statements in which the DUPLICATES clause is used
CREATE TABLE statement [Page 115]

REJECT DUPLICATES or no DUPLICATES
clause

The CREATE TABLE statement fails if key
collisions occur.

IGNORE DUPLICATES Any rows that key collisions on insertion are
ignored.

UPDATE DUPLICATES Any rows that key collisions on insertion
overwrite the rows with which they collide.

INSERT statement [Page 173]

If there is already a row in the base table with the key of the row to be inserted, the following
cases must be distinguished:

REJECT DUPLICATES or no DUPLICATES
clause

The INSERT statement fails.

IGNORE DUPLICATES The new row is not inserted and processing of
the INSERT statement is continued.

UPDATE DUPLICATES The existing row is overwritten by the new row
and processing of the INSERT statement is
continued.

If there is more than one key collision for the same key for an INSERT statement with
UPDATE DUPLICATES and QUERY expression specification, it is impossible to predict the
content of the respective base table row once the INSERT statement has been completed.

If, for an INSERT statement with IGNORE DUPLICATES and a QUERY expression, more
than one row in the result table produces the same base table key, and if this key did not exist
before in the base table, it is impossible to predict the row that will be inserted in the table.

If the table name specified in the INSERT statement identifies a table without a user-defined
key, the DUPLICATES clause has no effect.

Reference Manual: SAP DB 7.4 176

SAP AG April 2003

 Constraint Definition in INSERT Statement
If CONSTRAINT definitions [Page 127] exist for base tables in which rows are to be inserted
with the INSERT statement [Page 173], each row that is to be inserted is checked against the
CONSTRAINT definition. The INSERT statement fails if this is not the case for at least one
row.

If at least one of the base tables in which rows are to be inserted with the INSERT statement
is the referencing table of a referential CONSTRAINT definition [Page 12]8 , the database
system checks each row to be inserted to determine whether the foreign key resulting from
the row exists as a key or as a value of an index defined with UNIQUE (see CREATE INDEX
statement [Page 148]) in the corresponding referenced table. The INSERT statement fails if
this is not the case for at least one row.

 Trigger in INSERT Statement

If triggers [Page 29] that are to be executed after an INSERT statement [Page 173] were
defined for base tables in which rows are to be inserted with the INSERT statement, they are
executed accordingly. The INSERT statement will fail if one of these triggers fails.

 Extended expression
An extended expression can be specified by means of an expression [Page 52] or one of the
keywords DEFAULT or STAMP.

Syntax
<extended_expression> ::= <expression> | DEFAULT | STAMP

expression [Page 52]

Explanation
• Expression

INSERT statement [Page 17]3 : an expression in an INSERT statement must not
contain a column specification [Page 47].
The value specified by a parameter specification [Page 48] in an expression is the
value of the parameter identified by the specification. If an indicator parameter is
specified with a negative value, the value defined by the parameter specification [Page

] is a NULL value. 48

Keyword DEFAULT
DEFAULT denotes the value used as the DEFAULT for the column.

•

• STAMP key word
The database system is able to generate unique values. This is a serial number that
starts with X'000000000001'. The values are assigned in ascending order. It cannot be
ensured that a sequence of values is uninterrupted. The STAMP key word supplies the
next value generated by the database system.
The STAMP keyword can be used in the INSERT statement [Page 173] or in the
UPDATE statement [Page 178], but only for columns of the data type CHAR(n) BYTE
with n>=8 (default specification [Page 125]).
If the user wants to find out the generated value before it is applied to a column, he or

Reference Manual: SAP DB 7.4 177

SAP AG April 2003

she must use the following SQL statement:
NEXT STAMP statement [Page 183]

See also:
SET INSERT condition [Page 178]

SET UPDATE condition [Page 180]

SET INSERT clause
SET INSERT clause

Syntax
<set_insert_clause> ::= <column_name> = <extended_value_spec>

column_name [Page 46], extended_value_spec [Page 49]

Explanation
SQL statements in which the SET INSERT clause is used

INSERT statement [Page 17]3

UPDATE Statement
The UPDATE statement changes column values in table rows.

Syntax
<update_statement> ::=
 UPDATE [OF] <table_name> [<reference_name>] SET
<set_update_clause>,... [KEY <key_spec>,...] [WHERE
<search_condition>]
| UPDATE [OF] <table_name> [<reference_name>] (<column_name>,...)
VALUES (<extended_value_spec>,...) [KEY <key_spec>,...] [WHERE
<search_condition>]
| UPDATE [OF] <table_name> [<reference_name>] SET
<set_update_clause>,... WHERE CURRENT OF <result_table_name>
| UPDATE [OF] <table_name> [<reference_name>] (<column_name>,...)
VALUES (<extended_value_spec>,...) WHERE CURRENT OF
<result_table_name>

table name [Page 47], reference name [Page 45], set update clause [Page 18]0 , key spec
[Page 52], search condition [Page 70], column name [Page 46], extended value spec [Page

], result table name [Page 41] 49

Explanation
The table name must denote an existing base table, view table (see Table [Page 23]), or a
synonym [Page 24].

Columns whose values are to be updated are called target columns. One or more target
columns and new values for these columns are specified after the table name and reference
name (if necessary).

All target columns must identify columns in the specified table, and each target column
may only be listed once.

•

• The number of specified values (extended_value_spec [Page 49]) must be identical to
the number of target columns. The ith value specification is assigned to the ith target
column.

Reference Manual: SAP DB 7.4 178

SAP AG April 2003

• The current user must have the UPDATE privilege for each target column in the
specified table.
If the table name identifies a view table, even the owner of the view table may not be
able to update column values because the view table is not updateable.

If the specified table is a view table, column values are only updated in rows in the
base tables on which the view table is based. In this case, the target columns of the
specified table correspond to columns in the base tables on which the view table is
based. In the following paragraphs, the term target column always refers to the
corresponding column in the base table.

•

Data type of the target column and data type of the value to be inserted [Page 17]4

The following specifications determine the rows in the table that are updated:

Optional sequence of key specifications [Page 52] and optional search condition [Page
70]
Key specification and no search condition: a row with the specified key values
already exists. The corresponding values are assigned to the target columns in this
row. No rows are updated if a row with the specified key values does not exist.
Key specification and a search condition: a row containing the specified key values
exists. The search condition is applied to this row. If the search condition is satisfied,
the corresponding values are assigned to the target columns of this row. No rows are
updated if a row with the specified key values does not exist or if a search condition
applied to a row is not fulfilled.
No key specification and a search condition: the search condition is applied to each
row in the specified table. The corresponding values are assigned to the target columns
of all rows that satisfy the search condition.

•

• If CURRENT OF is used, i.e. if the cursor position in the result table [Page 41]
(result_table_name) is specified: no rows are updated if the cursor is not
positioned on a row in the result table.

• If none of the above specifications were made, all of the rows in the specified table are
updated.

• If no row is found that satisfies the conditions defined by the optional clauses, the
following message appears: 100 row not found.

Even values in key columns that were defined by a user in a CREATE TABLE statement
[Page 115] or ALTER TABLE statement [Page 133] can be updated. The implicit key column
SYSKEY, if created, cannot be updated.

If the table name specifies a join view table (see CREATE VIEW statement [Page 143]),
columns may exist that can only be updated in conjunction with other columns (determine the
column combination for a column or a join view table [Page 181]). To update the value of the
relevant column, a value must be specified for all of the columns in the column combination.
This is true of all target columns that fulfill the following conditions:

The target columns are located in a base table that is not a key table of the join view
table and does not have a 1 : 1 relationship with the key table of the join view table.

•

• The target columns are foreign key columns of a referential CONSTRAINT definition
[Page 128] that is relevant for the join view table.

CURRENT OF
If CURRENT OF is specified, the table name in the FROM clause [Page 196] of the QUERY
statement, with which the result table was built, must be identical to the table name in the
UPDATE statement.

If CURRENT OF is specified and the cursor is positioned on a row in the result table, the
corresponding values are assigned to the target columns of the corresponding row. The
corresponding row is the row of the table specified in the FROM clause of the QUERY
statement, from which the result table row was formed. This procedure requires that the result
table was specified with FOR UPDATE. It is impossible to predict whether or not the updated

Reference Manual: SAP DB 7.4 179

SAP AG April 2003

values in the corresponding row are visible the next time the same row of the result table is
accessed.

Reasons for an UPDATE statement failure
If CONSTRAINT definitions [Page 127] exist for base tables in which rows were updated with
the UPDATE statement, each row that was updated is checked against the CONSTRAINT
definitions. The UPDATE statement fails if this is not the case for at least one modified row.

For each row in which the value of foreign key columns has been updated with the UPDATE
statement, the database system checks whether the respective resulting foreign key exists as
a key or as a value of an index defined with UNIQUE (see CREATE INDEX statement [Page
148]) in the corresponding referenced table. The UPDATE statement fails if this is the case
for at least one modified row.

For each row in which the value of a referenced column of a referential CONSTRAINT
definition [Page 128] is to be updated using the UPDATE statement, the database system
checks whether there are rows in the corresponding foreign key table that contain the old
column values as foreign keys. The UPDATE statement fails if this is the case for at least one
row.

If triggers [Page 29] that are to be executed after an UPDATE statement were defined for
base tables in which rows are to be updated with the UPDATE statement, they are executed
accordingly. The UPDATE statement will fail if one of these triggers fails.

The update statement can only be used to assign a value to columns with the data type
LONG if it contains a parameter or NULL specification. The assignment of values to LONG
columns is therefore only possible with some database tools.

Syntax

Further information

In the case of the UPDATE statement, the third entry of SQLERRD in the SQLCA is set to the
number of updated rows. Rows are also counted as updated when the old value was
overwritten with a new but identical value.

If errors occur while rows are updated, the UPDATE statement fails, leaving the table
unchanged.

SET UPDATE clause
SET UPDATE clause

<set_update_clause> ::= <column_name> = <extended_expression>
| <column_name>,... = (<extended_expression>,...)
| (<column_name>,...) = (<extended_expression>,...)
| <column_name> = <subquery>
| (<column_name>,...) = <subquery>

column_name [Page 46], extended_expression [Page 177], subquery [Page 20]0

Explanation
The expression of a SET UPDATE clause must not contain a set function [Page 105].

The subquery must produce a result table with at most one row. The number of columns must
be equal to the number of target columns specified.

 SQL statement in which the SET UPDATE clause is used
UPDATE statement [Page 178]

Reference Manual: SAP DB 7.4 180

SAP AG April 2003

Column combination for a given column of a join view
table
To determine the combination of columns for a given column v in the join view table V, use
the following procedure:
...

1. Determine the base table Tj containing the column which corresponds to v.

2. Determine the unique table sequence Til...Tik that contains Tj.

3. Determine the last table Til in this sequence that has a 1:1 relationship with the key
table.

5.

4. The columns of V, which correspond to the foreign key columns of Til of the referential
CONSTRAINT definition between Til and Til+I that is relevant for V, are elements of the
column combination.

All columns of V which correspond to columns of the tables Til+l...Tik are elements of
the column combination.

To update the column value of the column v in an UPDATE statement [Page 178], a value
must be specified for each of the columns of the column combination.

DELETE statement
The DELETE statement deletes rows in a table.

Syntax
<delete_statement> ::=
 DELETE [FROM] <table_name> [<reference_name>] [KEY <key_spec>,...]
[WHERE <search_condition>]
| DELETE [FROM] <table_name> [<reference_name>] WHERE CURRENT OF
<result_table_name>

table name [Page 47], reference name [Page 45], key spec [Page 52], search condition [Page
], result table name [Page 41] 70

Explanation
The table name must denote an existing base table, view table (see Table [Page 23]), or a
synonym [Page 24].

The current user must have the DELETE privilege for the specified table. If the table name
identifies a view table, even the owner of the view table may not have the DELETE privilege
because the view table cannot be changed.

Table name identifies a view table: the rows of the tables on which the view tables are
based are deleted.

Table name identifies a join view table: only the following rows are deleted:

• Rows in the key table of the join view table

• Rows in base tables on which the view table is based and that have a 1:1: relationship
with the key table.

The following specifications determine the rows in the table that are deleted:

Optional sequence of key specifications [Page 52] and optional search condition [Page
70]
Key specification and no search condition: a row with the specified key values
already exists. This row is deleted. No rows are deleted if a row with the specified key
values does not exist.
Key specification and a search condition: a row containing the specified key values
exists. The search condition is applied to this row. If the search condition is satisfied,

•

Reference Manual: SAP DB 7.4 181

SAP AG April 2003

then the row is deleted. No rows are deleted if a row with the specified key values does
not exist or if a search condition applied to a row is not fulfilled.
No key specification and a search condition: the search condition is applied to each
row in the specified table. All rows for which the search condition is satisfied are
deleted.

• If CURRENT OF is used, i.e. if the cursor position in the result table [Page 41]
(result_table_name) is specified: no rows are deleted if the cursor is not positioned
on a row in the result table.

• If none of the above specifications were made, all of the rows in the specified table are
deleted.

• If no row is found that satisfies the conditions defined by the optional clauses, the
following message appears: 100 row not found.

CURRENT OF
If CURRENT OF is specified, the table name in the FROM clause [Page 196] of the QUERY
statement, with which the result table was built, must be identical to the table name in the
DELETE statement.

If CURRENT OF is specified and the cursor is positioned on a row in the result table, the
corresponding row is deleted. The corresponding row is the row of the table specified in the
FROM clause of the QUERY statement, from which the result table row was formed. This
procedure requires that the result table was specified with FOR UPDATE. Afterwards, the
cursor is positioned behind the result table row. It is impossible to predict whether or not the
updated values in the corresponding row are visible the next time the same row of the result
table is accessed.

DELETE rule
For each row deleted in the course of the DELETE statement which originates from a
referenced table of at least one referential CONSTRAINT definition [Page 128], one of the
following actions is carried out - depending on the DELETE rule [Page 130] of the referential
constraint definition:

• DELETE CASCADE: all matching rows in the corresponding foreign key table are
deleted.

• DELETE RESTRICT: if there are matching rows in the corresponding foreign key table,
the DELETE statement fails.

DELETE SET NULL: the NULL value is assigned to the respective foreign key columns
of all matching rows in the corresponding foreign key table.

•

• DELETE SET DEFAULT: the DEFAULT value that was set with a DEFAULT
specification [Page 125] is assigned to the respective foreign key columns of all
matching rows in the corresponding foreign key table.

Trigger
If triggers [Page 29] that are to be executed after a DELETE statement were defined for base
tables from which rows are to be deleted with the DELETE statement, they are executed
accordingly. The DELETE statement will fail if one of these triggers fails.

Further information
In the case of the DELETE statement, the third entry of SQLERRD in the SQLCA is set to the
number of deleted rows. If this counter has the value -1, either a significant part of the table or
the entire table was deleted by the DELETE statement.

If errors occur in the course of the DELETE statement, the statement fails, leaving the table
unchanged.

Reference Manual: SAP DB 7.4 182

SAP AG April 2003

NEXT STAMP statement
The NEXT STAMP statement supplies a unique key that was generated by the database
system.

Syntax
<next_stamp_statement> ::= NEXT STAMP [INTO] <parameter_name>

parameter_name [Page 43]

Explanation
The database system is able to generate unique values. This is a serial number that starts
with X'0000000000001'. The values are assigned in ascending order. It cannot be ensured
that a sequence of values is uninterrupted. These values can be stored in a column with the
data type CHAR [Page 120](n) BYTE with n>=8.

The NEXT STAMP statement assigns the next key generated by the database system to the
variable denoted by parameter name.

The NEXT STAMP statement can only be embedded in a programming language and cannot
be used in interactive mode.

The keyword STAMP can be also used in an INSERT statement [Page 17]3 or an UPDATE
statement [Page 17]8 if the next value is to be generated by the database system and stored
in a column without the user knowing the value.

CALL Statement (call_statement)
The CALL statement causes a database procedure [Page 28] to be executed.

Syntax
<call_statement> ::= CALL <dbproc_name> [(<expression>,...)] [WITH
COMMIT]

dbproc name [Page 40], expression [Page 52]

Explanation
The specified database procedure name must identify an existing database procedure.

The current user must have the EXECUTE privilege for the database procedure.

The number of expressions must be equal to the number of formal parameters for the
database procedure.

The data type of the ith expression must be compatible with the data type of the ith formal
parameter for the database procedure.

If the ith formal parameter for the database procedure has the OUT or INOUT mode (see
CREATE DBPROC statement [Page 152]), the corresponding expression must be a
parameter specification [Page 48].

WITH COMMIT
If WITH COMMIT is specified, the current transaction [Page 210] is terminated with COMMIT
after the database procedure has been executed correctly. If execution of the database
procedure fails, the current transaction is terminated with ROLLBACK.

Reference Manual: SAP DB 7.4 183

SAP AG April 2003

Data Query
The following sections provide an introduction to the query language (also referred to as the
data retrieval language) used by the database system.

SQL statements for data queries

QUERY statement [Page 184] SINGLE SELECT statement
[Page 208]

EXPLAIN statement [Page
209]

OPEN CURSOR statement
[Page 204]

FETCH statement [Page 205] CLOSE statement [Page 208]

QUERY statement
A QUERY statement specifies a result table that can be ordered (see result table name [Page

]). There are four different ways of formulating a QUERY statement. 41

Syntax
<query_statement> ::= <declare_cursor_statement> |
<recursive_declare_cursor_statement>
| <named_select_statement> | <select_statement>

declare_cursor_statement [Page 185], recursive_declare_cursor_statement [Page 186],
named_select_statement [Page 186], select_statement [Page 188]

Explanation
A QUERY statement generates a named/unnamed result table [Page 185].

A distinction is made between the following QUERY statements:

Basic types of QUERY statement

DECLARE CURSOR statement A named result table is defined. The table is
generated with an OPEN CURSOR statement
[Page 204].

Recursive DECLARE CURSOR statement This statement can be used to generate bills of
material.

SELECT statement
(named_select_statement)

A named result table is defined and generated.

SELECT statement (select_statement) An unnamed result table is defined and
generated.

The SELECT statement (named_select_statement) and SELECT statement
(select_statement) are subject to the rules that were specified for the DECLARE
CURSOR statement [Page 185] and those that were specified for the OPEN CURSOR
statement.

The order of rows in the result table depends on the internal search strategies of the system
and is arbitrary. The only reliable means of sorting the result rows is to specify an ORDER
clause [Page 202].

Reference Manual: SAP DB 7.4 184

SAP AG April 2003

Updateable result table
A result table or the underlying base tables are updateable if the QUERY statement satisfies
the following conditions:

• See the section entitled "Updateable result table" in the SELECT statement
(named_select_statement) [Page 186] or SELECT statement (select_statement) [Page
188]

• The result table is a named result table, i.e. it must not have been generated by a
SELECT statement (select_statement).

 Named/Unnamed Result Table
The difference between a named result table and an unnamed result table (see result table
name [Page 41]) is that the unnamed result table cannot be specified in a FROM clause
[Page 196] or in CURRENT OF <result_table_name> of a subsequent SQL statement.

QUERY statement

DECLARE CURSOR statement
(declare_cursor_statement) [Page 185]

A named result table is generated.

The column names of a result table defined by
this QUERY statement do not have to be
unique.

SELECT statement (select_statement) [Page
]

A unnamed result table is generated.

The column names of a result table defined by
this QUERY statement do not have to be
unique.

SELECT Statement (named_select_statement)
[Page 186]

A named result table is generated.

The column names of a result table generated
by this QUERY statement must be unique.

188

DECLARE CURSOR statement
The DECLARE CURSOR statement defines a named result table (see named/unnamed
result table [Page 185]) with the name result_table_name.

Syntax
<declare_cursor_statement> ::= DECLARE <result_table_name> CURSOR FOR
<select_statement>

result_table_name [Page 41], select_statement [Page 188]

Explanation
An OPEN CURSOR statement [Page 20]4 with the name of the result table is required to
actually generate the result table defined with a DECLARE CURSOR statement.

See also:
SELECT statement (select_statement) [Page 188]

Reference Manual: SAP DB 7.4 185

SAP AG April 2003

Recursive DECLARE CURSOR statement
The recursive DECLARE CURSOR statement can be used to receive bills of material by
means of a command.

Syntax
<recursive_declare_cursor_statement> ::= DECLARE <result_table_name>
CURSOR FOR
WITH RECURSIVE <reference_name> (<alias_name>,...) AS
(<initial_select> UNION ALL <recursive_select>) <final_select>
<initial_select> ::= <query_spec>
<recursive_select> ::= <query_spec>
<final_select> ::= <select_statement>

result_table_name [Page 41], reference_name [Page 45], alias_name [Page 39], query_spec
[Page 192], select_statement [Page 188]

DECLARE C CURSOR FOR
WITH RECURSIVE PX (MAJOR, MINOR, NUMBER, MAINMAJOR) AS
 (SELECT W,X,Y,W FROM T WHERE W = 'aaa' UNION ALL
 SELECT W,X,Y,MAINMAJOR FROM T, PX WHERE MINOR = T.W)
 SELECT MAINMAJOR,MINOR,NUMBER FROM PX ORDER BY NUMBER

Explanation
• The QUERY specification [Page 192] initial_select is executed and the result is

entered in a temporary result table whose name is defined by specifying the reference
name. The column names contained in it receive the names from the list of alias
names. The number of output columns in the QUERY specification must be identical to
the number of alias names.

The QUERY specification recursive select should comprise a SELECT statement
that contains at least the reference name in the FROM clause [Page 196] and one
JOIN predicate [Page 62] between this table and a different table from the FROM
clause.
The QUERY specification recursive_select is repeated until it does not produce a
result. The respective results are (logically) entered in the temporary result table whose
name is defined by the reference name. This table is extended continuously. It is
ensured, however, that the results of the nth execution are used for the n+1th execution
to avoid an endless loop.

•

The SELECT statement final_select must only contain one QUERY expression
that comprises a QUERY specification [Page 192].
This is a SELECT statement across the table with the specified reference name in
which the following elements can be used: set function names [Page 108], GROUP
clause [Page 199], HAVING clause [Page 200], ORDER clause [Page 202], LOCK
option [Page 203]

•

If a result table name [Page 41] with the specified reference name existed before the
recursive DECLARE CURSOR statement was executed, the corresponding cursor is closed
implicitly.

SELECT Statement (named_select_statement)
A SELECT statement (named_select_statement) defines and creates a result table with
the name result_table_name (see named/unnamed result table [Page 185]).

Reference Manual: SAP DB 7.4 186

SAP AG April 2003

Syntax
<named_select_statement> ::= <named_query_expression>
[<order_clause>] [<update_clause>] [<lock_option>] [FOR REUSE]

named query expression [Page 19]1 , order clause [Page 202], update clause [Page 203],
lock option [Page 20]3

Explanation
An OPEN CURSOR statement [Page 20]4 is not permitted for result tables created with this
SELECT statement.

The SELECT statement (named select statement) is subject to the rules that were
specified for the DECLARE CURSOR statement [Page 185] and those that were specified for
the OPEN CURSOR statement.

Depending on the search strategy, either all the rows in the result table are searched when
the SELECT statement (named select statement) is executed and the result table is
physically generated, or each next result table row is searched when a FETCH statement
[Page 205] is executed, without being physically stored. This must be taken into account for
the time behavior of FETCH statements.

Updateable result table
A result table or the underlying base tables are updateable if the QUERY statement satisfies
the following conditions:

• The QUERY expression (named_query_expression) must only comprise one
QUERY specification (named_query_spec) [Page 19]5 .

Only one base table or one updateable view table may be specified in the FROM
clause [Page 196] of the QUERY specification (named query spec).

•

• The DISTINCT keyword (see DISTINCT specification [Page 193]), a GROUP clause
[Page 199], or HAVING clause [Page 200] must not be specified.

• Expressions must not contain a set function (set_function_spec) [Page 10]5 .

• See also the section entitled "Updateable result table" under QUERY statement [Page
184].

ORDER clause
The ORDER clause [Page 202] specifies a sort sequence for a result table.

UPDATE clause
An UPDATE clause [Page 203] can only be specified for updateable result tables. For
updateable result tables, a position within a particular result table always corresponds to a
position in the underlying tables and thus, ultimately, to a position in one or more base tables.

If an UPDATE clause was specified, the base tables can be updated using the position in the
result table (CURRENT OF <result table name>) by means of an UPDATE statement
[Page 178] or a DELETE statement [Page 181]. A lock can be requested for the affected lines
of each of the affected base tables using a LOCK statement [Page 215].

LOCK option
The LOCK option [Page 20]3 determines which locks are to be set on the read rows.

FOR REUSE
If the result table is to be specified in the FROM clause of a subsequent QUERY statement
[Page 184], the table should be specified with FOR REUSE keywords. If FOR REUSE is not
specified, the reusability of the result table depends on internal system strategies.

Reference Manual: SAP DB 7.4 187

SAP AG April 2003

Since specifying FOR REUSE increases the response times of some QUERY statements, it
should only be specified if it is required to reuse the result table.

See also:
SELECT statement (select_statement) [Page 188]

SELECT Statement (select_statement)
A SELECT statement (select_statement) defines and creates an unnamed result table
(see named/unnamed result table [Page 185]).

Syntax
<select_statement> ::= <query_expression> [<order_clause>]
[<update_clause>] [<lock_option>] [FOR REUSE]

query expression [Page 189], order clause [Page 202], update clause [Page 203], lock option
[Page 203]

Explanation
An OPEN CURSOR statement [Page 20]4 is not permitted for result tables created with this
SELECT statement.

The SELECT statement (select_statement) is subject to the rules that were specified for
the DECLARE CURSOR statement [Page 185] and those that were specified for the OPEN
CURSOR statement.

Depending on the search strategy, either all the rows in the result table are searched when
the SELECT statement (select_statement) is executed and the result table is physically
generated, or each next result table row is searched when a FETCH statement [Page 205] is
executed, without being physically stored. This must be taken into account for the time
behavior of FETCH statements.

Updateable result table
A result table or the underlying base tables are updateable if the QUERY statement satisfies
the following conditions:

• The QUERY statement [Page 184] comprises a DECLARE CURSOR statement.

• The QUERY expression (query_expression) must only comprise one QUERY
specification (query_spec) [Page 192].

Only one base table or one updateable view table may be specified in the FROM
clause [Page 196] of the QUERY specification (query_spec).

•

The DISTINCT keyword (see DISTINCT specification [Page 193]), a GROUP clause
[Page 199], or HAVING clause [Page 200] must not be specified.

•

Expressions must not contain a set function (set_function_spec) [Page 10]5 . •

• See also the section entitled "Updateable result table" under QUERY statement [Page
]. 184

ORDER clause
The ORDER clause [Page 202] specifies a sort sequence for a result table.

UPDATE clause
An UPDATE clause [Page 203] can only be specified for updateable result tables. For
updateable result tables, a position within a particular result table always corresponds to a
position in the underlying tables and thus, ultimately, to a position in one or more base tables.

Reference Manual: SAP DB 7.4 188

SAP AG April 2003

If an UPDATE clause was specified, the base tables can be updated using the position in the
result table (CURRENT OF <result table name>) by means of an UPDATE statement
[Page 178] or a DELETE statement [Page 181]. A lock can be requested for the affected lines
of each of the affected base tables using a LOCK statement [Page 215].

LOCK option
The LOCK option [Page 20]3 determines which locks are to be set on the read rows.

FOR REUSE
If the result table is to be specified in the FROM clause of a subsequent QUERY statement
[Page 184], the table should be specified with FOR REUSE keywords. If FOR REUSE is not
specified, the reusability of the result table depends on internal system strategies.

Since specifying FOR REUSE increases the response times of some QUERY statements, it
should only be specified if it is required to reuse the result table.

See also:
SELECT Statement (named_select_statement) [Page 186]

QUERY expression (query expression)
QUERY expressions are required to generate an unordered result table in a SELECT
statement [Page 18]8 .

Syntax
<query_expression> ::= <query_term> | <query_expression> UNION [ALL]
<query_term> | <query_expression> EXCEPT [ALL] <query_term>

query_term [Page 190]

Explanation
If the QUERY expressions consists of only one QUERY specification (query spec) [Page 192]
(specified in query term), the result of the expression is the unchanged result of the
QUERY specification.

If a QUERY expression consists of more than one QUERY specification, the number of
selected columns in all QUERY specifications of the QUERY expression must be the same.
The respective ith selected columns of the QUERY specifications must be comparable.

Column type (select column)

Numeric columns Are comparable. If all i ed columns are
numeric columns, the i
table is a numeric column.

th select
th column of the result

code attribute [Page
] BYTE

Are comparable.

Alphanumerical column, code attribute ASCII,
EBCDIC, UNICODE

Are comparable. Are also comparable with
date, time, and timestamp values.

All ith columns are date values [Page 17] The ith column of the result table is a date
value.

All ith columns are time values [Page 17] The ith column of the result table is a time
value.

Alphanumerical column,
17

Reference Manual: SAP DB 7.4 189

SAP AG April 2003

All ith columns are timestamp values [Page 17] The ith column of the result table is a timestamp
value.

Columns of the type BOOLEAN [Page 17] Are comparable.

All ith columns are of the type BOOLEAN The ith column of the result table is of the type
BOOLEAN.

Columns of any other data type (not mentioned
above)

The ith column of the result table is an
alphanumeric column. Comparable columns
with differing code attributes are converted.

If columns are comparable but have different lengths, the corresponding column of the result
table has the maximum length of the underlying columns.

Column names in the result table
The names of the result table columns are formed from the names of the selected columns of
the first QUERY specification.

Let T1 be the left operand of UNION, EXCEPT, or INTERSECT (defined in query term). Let
T2 be the right operand. Let R be the result of the operation on T1 and T2.

• A row is a duplicate of another row if both have identical values in each column. NULL
values [Page 15] are assumed to be identical. Special NULL values [Page 15] are
assumed to be identical.

• UNION: R contains all rows from T1 and T2.

• EXCEPT: R contains all rows from T1 which have no duplicate rows in T2.

• INTERSECT: R contains all rows from T1 which have a duplicate row in T2. A row from
T2 can only be a duplicate row of exactly one row from T1. More than one row from T1
cannot have the same duplicate row in T2.

• DISTINCT is implicitly assumed for the QUERY expressions belonging to T1 and T2 if
ALL is not specified. All duplicate rows are removed from R.

If parentheses are missing, then INTERSECT will be evaluated before UNION and EXCEPT.
UNION and EXCEPT have the same precedence and will be evaluated from left to right in the
case that parentheses are missing.

QUERY term (query_term)
A QUERY term (query_term) is part of the syntax in a QUERY expression
(query_expression or named_query_expression).

Syntax
<query_term> ::= <query_primary> | <query_term> INTERSECT [ALL]
<query_primary>

<query_primary> ::= <query_spec> | (<query_expression>)

query_spec [Page 192], query_expression [Page 189]

Explanation
See QUERY expression [Page 18]9 or QUERY expression (named_query_expression) [Page

] 191

Reference Manual: SAP DB 7.4 190

SAP AG April 2003

QUERY expression (named query expression)
QUERY expressions (named_query_expressions) are required to generate an unordered
result table in a SELECT statement (named_select_statement) [Page 18]6 .

Syntax
<named_query_expression> ::= <named_query_term> |
<named_query_expression> UNION [ALL] <query_term> |
<named_query_expression> EXCEPT [ALL] <query_term>

named_query_term [Page 192], query_term [Page 19]0

Explanation
If the QUERY expressions consists of more than one QUERY specification (query_spec)
[Page 192] (specified in named_query_term or in query_term), the only the first QUERY
specification in the QUERY expression may be a QUERY specification
(named_query_spec).

If the QUERY expressions consists of only one QUERY specification (named_query_spec)
[Page 195] (specified in named_query_term), the result of the expression is the unchanged
result of the QUERY specification.

If a QUERY expression consists of more than one QUERY specification, the number of
selected columns in all QUERY specifications of the QUERY expression must be the same.
The respective ith selected columns of the QUERY specifications must be comparable.

Column type (select column)

Numeric columns Are comparable. If all ith selected columns are
numeric columns, the ith column of the result
table is a numeric column.

Alphanumerical column, code attribute [Page
17] BYTE

Are comparable.

Alphanumeric columns, code attribute ASCII,
EBCDIC, UNCODE

Are comparable. Are also comparable with
date, time, and timestamp values.

All ith columns are date values [Page 17] The ith column of the result table is a date
value.

All ith columns are time values [Page 17] The ith column of the result table is a time
value.

All ith columns are timestamp values [Page 17] The ith column of the result table is a timestamp
value.

Columns of the type BOOLEAN [Page 17] Are comparable.

All ith columns are of the type BOOLEAN The ith column of the result table is of the type
BOOLEAN.

Columns of any other data type (not mentioned
above)

The ith column of the result table is an
alphanumeric column. Comparable columns
with differing code attributes are converted.

If columns are comparable but have different lengths, the corresponding column of the result
table has the maximum length of the underlying columns.

Reference Manual: SAP DB 7.4 191

SAP AG April 2003

Column names in the result table
The names of the result table columns are formed from the names of the selected columns of
the first QUERY specification.

Let T1 be the left operand of UNION, EXCEPT, or INTERSECT (defined in
named_query_term). Let T2 be the right operand. Let R be the result of the operation on T1
and T2.

• A row is a duplicate of another row if both have identical values in each column. NULL
values [Page 15] are assumed to be identical. Special NULL values [Page 15] are
assumed to be identical.

• UNION: R contains all rows from T1 and T2.

• EXCEPT: R contains all rows from T1 which have no duplicate rows in T2.

• INTERSECT: R contains all rows from T1 which have a duplicate row in T2. A row from
T2 can only be a duplicate row of exactly one row from T1. More than one row from T1
cannot have the same duplicate row in T2.

• DISTINCT is implicitly assumed for the QUERY expressions belonging to T1 and T2 if
ALL is not specified. All duplicate rows are removed from R.

Syntax

If parentheses are missing, then INTERSECT will be evaluated before UNION and EXCEPT.
UNION and EXCEPT have the same precedence and will be evaluated from left to right in the
case that parentheses are missing.

QUERY term (named query term)
A QUERY term (named_query_term) is part of the syntax in a QUERY expression
(named_query_expression).

<named_query_term> ::= <named_query_primary> | <named_query_term>
INTERSECT [ALL] <query_primary>

<named_query_primary> ::= <named_query_spec> |
(<named_query_expression>)
<query_primary> ::= <query_spec> | (<query_expression>)

named_query_spec [Page 195], named_query_expression [Page 191], query_spec [Page
], query_expression [Page 189] 192

Explanation
See QUERY expression (named_query_expression) [Page 191]

QUERY specification (query_spec)
QUERY specifications (query_spec) are required to generate an unordered result table in a
SELECT statement [Page 188]. A QUERY specification is part of the syntax in a QUERY term
(query_term) [Page 190] or QUERY term (named_query_term) [Page 192].

Syntax
<query_spec> ::= SELECT [<distinct_spec>] <select_column>,...
<table_expression>

distinct_spec [Page 193], select_column [Page 193], table_expression [Page 19]5

Reference Manual: SAP DB 7.4 192

SAP AG April 2003

Explanation
A QUERY specification specifies a result table. The result table is generated from a
temporary result table. The temporary result table is the result of the table expression [Page

]. 195

 DISTINCT function (distinct spec)
The DISTINCT specification (distinct_spec) is specified in a QUERY specification
(query_spec) [Page 192], QUERY specification (named_query_spec) [Page 195], or SINGLE
SELECT statement [Page 208] to remove duplicate rows.

Syntax
<distinct_spec> ::= DISTINCT | ALL

Explanation
A row is a duplicate of another row if both have identical values in each column. NULL values
[Page 15] are assumed to be identical. Special NULLvalues [Page 15] are also assumed to
be identical.

DISTINCT: all duplicate rows are removed from the result table.

ALL: no duplicate rows are removed from the result table.

If no DISTINCT specification is specified, no duplicate rows are removed from the result table.

Selected Column (select_column)
Selected columns (select_column) must be specified in a QUERY specification
(query_spec) [Page 192] or a QUERY specification (named_query_spec) [Page 195] to
specify a result table.

The sequence of selected columns defines the columns in the result table. The columns in the
result table are produced from the columns of the temporary result table and by the ROWNO
columns or STAMP columns, if these exist. The columns of the temporary result table are
determined by the FROM clause [Page 196] of the table expression [Page 195]. The order of
the column names in the temporary result table is determined by the order of the table names
in the FROM clause.

Syntax
<select_column> ::= <table_columns> | <derived_column> |
<rowno_column> | <stamp_column>

<table_columns> ::= * | <table_name>.* | <reference_name>.*
<derived_column> ::= <expression> [[AS] <result_column_name>] |
<result_column_name> = <expression>
<rowno_column> ::= ROWNO [<result_column_name>] |
<result_column_name> = ROWNO
<stamp_column> ::= STAMP [<result_column_name>] |
<result_column_name> = STAMP

<result_column_name> ::= <identifier>
table_name [Page 47], reference_name [Page 45], expression [Page 52], identifier [Page 36]

Reference Manual: SAP DB 7.4 193

SAP AG April 2003

Explanation
Every column name that is specified as a selected column must uniquely denote a column in
a QUERY specification (query spec) [Page 192] of the underlying tables. If necessary, the
column name must be qualified with the table name.

The specification of a column with the data type LONG [Page 121] in a selected column is
only valid in the uppermost sequence of selected columns in a QUERY statement [Page 184]
or SINGLE SELECT statement [Page 208] if the DISTINCT specification [Page 193] was not
used there.

The specification of a column with the data type LONG in a selected column is only valid in
the uppermost sequence of select columns in a CREATE VIEW statement [Page 143] which
is based on exactly one base table.

If a selected column contains a set function (set function spec) [Page 105], the sequence of
selected columns to which the selected column belongs must not contain any table columns,
and every column name occurring in an expression [Page 52] must denote a grouping
column, or the expression must consist of grouping columns.

It is possible to specify scalar subqueries [Page 201].

• Specifying table columns in a selected column is a quick way of specifying the result
table columns.

{ Specifying a selected column of the type * is a quick way of specifying all
temporary result table columns.
Columns for which the user has not the SELECT privilege and the implicitly
generated column SYSKEY are not passed.

Specifying <table_name>.* or <reference_name>.* is quick way of
specifying all the columns in the underlying table. The first column name of the
result table is taken from the first column name of the underlying table, the
second column name of the result table corresponds to the second column
name of the underlying table, etc. The order of column names in the underlying
table corresponds to the order determined when the underlying table is defined.
Columns for which the user has not the SELECT privilege and the implicitly
generated column SYSKEY are not passed.

{

• Specifying derived column in a selected column defines a column in the result table.
If a column of the result table has the form <expression> [AS]
<result_column_name> or the form <result_column_name> = <expression>,
this result column receives the name result_column_name.
If no <result_column_name> is specified and the expression [Page 52] is a column
specification that denotes a column in the temporary result table, the column in the
result table receives the column name of the temporary result table.
If no <result_column_name> is specified and the expression is not a column
specification, the column receives the name EXPRESSION_, where "_" denotes a
number with a maximum of three digits, starting with EXPRESSION1, EXPRESSION2,
etc.

A ROWNO column may only be used in a selected column that belongs to a QUERY
statement.
If a ROWNO column is specified, a column with the data type FIXED [Page 121](10) is
generated with the name ROWNO. It contains the values 1, 2, 3,... which the numbers
of the result table rows.
If the ROWNO column was specified in the form ROWNO <result_column_name> or
the form <result_column_name> = ROWNO, this result column receives the name
result_column_name.
A ROWNO column>must not be ordered by using ORDER BY.

•

• A STAMP column may only be specified in a selected column that belongs to a
QUERY- expression [Page 189] of an INSERT statement [Page 17]3 .
The database system is able to generate unique values. This is a serial number that

Reference Manual: SAP DB 7.4 194

SAP AG April 2003

starts with X'000000000001'. The values are assigned in ascending order. It cannot be
ensured that a sequence of values is uninterrupted.
If a STAMP column is specified, the next value of the data type CHAR [Page 12]0 (8)
BYTE generated by the database system is produced for each row in the temporary
result table.

Each column of a result table has exactly the same data type, the same length, the same
precision, and the same scale as the derived column or the column underlying the table
columns.

This does not apply to the data types DATE and TIMESTAMP. To enable the representation
of any date and time format, the length of the result table column is set to the maximum
length required for the representation of a date value [Page 17] (length 10) or a timestamp
value [Page 17] (length 26).

 QUERY specification (named_query_spec)
QUERY specifications (named_query_spec) are required to generate an unordered result
table in a SELECT statement (named_select_statement) [Page 18]6 . A QUERY specification
is part of the syntax in a QUERY term (named_query_term) [Page 192].

Syntax
<named_query_spec> ::= SELECT [<distinct_spec>] <result_table_name>
(<select_column>,...) <table_expression>

distinct_spec [Page 193], result_table_name [Page 41], select_column [Page 19]3 ,
table_expression [Page 195]

Explanation
A QUERY specification specifies a result table with the name result_table_name. The
result table is generated from a temporary result table. The temporary result table is the result
of the table expression [Page 195].

Table expression
A table expression specifies a single or a simple or grouped result table (see result table
name [Page 41]).

Syntax
<table_expression> ::= <from_clause> [<where_clause>]
[<group_clause>] [<having_clause>]

from_clause [Page 196], where_clause [Page 198], group_clause [Page 199], having_clause
[Page 200]

Explanation
A table expression produces a temporary result table. If there are no optional clauses, this
temporary result table is the result of the FROM clause. Otherwise, each specified clause is
applied to the result of the previous condition and the table is the result of the last specified
clause. The temporary result table contains all of the columns in all the tables listed in the
FROM clause.

The order of the GROUP and HAVING clauses is random.

Reference Manual: SAP DB 7.4 195

SAP AG April 2003

FROM clause
A FROM clause specifies a table in a table expression [Page 195] that is formed from one or
more tables.

Syntax
<from_clause> ::= FROM <from_table_spec>,...

from_table_spec [Page 196]

Explanation
The FROM clause specifies a table. This table can be derived from several base, view, and
result tables (see Table [Page 23]). The number of underlying tables in a FROM clause is
equal to the total number of underlying tables in each FROM TABLE specification. The
number of underlying tables in a FROM clause must not exceed 64.

The user must have the SELECT privilege for each specified table or for at least one column
in the specified table.

The result of a FROM clause is a table that is generated from the specified tables as follows:

• If the FROM clause comprises a single FROM TABLE specification, the result is the
specified table.

• If the FROM clause contains more than one FROM TABLE specification, a result table
is built that includes all possible combinations of all rows of the first table with all rows
of the second table, etc. From a mathematical perspective, this is the Cartesian product
of all the tables.

This rule describes the effect of the FROM clause, not its actual implementation.

FROM TABLE specification (from_table_spec)
Each FROM TABLE specification (from_table_spec) in a FROM clause [Page 196]
specifies no, one, or any number of table identifiers.

Syntax
<from_table_spec> ::= <table_name> [<reference_name>]
| <result_table_name> [<reference_name>]
| (<query_expression>) [<reference_name>]
| <joined_table>

table_name [Page 47], reference_name [Page 45], result_table_name [Page 41],
query_expression [Page 189], joined_table [Page 197]

Explanation
Reference name
If a FROM TABLE specification does not contain a reference name, the table name or result
table name is the table identifier.

If a FROM TABLE specification contains a reference name, the reference name is the table
identifier.

Each reference name must be different from each identifier [Page 36] that specifies a table
name. If a result table name is a table identifier, there must not be any table identifiers in the
form <table_name> equal to [<owner.]<result_table_name>, where owner [Page 41]
is the current user. Each table identifier must differ from any other table identifier.

Reference Manual: SAP DB 7.4 196

SAP AG April 2003

The validity range of the table identifiers is the entire QUERY specification [Page 192] within
which the FROM TABLE specification is used. If column names are to be qualified within the
QUERY specification, table identifiers must be used for this purpose.

Reference names are essential for formulating JOIN conditions within a table. For example,
FROM HOTEL, HOTEL X defines a reference name X for the second occurrence of the
HOTEL table. Reference names are also necessary sometimes to formulate correlated
subqueries [Page 20]0 . Similarly, a reference name is required if a column in the result of a
QUERY expression can only be identified uniquely by specifying the reference name.

Number of underlying tables
If a FROM TABLE specification denotes a base table, result table, or the result of a QUERY
expression, the number of tables underlying this FROM TABLE specification is equal to 1.

If a FROM TABLE specification denotes a complex view table, the number of tables
underlying this FROM TABLE specification is equal to 1.

If a FROM TABLE specification denotes a view table that is not a complex view table, the
number of underlying tables is equal to the number of tables underlying the FROM condition
[Page 196] of the view table.

If a FROM TABLE specification denotes a JOINED TABLE, the number of tables underlying
this FROM TABLE specification is equal to the total number of underlying tables of the FROM
TABLE specifications contained in it.

QUERY expression (query_expression)
A FROM TABLE specification that contains a QUERY expression specifies a table identifier
only if a reference name is specified.

If a FROM TABLE specification contains a QUERY expression, a result table is built that
matches this QUERY expression. This result table obtains a system-internal name that
collides neither with an unnamed nor a named result table. While the FROM condition is
being processed, the result of the QUERY expression is used in the same way as a named
result table and is deleted implicitly after processing.

A table expression [Page 19]5 containing at least one OUTER JOIN indicator (see JOIN
predicate [Page 62]) or OUTER JOIN TYPE (LEFT | RIGHT | FULL) (see joined_table [Page

]) is subject to strict restrictions if it is to be based on more than two tables. For this
reason, a QUERY expression is frequently required to formulate a QUERY specification
[Page 192] that is to be based on at least three tables and in which at least one OUTER JOIN
indicator is used in a JOIN predicate.

197

JOINED TABLE
A FROM TABLE specification containing a JOINED TABLE (joined_table [Page 197])
specifies the number of table identifiers that are specified by the FROM TABLE specifications
it contains.

joined_table
JOINED TABLE (joined table) can be specified as part of a FROM TABLE specification
(from table spec) [Page 19]6 .

Syntax
<joined_table> ::=
<from_table_spec> CROSS JOIN <from_table_spec>
| <from_table_spec> [INNER] JOIN <from_table_spec> <join_spec>
| <from_table_spec> [<LEFT|RIGHT|FULL> [OUTER]] JOIN
<from_table_spec> <join_spec>

<join_spec> ::= ON <search_condition>

Reference Manual: SAP DB 7.4 197

SAP AG April 2003

from_table_spec [Page 196], search_condition [Page 70], column_name [Page 46]

Explanation
If a FROM TABLE specification comprises a JOINED TABLE, the result is generated as
follows:

Let FT1 be the set of all rows in the table specified by the first FROM TABLE specification.
Let FT2 be the set of all rows in the table specified by the second FROM TABLE specification.

•

• If JOINED TABLE is specified as CROSS JOIN, a table is created that comprises all
possible combinations of FT1 and FT2. From a mathematical perspective, the
Cartesian product of the two tables is calculated.

• If JOINED TABLE is specified with the keyword JOIN without the optional keywords
INNER, LEFT, RIGHT, FULL, or OUTER, the JOIN type is assumed to be INNER.

Let T be the set of result rows consisting of all possible combinations of FT1 and FT2. Each
result row satisfies the JOIN specification for this set.

• If JOINED TABLE is specified with the JOIN type INNER, the result is the set T.

• If JOINED TABLE is specified with the JOIN type LEFT, the result is the set T plus the
rows from FT1 that are not in T. The result columns that are not formed from FT1 are
assigned the NULL value.

• If JOINED TABLE is specified with the JOIN type RIGHT, the result is the set T plus the
rows from FT2 that are not in T. The result columns that are not formed from FT2 are
assigned the NULL value.

If JOINED TABLE is specified with the JOIN type FULL, the result is the set T plus the
rows from FT1 that are added by the JOIN types LEFT and RIGHT.

The rules specified for the WHERE condition [Page 19]8 apply to the JOIN specification
(join_spec) ON <search_condition> with the restriction that no links using the Boolean
operator OR are permitted.

WHERE Clause (where_clause)
The WHERE clause specifies the conditions for building a result table (see result table name
[Page 41]).

Syntax
<where_clause> ::= WHERE <search_condition>

search_condition [Page 70]

Explanation
The search condition is applied to each row in the temporary result table formed by the FROM
clause [Page 196]. The result of the WHERE clause is a table that only contains those rows
from the result table for which the search condition is true.

The search condition may only contain column specifications for which the user has the
SELECT privilege.

Each column specification [Page 47] directly contained in the search condition must uniquely
identify a column from the tables specified in the FROM clause of the table expression [Page

]. If necessary, the column name must be qualified with the table identifier. If reference
names are defined in the FROM clause for table names, they must be used as table
identifiers in the search condition.

195

Expressions [Page 52] in the search condition must not contain a set function
(set_function_spec) [Page 105], except in the exception below.

Reference Manual: SAP DB 7.4 198

SAP AG April 2003

SELECT ... FROM uppertab,…
HAVING ... (SELECT ...
 WHERE MIN(uppertab, ...)...
)

The SELECT statement is allowed in the specified format.

HAVING clause [Page 20]0 : In a subquery [Page 200] used in this clause, it is possible to use
WHERE clauses that contain Set functions for the columns of the table used in the SELECT
… HAVING statement (Correlated Subquery [Page 20]0).

In the case of correlated subqueries, a column specification can identify a column in a table
that was specified in a FROM clause of a different table expression in the QUERY
specification [Page 192].

Each subquery [Page 200] in the search condition is usually evaluated only once. In the case
of a correlated subquery, the subquery is executed for each row in the result table generated
by the FROM clause.

GROUP Clause (group_clause)
The GROUP clause specifies grouping criteria for a result table (see result table name [Page

]). 41

Syntax
<group_clause> ::= GROUP BY <expression>,...

expression [Page 52]

Explanation
Each column name specified in the GROUP clause must identify a result_column_name in
the selected columns [Page 193] of the QUERY specification [Page 192] or uniquely identify a
column in the tables on which the QUERY specification is based. If necessary, the column
name must be qualified with the table identifier.

The GROUP clause allows the functions SUM [Page 109], AVG [Page 10]8 , MAX/MIN [Page
], COUNT [Page 108], STDDEV [Page 109], and VARIANCE [Page 109] to be applied not

only to entire result tables but also to groups of rows within a result table. A group is defined
by the grouping columns specified in GROUP BY. All rows of a group have the same values
in the grouping columns. Rows containing the NULL value [Page 15] in a grouping column are
combined to form a group. The same is true for the special NULL value [Page 15].

109

GROUP BY generates one row for each group in the result table. The selected columns in the
QUERY specification, therefore, may only contain those grouping columns and operations on
grouping columns, as well as those expressions [Page 52] that use the functions SUM, AVG,
MAX/MIN, COUNT, STDDEV, and VARIANCE.

If no rows satisfy the conditions indicated in the WHERE clause [Page 198] and a GROUP
clause was specified, the result table is empty.

Specifying scalable subqueries [Page 20]1 is not permissible in a GROUP clause.

See also:
Restrictions [Page 219]

Reference Manual: SAP DB 7.4 199

SAP AG April 2003

HAVING clause
The HAVING clause specifies the properties of a group.

Syntax
<having_clause> ::= HAVING <search_condition>

search_condition [Page 70]

Explanation
Each expression [Page 52] in the search condition that does not occur in the argument of a
set function (set_function_spec) [Page 105] must identify a grouping column.

If the HAVING clause is used without a GROUP clause [Page 19]9 , the result table built so far
is regarded as a group.

The search condition is applied to each group in the result table. The result of the HAVING
clause is a table that only contains those groups for which the search condition is true.

Subquery
A subquery specifies a result table (see result table name [Page 41]) that can be used in
certain predicates and for updating column values.

Syntax
<subquery> ::= (<query_expression>)

query_expression [Page 189]

Explanation
Subqueries can be used in a SET UPDATE condition [Page 180] of an UPDATE statement
[Page 178]. In this case, the subquery must produce a result table that contains a maximum
of one row.

Subqueries can be used in an INSERT statement (INSERT statement) [Page 17]3).

Subqueries can be used in the following predicates:

Comparison predicate [Page 58]
EXISTS predicate [Page 60]
IN predicate [Page 61]
Quantified predicate [Page 67]

See also:
Scalar Subquery [Page 20]1

Correlated Subquery [Page 200]

Correlated Subquery
Certain predicates can contain subqueries. These subqueries, in turn, can contain other
subqueries, etc. A subquery [Page 200] with further subqueries is the higher-level subquery of
the subqueries it contains.

• The search condition [Page 70] of a subquery can contain column names that belong to
tables that are contained in higher levels in the . This type of
subquery is called a correlated subquery.

FROM clause [Page 196]

Reference Manual: SAP DB 7.4 200

SAP AG April 2003

• Tables that are used in subqueries in this way are called correlated tables. No more
than 16 correlated tables are allowed within an SQL statement.

• Columns that are used in subqueries in this way are called correlated columns. A
total of 64 correlated columns can be used in an SQL statement.

If the qualifying table name or reference name does not clearly identify a table at a higher
level, the table at the lowest level is taken from these non-unique tables.

If the column name is not qualified by the table name or reference name, the tables at higher
levels are searched. The column name must be unique in all tables of the FROM clause to
which the table found belongs.

If a correlated subquery is used, the values of one or more columns in a temporary result row
at a higher level are included in the search condition of a subquery at a lower level, whereby
the result of the subquery is used to uniquely qualify the higher-level temporary result row.

Example tables hotel [Page 112] and room [Page 11]3 .
For every city, the names of all hotels are searched which have single room
prices less than the average price of the city concerned.
SELECT name, city FROM hotel X, room

WHERE X.hno = room.hno AND room.roomtype = 'SINGLE' AND
room.price <

(SELECT AVG(room.price) FROM hotel, room

WHERE hotel.hno = room.hno AND hotel.city = X.city AND
room.roomtype = 'SINGLE')

Name City

Eight Avenue Los Angeles

Sunshine Los Angeles

Atlantic New York

 Scalar Subquery (scalar_subquery)
A scalar subquery (scalar_subquery) is a special subquery [Page 200].

Syntax
<scalar_subquery> ::= <subquery>

subquery [Page 200]

Explanation
Scalar subqueries are produced through the restriction of the result set of a result table [Page

] to a maximum of one value. 41

Scalar subqueries can be used as expressions (see factor [Page 54]).

Scalar subqueries are not allowed in a GROUP clause [Page 19]9 or an ORDER clause
[Page 202].

Scalar subquery in the list of the values to be inserted in an INSERT statement
for the table hotel [Page 11]2 :

Reference Manual: SAP DB 7.4 201

SAP AG April 2003

INSERT hotel VALUES((SELECT MAX(hno)+10 FROM hotel), 'Three
Seasons', 90014, 'Los Angeles', '247 Broad Street')

Scalar subquery in a selected column [Page 19]3 :
SELECT hno, price, (SELECT MIN(price) FROM room) FROM room

 ORDER Clause (order_clause)
The ORDER clause specifies a sort sequence for a result table (see result table name [Page
41]).

Syntax
<order_clause> ::= ORDER BY <sort_spec>,...

<sort_spec> ::= <unsigned_integer> [ASC | DESC] | <expression> [ASC |
DESC]

unsigned_integer [Page 34], expression [Page 52]

Explanation
The sort columns specified in the ORDER clause determine the sequence of the sort criteria.

A number n specified in the sorting specification (sort_spec) identifies the nth column in the
result table. n must be less than or equal to the number of columns in the result table.

Scalable subqueries [Page 201] are not permissible in an ORDER clause.

ASC/DESC
ASC: the values are sorted in ascending order.

DESC: the values are sorted in descending order.

The default setting is ASC.

Further information
If a QUERY expression [Page 189] consists of more than one QUERY specification [Page

], sort specifications must be specified in the form <unsigned_integer> [ASC |
DESC].
192

If a QUERY specification was specified with DISTINCT, the total of the internal lengths of all
sorting columns must not exceed 1016 characters; otherwise it can comprise 1020
characters.

Column names in the sort specifications must be columns in the tables of the FROM clause
[Page 196] or a result_column_name in the selected columns [Page 193] of the QUERY
specification.

If DISTINCT or a set function [Page 105] in a selected column was used, the sort specification
must identify a column in the result table.

Values are compared in accordance with the rules for the comparison predicate [Page 58].
For sorting purposes, NULL value [Page 15]s are greater than non-NULL values, and special
NULL value [Page 15]s are greater than non-NULL values but less than NULL values.

See also:
Restrictions [Page 219]

Reference Manual: SAP DB 7.4 202

SAP AG April 2003

UPDATE Clause (update_clause)
The UPDATE clause specifies that a result table (see result table name [Page 41]) is to be
updateable. The system sets exclusive locks for all rows that form this result table.

Syntax
<update_clause> ::= FOR UPDATE [OF <column_name>,...] [NOWAIT]

column_name [Page 46]

Explanation
The specified column names must identify columns in the tables underlying the QUERY
specification [Page 192]. They do not have to occur in a selected column [Page 193].

The QUERY statement that contains the UPDATE clause must generate an updateable result
table.

The UPDATE clause is a prerequisite for using the results table with CURRENT OF
<result_table_name> in the UPDATE statement [Page 178], in the DELETE statement
[Page 181], and in the LOCK statement [Page 215]. The UPDATE clause is meaningless for
other forms of the above mentioned SQL statements, as well as in interactive mode.

All columns of the underlying base tables are updateable if the user has the corresponding
privileges, irrespective of whether they were specified as a column name [Page 46].

For performance reasons, it is recommended to specify column names only if the cursor is to
be used in an UPDATE statement.

Assume that the a column x fulfills the following conditions:

x is contained in the primary key or an index •

• x is contained in the search condition [Page 70] of the QUERY statement

• x is contained in a SET UPDATE clause [Page 180] of the UPDATE statement in the
type x = <expression>, where the expression [Page 52] contains the column x.

If all of the conditions are fulfilled, it is essential that you specify the column x as a column
name in the UPDATE clause.

If at least one of these conditions is not satisfied, the column name should not be specified.

NOWAIT

If NOWAIT is not specified and a lock collision occurs, the system waits for the locked data
object to be released (but only as long as is specified by the database parameter
REQUEST_TIMEOUT).

If NOWAIT is specified, the database system does not wait until another user has released a
data object. Instead, it returns a message if a collision occurs. If there is no collision, the
requested lock is set.

LOCK Option (lock_option)
The LOCK option requests a lock for each selected row.

Syntax
<lock_option> ::=
 WITH LOCK [(IGNORE)|(NOWAIT)] [EXCLUSIVE|OPTIMISTIC] [ISOLATION
LEVEL <unsigned_integer>]

unsigned_integer [Page 34] may only have the values 0, 1, 2, 3, 10, 15, 20, or 30

Reference Manual: SAP DB 7.4 203

SAP AG April 2003

Explanation
IGNORE
If (IGNORE) is not specified and a lock collision occurs, the system waits for a locked row to
be released (but only as long as is specified by the database parameter
REQUEST_TIMEOUT).

If (IGNORE) is specified, the system does not wait for a locked row to be released by another
transaction. Instead, it ignores this row if a lock collision occurs. If there is no collision, the
requested lock is set. (IGNORE) can only be specified in isolation level 1.

NOWAIT
If (NOWAIT) is not specified and a lock collision occurs, the system waits for the locked data
object to be released (but only as long as is specified by the database parameter
REQUEST_TIMEOUT).

If (NOWAIT) is specified, the database system does not wait until another user has released
a data object. Instead, it returns a message if a collision occurs. If there is no collision, the
requested lock is set.

EXCLUSIVE
An exclusive lock is defined. As long as the locked row has not been changed or deleted, the
exclusive lock can be released using the UNLOCK statement [Page 216].

OPTIMISTIC
An optimistic lock is defined on rows. This is only meaningful in connection with isolation
levels 0, 1, 10, and 15.

Share Lock
If neither EXCLUSIVE nor OPTIMISTIC is specified, a share lock is set on the corresponding
rows.

ISOLATION LEVEL
The locks are set independently of the ISOLATION specification (isolation_spec) of the
CONNECT statement [Page 211]. The isolation level of the LOCK option can have a higher or
lower value than that in the CONNECT statement.

If an isolation level is specified by the LOCK option, it is only valid for the duration of the SQL
statement which contains the LOCK option specification. Afterwards, the isolation level that
was specified in the CONNECT statement is applicable again. In the case of a SELECT
statement (named_select_statement) [Page 186], SELECT statement (select_statement)
[Page 188], or an OPEN CURSOR statement [Page 204], for which the result table is not
actually physically generated, the specified isolation level is valid for this SQL statement and
all FETCH statements [Page 205] that refer to the result table. The isolation level that was
specified in the CONNECT statement is applicable for other SQL statements that were
executed in the meantime.

See also:
Lock Behavior

OPEN CURSOR statement
An OPEN CURSOR statement generates the result table defined under the specified name
with a DECLARE CURSOR statement [Page 185].

Reference Manual: SAP DB 7.4 204

SAP AG April 2003

Syntax
<open_cursor_statement> ::= OPEN <result_table_name>

result_table_name [Page 41]

Explanation
Existing result tables are implicitly deleted when a result table is generated with the same
name.

All result tables generated within the current transaction are implicitly deleted at the end of the
transaction using the ROLLBACK statement [Page 213].

All result tables are implicitly deleted at the end of the session using the RELEASE statement
[Page 217]. A CLOSE statement [Page 208] can be used to delete them explicitly beforehand.

If the name of a result table is identical with that of a base table, view table (see Table [Page
23]), or a synonym [Page 24], these tables cannot be accessed as long as the result table
exists.

At any given time when a result table is processed, there is a position which may be before
the first row, on a row, after the last row or between two rows. After generating the result
table, this position is before the first row of the result table.

Depending on the search strategy, either all the rows in the result table are searched when
the OPEN CURSOR statement is executed and the result table is physically generated, or
each next result table row is searched when a FETCH statement [Page 205] is executed,
without being physically stored. This must be considered for the time behavior of OPEN
CURSOR statements and FETCH statements.

If the result table is empty, the return code 100 – row not found - is set.

The number of rows in the result table is returned in the SQLCA in the third entry of
SQLERRD. If this counter has the value -1, there is at least one result row.

FETCH statement
The FETCH statement assigns the values of the current row in a result table (see result table
name [Page 41]) to parameters.

Syntax
<fetch_statement> ::=
FETCH [FIRST | LAST | NEXT | PREV | <position> | SAME]
[<result_table_name>] INTO <parameter_spec>,...

<position> ::= POS (<unsigned_integer>) | POS (<parameter_spec>)
| ABSOLUTE <integer> | ABSOLUTE <parameter_spec>
| RELATIVE <integer> | RELATIVE <parameter_spec>

result_table_name [Page 41], parameter_spec [Page 48], unsigned_integer [Page 34], integer
[Page 34]

Explanation
If no result table name is specified, the FETCH statement refers to the last unnamed result
table that was generated (see named/unnamed result table [Page 185]).

Depending on the search method, either all the rows in the result table are searched when the
OPEN CURSOR statement [Page 204], the SELECT statement (select_statement) [Page
188], or the SELECT statement (named_select_statement) [Page 186] is executed and the
result table is generated, or each subsequent row in the result table is searched when a
FETCH statement is executed, but they are not physically stored. This must be taken into
account for the time behavior of FETCH statements. Depending on the isolation level

Reference Manual: SAP DB 7.4 205

SAP AG April 2003

selected, this can also cause locking problems with a FETCH, e.g. return code 500 - LOCK
REQUEST TIMEOUT.

Row not found
Let C be the position in the result table. The return code 100 - ROW NOT FOUND - is
output and no values are assigned to the parameters if any of the following conditions is
satisfied:

• The result table is empty.

• C is positioned on or after the last result table row, and FETCH or FETCH NEXT is
specified.

• C is positioned on or before the first row of the result table and FETCH PREV is
specified.

• FETCH is specified with a position which does not lie within the result table.

FIRST | LAST | NEXT | PREV

• FETCH FIRST or FETCH LAST: the result table is not empty. C is positioned in the first
or last row of the result table and the values of this row are assigned to the parameters.

• FETCH or FETCH NEXT: C is positioned before a row in the result table. C is
positioned in this row and the values of this row are assigned to the parameters.

• FETCH or FETCH NEXT: C is positioned in a row that is not the last row in the result
table. C is positioned in the next row and the values in this row are assigned to the
parameters.

• FETCH PREV: C is positioned behind a row in the result table. C is positioned in this
row and the values of this row are assigned to the parameters.

• FETCH PREV: C is positioned in a row that is not the first row in the result table. C is
positioned in the previous row and the values in this row are assigned to the
parameters.

Position: POS
Regardless of an ORDER clause [Page 202], there is an implicit order of the rows in a result
table. This can be displayed by specifying a ROWNO column as a selected column [Page
193]. The specified position refers to this internal numbering.

If a position is defined with POS, the parameter specification must denote a positive integer.

If a position that is less than or equal to the number of rows in the result table was defined
with POS, C is set to the corresponding row and the values of this row are assigned to the
parameters. If a position that is greater than the number of rows in the result table was
specified, the message 100 – ROW NOT FOUND is output.

Position: ABSOLUTE
Let x be the value of the integer or parameter specification specified with the position. Let
abs_x be the absolute value of x.

• FETCH ABSOLUTE and x is : FETCH ABSOLUTE is the same as a FETCH POS.

• FETCH ABSOLUTE and x=0: the return code 100 – row not found is set.

• FETCH ABSOLUTE and x is negative: C is set after the last row of the result table
where FETCH PREV is executed abs_x times. The last row found is the result of the
SQL statement. This description refers to the logic and not the flow of the statement. If
abs_x is larger than the number of rows in the result table, the message 100 – ROW
NOT FOUND is output.

Reference Manual: SAP DB 7.4 206

SAP AG April 2003

Position: RELATIVE
Let x be the value of the integer or parameter specification specified with the position. Let
abs_x be the absolute value of x.

• FETCH RELATIVE and x is positive: FETCH NEXT is executed x times from the
current position in the result table C.

• FETCH RELATIVE and x=0: corresponds to a FETCH SAME.

• FETCH RELATIVE and x is negative: FETCH PREV is executed abs_x times starting
from C. This description refers to the logic and not the flow of the statement. The return
code 100 – row not found is output if one of the conditions in the section "row not
found" is fulfilled.

FETCH SAME
The last row found in the result table is output again.

Parameter specification
The parameter specification [Page 48] specified in position must denote an integer.

The remaining parameters in the parameter specification are output parameters. The
parameter identified by the nth parameter specification corresponds to the nth value in the
current result table row. If the number of columns in this row exceeds the number of specified
parameters, the column values for which no corresponding parameters exist are ignored. If
the number of columns in the row is less than the number of specified parameters, no values
are assigned to the remaining parameters. You must specify an indicator name [Page 42] in
order to assign NULL values [Page 15] or special NULL values [Page 15].

Numbers are converted and character strings are truncated or lengthened, if necessary, to
suit the corresponding parameters. If an error occurs when assigning a value to a parameter,
the value is not assigned and no further values are assigned to the corresponding parameters
for this FETCH statement. Any values that have already been assigned to parameters remain
unchanged.

Let p be a parameter and v the corresponding value in the current row of the result table.

• v is a number: p must be a numeric parameter and v must be within the permissible
range of p.

• v is a character string: p must be an alphanumeric parameter.

Further information
If no FOR REUSE was specified in the QUERY statement (see SELECT statement [Page
188]), subsequent INSERT, UPDATE, or DELETE statements that refer to the underlying
base table and are executed by the current user or by other users can cause several
executions of a FETCH statement to denote different rows in the result table, even though the
same position was specified.

You can prevent other users from making changes by executing a LOCK statement [Page
215] for the entire table or by using the isolation level 2, 3, 15, 20, or 30 with the CONNECT
statement [Page 211] or the LOCK option [Page 203] of the QUERY statement.
FOR REUSE must be specified if this is not possible or if the user makes changes to this
table. Changes made in the meantime are not visible in this case.

If a result table that was physically created contains LONG columns [Page 16] and if the
isolation levels 0, 1, and 15 are used, consistency between the content of the LONG columns
and that of the other columns is not ensured. If the result table was not physically generated,
consistency is not ensured at isolation level 0 only. For this reason, it is advisable to ensure
consistency by using a LOCK statement or the isolation levels 2, 3, 20, or 30.

Reference Manual: SAP DB 7.4 207

SAP AG April 2003

CLOSE statement
The CLOSE statement deletes a result table (see result table name [Page 41]).

Syntax
<close_statement> ::= CLOSE [<result_table_name>]

result_table_name [Page 41]

Explanation
• If the name of a result table is specified, this result table is deleted. This name can be

used to denote another result table.

If no result table name is specified, an existing unnamed result table is deleted. •

An unnamed result table is implicitly deleted by the next SELECT statement [Page 188].

Result tables are implicitly deleted when a result table with the same name is generated.

All result tables generated within the current transaction are implicitly deleted at the end of the
transaction using the ROLLBACK statement [Page 213].

All result tables are implicitly deleted at the end of the session using the RELEASE statement
[Page 217].

SINGLE SELECT statement
A SINGLE SELECT statement specifies a result table with one row (see result table name
[Page 41]) and assigns the values in this row to parameters.

Syntax
<single_select_statement> ::=
SELECT [<distinct_spec>] <select_column>,...
INTO <parameter_spec>,... FROM <from_table_spec>,...
[<where_clause>] [<group_clause>] [<having_clause>] [<lock_option>]

distinct_spec [Page 193], select_column [Page 193], parameter_spec [Page 48],
from_table_spec [Page 196], where_clause [Page 198], group_clause [Page 199],
having_clause [Page 200], lock_option [Page 203]

Explanation
The number of rows in the result table must not be greater than one. If the result table is
empty or contains more than one row, corresponding messages or error codes are issued
and no values are assigned to the parameters specified in the parameter specifications. The
return code 100 – row not found - is set if the result table is empty.

If the result table contains just one row, the values of this row are assigned to the
corresponding parameters. The FETCH statement [Page 205] rules apply for assigning the
values to the parameters.

The order of the GROUP and HAVING clauses is random.

A LONG column [Page 16] can only be specified in a selected column in the uppermost
sequence of selected columns in a SINGLE SELECT statement if the DISTINCT specification
[Page 193] DISTINCT was not used there.

Reference Manual: SAP DB 7.4 208

SAP AG April 2003

EXPLAIN Statement (explain_statement)
The EXPLAIN statement describes the search strategy used internally by the database
system for a QUERY statement [Page 184] or SINGLE SELECT statement [Page 208]
(statements for searching for certain rows in specific tables). This statement indicates in
particular whether and in which form key columns or indexes are used for the search.

Syntax
<explain statement> ::=
 EXPLAIN [(<result table name>)] <query statement>
| EXPLAIN [(<result table name>)] <single select statement>

result_table_name [Page 41], query_statement [Page 184], single_select_statement [Page
208]

Explanation
The EXPLAIN statement can be used to check the effect of creating or deleting indexes (see
index [Page 24]) on the choice of search strategy for the specified SQL statement. It is also
possible to estimate the time needed by the database system to process the specified SQL
statement. The specified QUERY or SINGLE SELECT statement is not executed while the
EXPLAIN statement is being executed.

You will find information on the Optimizer functions in Optimizer: SAP DB 7.4.

As a result of the EXPLAIN statement, a result table is generated (see Result table name
[Page 41]). This result table may be named. If the optional name specification is missing, the
result table is given the name SHOW.

Structure of the EXPLAIN result table

OWNER CHAR [Page 120](64)

TABLENAME CHAR(64)

COLUMN_OR_INDEX CHAR(64)

STRATEGY CHAR(40)

PAGECOUNT CHAR(10)

O CHAR (1)

D CHAR (1)

T CHAR (1)

M CHAR (1)

The sequence in which the SELECT is processed is described by the order of the rows in the
result table.

STRATEGY
The STRATEGY column shows which search strategy/ies is/are used and whether a result
table is generated. A result table is physically generated if the column STRATEGY contains
RESULT IS COPIED in the last result row.

COLUMN_OR_INDEX
The COLUMN_OR_INDEX column shows which key column or indexed column or which
index is used for the strategy.

Reference Manual: SAP DB 7.4 209

SAP AG April 2003

PAGECOUNT
The PAGECOUNT column shows which sizes are assumed for the tables or, in the case of
certain strategies, for the indexes. These sizes influence the choice of the search strategy.

The assumed sizes are updated using the UPDATE STATISTICS statement [Page 217] and
can be requested by selecting the system table OPTIMIZERSTATISTICS. The current sizes
of tables or indexes can be checked by selecting the TABLESTATISTICS and
INDEXSTATISTICS system tables. If there are large discrepancies between the values
contained in the OPTIMIZERSTATISTICS and TABLESTATISTICS, the UPDATE
STATISTICS statement should be performed for this table.

If the system discovers during a search in a table that the values determined by the last
UPDATE STATISTICS statement are extremely low, a row is entered in the
SYSUPDSTATWANTED system table that contains the table name. In all other cases, rows
are entered in this system table that describe columns in tables. The UPDATE STATISTICS
statement should be executed for tables and columns in tables that are described in the
SYSUPDSTATWANTED system table.

The last row contains the estimated SELECT cost value in the PAGECOUNT column. The
specifications for COSTLIMIT and COSTWARNING in the CREATE USER, CREATE
USERGROUP, ALTER USER, and ALTER USERGROUP statements refer to this estimated
SELECT cost value.

O, D, T, M
The columns O, D, T, and M are only for Support purposes. For more information, see the
Optimizer: SAP DB 7.4 documentation.

Transaction
A transaction is a sequence of SQL statements that are handled by the database system as a
basic unit, in the sense that any modifications made to the database by the SQL statements
are either all reflected in the state of the database, or else none of the database modifications
are retained.

The first transaction is opened when a database session [Page 27] is opened with the
CONNECT statement [Page 211]. The transaction is concluded with the COMMIT statement
[Page 213] or the ROLLBACK statement [Page 213]. When a transaction is successfully
concluded with a COMMIT statement, all of the changes to the database are retained. If a
transaction is aborted using a ROLLBACK statement, on the other hand, or if it is aborted in
another way, all of the changes to the database made by the transaction are rolled back.

Both the COMMIT and ROLLBACK statements open a new transaction implicitly.

A transaction can be divided into other basic units, subtransactions [Page 27].

Locks
Since the database system permits concurrent transactions on the same database objects,
locks on rows, tables, and the database catalog are necessary to isolate individual
transactions.

For information about the lock concept, see the User Manual: SAP DB, Lock Behavior
section.

The assignment of implicit locks can be affected by the setting of the isolation level with
the CONNECT statement [Page 211].

•

Locks can be assigned explicitly using the LOCK statement [Page 215] or by the
assignment of a LOCK option [Page 203].

•

• Exclusive locks for rows that have not yet been modified, and share locks on rows can
be released by the UNLOCK statement [Page 216] before the end of the transaction.

Reference Manual: SAP DB 7.4 210

SAP AG April 2003

The locks assigned to a transaction are usually released at the end of the transaction, making
the respective database objects accessible again to other transactions.

SQL statements for transaction management

CONNECT statement [Page
211]

SET statement [Page 212]

COMMIT statement [Page
213]

ROLLBACK statement [Page
213]

SUBTRANS statement [Page
214]

LOCK statement [Page 215] UNLOCK statement [Page
216]

RELEASE statement [Page
217]

CONNECT Statement (connect_statement)
A CONNECT statement opens a database session [Page 27] and a transaction [Page 210] for
a database user.

Syntax
<connect_statement> ::=
 CONNECT <parameter_name> IDENTIFIED BY <parameter_name>
[<connect_option>...]
| CONNECT <parameter_name> IDENTIFIED BY <password>
[<connect_option>...]
| CONNECT <user_name> IDENTIFIED BY <parameter_name>
[<connect_option>...]
| CONNECT <user_name> IDENTIFIED BY <password> [<connect_option>...]

<connect_option> ::=
 SQLMODE <INTERNAL|ANSI|DB2|ORACLE>
| ISOLATION LEVEL <unsigned_integer>
| TIMEOUT <unsigned_integer>

parameter_name [Page 43], password [Page 42], user_name [Page 40], unsigned_integer
[Page 34]

Explanation
If the parameter name/user name and parameter name/password combination is valid, the
user [Page 25] opens a database session and gains access to the database. As a result, he
or she is the current user in this session.

A transaction is implicitly opened.

Each CONNECT option (connect_option) may only be specified once.

SQLMODE
The specification SQLMODE <INTERNAL|ANSI|DB2|ORACLE> can be used to select the
SQL mode [Page 29]. The default SQL mode is INTERNAL.

The CONNECT option SQLMODE <INTERNAL|ANSI|DB2|ORACLE> is not allowed in
programs. The appropriate precompiler option must be used to specify an SQLMODE other
than INTERNAL.

ISOLATION LEVEL
The isolation level specified in the CONNECT statement is applied to each new transaction.
This specification determines the lock operation type (Lock Behavior).

Reference Manual: SAP DB 7.4 211

SAP AG April 2003

The isolation level is set using an integer without a plus/minus sign after the keywords
ISOLATION LEVEL. The following values are permissible: 0, 1, 2, 3, 10, 15, 20, and 30. If no
isolation level is specified, isolation level 1 is used.

Isolation Level 0 •

Isolation Level 1 or 10 •

Isolation Level 15 •

Isolation Level 2 or 20 •

• Isolation Level 3 or 30

TIMEOUT
The specified timeout value must be smaller than or the same as the current timeout value,
otherwise an error is returned at logon.

If no timeout value is specified, the system uses the current timeout value.

If the TIMEOUT value is set to 0, the inactivity period is not monitored. This can result in a
situation where database resources are not available again even though the associated
application was concluded or aborted without a RELEASE statement [Page 217].

Users with the NOT EXCLUSIVE attribute
Users defined with the attribute NOT EXCLUSIVE can open several sessions at the same
time. Whenever this is the case, or whenever two users of the same user group open a
session at the same time, the sessions are considered to be distinct. This means that lock
requests of the sessions concerned can collide.

SET Statement (set_statement)
The SET statement alters the properties of a database session [Page 27].

Syntax
<set_statement> ::= SET ROLE ALL [EXCEPT <role_name>] | SET ROLE NONE
| SET ROLE <role_name> [IDENTIFIED BY <password>]
| SET ISOLATION LEVEL <unsigned_integer>

role_name [Page 45], password [Page 42], unsigned_integer [Page 34]

Explanation
SET ROLE
DEFAULT ROLE in the ALTER USER statement [Page 16]5 or ALTER USERGROUP
statement [Page 16]6 specifies which of the roles [Page 25] assigned to the current user or
user group is active in the user session or group member session. If a role is active, the
current user has all the privileges that are included in the role.

If a role that is activated automatically when a session is opened is assigned to the current
user with the ALTER USER statement or ALTER USERGROUP statement, it is deactivated
when the SET statement is executed if it is not identified by the SET ROLE specification in the
SET statement.

• ALL: all roles assigned to the current user are active. EXCEPT can be used to exclude
specified roles from activation.

• NONE: none of the roles is active.

• Role name specified: the roles specified here must exist and be assigned to the
current user. If a password exists for the role, it must be defined in the SET statement

Reference Manual: SAP DB 7.4 212

SAP AG April 2003

in addition to the owner of the role.
The role identified with role name is activated.

ISOLATION LEVEL
Specifying an isolation level changes the lock behavior for all subsequent SQL statements of
the current database session.

The isolation level is set using an integer without a plus/minus sign after the keywords
ISOLATION LEVEL. The following values are permissible: 0, 1, 2, 3, 10, 15, 20, and 30.

Isolation Level 0 •

Isolation Level 1 or 10 •

Isolation Level 15 •

Isolation Level 2 or 20 •

• Isolation Level 3 or 30

COMMIT Statement (commit_statement)
A COMMIT statement (commit_statement) terminates the current transaction and starts a
new one (see transactions [Page 210]).

Syntax
<commit_statement> ::= COMMIT [WORK]

lock_statement [Page 215]

Explanation
The COMMIT statement terminates the current transaction. This means that the modifications
executed within the transaction are recorded and are thus visible to concurrent users as well.
The locks assigned to the transaction are released.

The COMMIT statement implicitly opens a new transaction. Any locks set within the new
transaction are assigned to this transaction. The setting of locks in the new transaction is
controlled by the isolation level declared in the CONNECT statement [Page 211] (see
Isolation Level).

ROLLBACK Statement (rollback_statement)
The ROLLBACK statement cancels the current transaction [Page 210] and starts a new
transaction.

Syntax
<rollback_statement> ::= ROLLBACK [WORK]

lock_statement [Page 215]

Explanation
The ROLLBACK statement cancels the current transaction. This means that any
modifications made within the transaction are reversed. The locks assigned to the transaction
are released.

The ROLLBACK statement implicitly opens a new transaction. Any locks set within the new
transaction are assigned to this transaction. The setting of locks in the new transaction is

Reference Manual: SAP DB 7.4 213

SAP AG April 2003

controlled by the isolation level declared in the CONNECT statement [Page 211] (see
Isolation Level).

All result tables generated within the current transaction are implicitly deleted at the end of the
transaction using the ROLLBACK statement.

SUBTRANS Statement (subtrans_statement)
The SUBTRANS statement divides a transaction [Page 210] into units known as
subtransactions [Page 27].

Syntax
<subtrans_statement> ::= SUBTRANS BEGIN | SUBTRANS END | SUBTRANS
ROLLBACK

Explanation
SUBTRANS BEGIN
A subtransaction is opened, that is, the database records the current point in the transaction.
This can be followed by any sequence of SQL statements. If this sequence does not contain
an additional SUBTRANS BEGIN, all database modifications performed since the
SUBTRANS BEGIN can be reversed using a SUBTRANS ROLLBACK.

The sequence, however, can also contain additional SUBTRANS BEGIN statements that
open additional subtransactions. This means several nested subtransactions may be open at
the same time.

SUBTRANS END
A subtransaction is closed, that is, the database system "forgets" the point in the transaction
recorded with SUBTRANS BEGIN. An open subtransaction must exist for this purpose. If
more than one open subtransaction exists, the last opened subtransaction is closed; that is, it
is no longer considered to be an open subtransaction.

SUBTRANS ROLLBACK
SUBTRANS ROLLBACK reverses all database modifications performed within a
subtransaction and then closes the subtransaction. Any database modifications performed by
any subtransactions within the subtransaction are reversed, irrespective of whether they were
ended with SUBTRANS END or SUBTRANS ROLLBACK. All result tables generated within
the subtransaction are closed.

An open subtransaction must exist for this purpose. If more than one open subtransaction
exists, the last opened subtransaction is rolled back. The subtransaction concerned is then no
longer considered open.

Further information
The SUBTRANS statement does not affect locks assigned to the transaction. In particular,
SUBTRANS END and SUBTRANS ROLLBACK do not release any locks.

The SUBTRANS statement is particularly useful in keeping the effects of subroutines or
database procedures [Page 28] atomic; that is, it ensures that they either fulfil all their tasks or
else have no effect. To this end, a SUBTRANS BEGIN is issued initially. If the subroutine
succeeds in fulfilling its task, it is ended with a SUBTRANS END; in the event of an error, a
SUBTRANS ROLLBACK is used to reverse all the modifications performed by the subroutine.

The COMMIT statement [Page 213] and the ROLLBACK statement [Page 213] close any
open subtransactions implicitly.

Reference Manual: SAP DB 7.4 214

SAP AG April 2003

LOCK Statement(lock_statement)
The LOCK statement assigns a lock to the current transaction (see lock).

Syntax
<lock_statement> ::=
LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN SHARE MODE
LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN EXCLUSIVE MODE
LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN SHARE MODE <lock_spec> IN
EXCLUSIVE MODE
LOCK [(WAIT)|(NOWAIT)] <row_spec>... OPTIMISTIC

<lock_spec> ::= TABLE <table_name>,... | <row_spec>...
| TABLE <table_name>,... <row_spec>...

row_spec [Page 216], table_name [Page 47]

Explanation
The specified table cannot be a base table, a view table (see table [Page 23]), nor a synonym
[Page 24]. If the table name identifies a view table, locks are set on the base tables on which
the view table is based.

WAIT/NOWAIT

If (NOWAIT) is specified, the database does not wait for a lock to be released by
another transaction. Instead, it issues an error message if a lock collision occurs. If
there is no collision, the requested lock is set.

•

• In the event of a lock collision, if either the WAIT option is omitted or (WAIT) is
specified, the system waits for locks to be released, until the period specified by the
database parameter REQUEST_TIMEOUT has elapsed.

<row_spec>...
A <row_spec>... creates a lock for the table row denoted by the key values or a position in
a result table.

Specifying a row_spec requires that the specified table have a key column; that is, if the
table name identifies a view table, this must be modifiable.

TABLE <table_name>,...
If TABLE <table_name>,... is specified, a lock is created for the table in question.

If the view table identified by the table name is not changeable, only a share lock can be set
for this view table. As a result of this SQL statement, share locks are set for all base tables
underlying the view table.

SHARE
SHARE defines a share lock for the listed objects. To set share locks, the current user must
have the SELECT privilege.

EXCLUSIVE
EXCLUSIVE defines an exclusive lock for the listed objects. To set exclusive locks, the
current user must have the UPDATE, DELETE, or INSERT privilege.

OPTIMISTIC
OPTIMISTIC defines an optimistic lock on rows. This is only meaningful in connection with
isolation levels 0, 1, 10, and 15.

Reference Manual: SAP DB 7.4 215

SAP AG April 2003

Deadlock
Whenever the database system recognizes a deadlock caused by locks, it ends the
transaction with an implicit ROLLBACK WORK.

Reproducibility
If reproducible results are needed to read rows using a SELECT statement, the read objects
must be locked and the locks must be kept until reproduction. Reproducibility usually requires
that share locks are set for the tables concerned, either by explicitly locking them using one or
more LOCK statements, or implicitly by using the isolation level 3. This ensures that other
users cannot modify the table.

See also:
Lock Behavior

ROW specification (row spec)
The ROW specification (row_spec) is a syntax element in a LOCK statement [Page 215] or
an UNLOCK statement [Page 216].

Syntax
<row_spec> ::= ROW <table_name> KEY <key_spec>,...
| ROW <table_name> CURRENT OF <result_table_name>

table_name [Page 47], result_table_name [Page 41]

Explanation
For tables defined without key columns, the implicit key column SYSKEY CHAR(8) BYTE can
be used in a key specification.

If CURRENT OF <result_table_name> is specified, the result table must have been
specified with FOR UPDATE.

UNLOCK Statement (unlock_statement)
The UNLOCK statement releases rows on rows.

Syntax
<unlock_statement> ::= UNLOCK <row_spec>... IN SHARE MODE
| UNLOCK <row_spec>... IN EXCLUSIVE MODE
| UNLOCK <row_spec>... IN SHARE MODE <row_spec>... IN EXCLUSIVE MODE
| UNLOCK <row_spec>... OPTIMISTIC

row_spec [Page 216]

Explanation
Using the UNLOCK statement, locks of the following types can be released within a
transaction [Page 210] for single table rows that have not yet been changed: share locks,
optimistic locks, and exclusive locks.

If a row has not been inserted, changed, or deleted, its exclusive lock cannot be released
using the UNLOCK statement.

The UNLOCK statement does not fail if the specified lock does not exist or cannot be
released.

Reference Manual: SAP DB 7.4 216

SAP AG April 2003

See also:
Lock Behavior

RELEASE Statement (release_statement)
The RELEASE statement terminates a user's transaction [Page 210] and database session
[Page 27].

Syntax
<release_statement> ::= COMMIT [WORK] RELEASE | ROLLBACK [WORK]
RELEASE

Explanation
Ending a session using a RELEASE statement implicitly deletes all result tables, the data
stored in temporary base tables, and the metadata of these tables.

COMMIT WORK RELEASE
The current transaction is aborted without opening a new one. The user session is ended.

If the database system has to reverse the current transaction implicitly, COMMIT WORK
RELEASE fails, and a new transaction is opened. The user session is not ended in this case.

ROLLBACK WORK RELEASE
The current transaction is aborted without opening a new one. Any database modifications
performed during the current transaction are undone. The user session is ended. ROLLBACK
WORK RELEASE has the same effect as a ROLLBACK statement [Page 213] followed by
COMMIT WORK RELEASE.

If the accounting function in the database system is activated, information on the
session is added to the table SYSACCOUNT.

Statistics
The database system addresses disks in units of 8KB. The term ‘page’ is used to refer to
these units.

SQL statements for statistics management

UPDATE STATISTICS statement [Page
217]

MONITOR statement [Page
219]

UPDATE STATISTICS Statement
(update_statistics_statement)
The UPDATE STATISTICS statement defines the storage requirements of tables and indexes
as well as the value distribution of columns, and stores this information in the database
catalog.

Reference Manual: SAP DB 7.4 217

SAP AG April 2003

Syntax
<update statistics statement> ::=
 UPDATE STAT[ISTICS] COLUMN <table name>.<column name> [ESTIMATE
[<sample definition>]]
| UPDATE STAT[ISTICS] COLUMN (<column name>,...) FOR <table name>
[ESTIMATE [<sample definition>]]
| UPDATE STAT[ISTICS] COLUMN (*) FOR <table name> [ESTIMATE
[<sample definition>]]
| UPDATE STAT[ISTICS] <table name> [ESTIMATE [<sample definition>]]
| UPDATE STAT[ISTICS] [<owner>.][<identifier>]* [ESTIMATE
[<sample definition>]]

table_name [Page 47], column_name [Page 46], sample_definition [Page 117], owner [Page
41], identifier [Page 36]

Explanation
When the UPDATE STATISTICS statement is executed, information on the table, such as the
number of rows, the number of pages used, the sizes of indexes, the value distribution within
columns or indexes, and so on, is stored in the database catalog. These values are used by
the Optimizer to determine the best strategy for executing SQL statements.

You will find information on the Optimizer functions in Optimizer: SAP DB 7.4.

The UPDATE STATISTICS statement implicitly performs a COMMIT statement [Page 213] for
each base table; i.e. the transaction within which the UPDATE STATISTICS statement has
been executed is closed.

When a CREATE INDEX statement [Page 148] is executed, the above-mentioned information
is stored in the database catalog for the index as well as for the base table for which this
index is being defined. No information is stored for other indexes defined on this base table.

The statistical values stored in the database catalog can be retrieved by selecting the system
table OPTIMIZERSTATISTICS. Each row of the table describes statistical values of indexes,
columns or the size of a table.

For a definition of the statistics system tables, see System Tables: SAP DB 7.4,
Definition of the System Tables.

<table name>
If a table name is specified, the table must be a non-temporary base table and the user must
have a privilege for it.

<column name>
If a column name is specified, this column must exist in specified table.

If * is specified, all columns in the table are assumed.

<identifier>*
Specifying <identifier>* has the same effect as issuing the UPDATE STATISTICS
statement for all base tables for which the current user has a privilege, and whose table name
begins with the identifier.

UPDATE STATISTICS *
The SYSDBA user can use UPDATE STATISTICS * to execute the UPDATE STATISTICS
statement for all base tables, even if the SYSDBA has not been assigned a privilege for these
tables.

Reference Manual: SAP DB 7.4 218

SAP AG April 2003

ESTIMATE

If ESTIMATE and a sample definition are specified, the database system
estimates the statistical values by selecting data at random. The number of random
selects can be given as number of rows or as percentage. For a specification of 50% or
more, all rows are analyzed. The runtime of the UPDATE STATISTICS statement can
be considerably reduced by specifying ESTIMATE. In most cases, the precision of the
statistical values determined is sufficient.

•

• If ESTIMATE is specified without a sample definition, the database system
estimates the statistical values by selecting data at random. The number of selects was
defined with the CREATE TABLE statement or an ALTER TABLE statement by means
of a sample_definition [Page 117] for the specified table. For a specification of 50% or
more, all rows are analyzed. The runtime of the UPDATE STATISTICS statement can
be considerably reduced by specifying ESTIMATE. In most cases, the precision of the
statistical values determined is sufficient.

• If ESTIMATE is not specified, the database system determines exact statistical values
by considering the complete data of the table. For large tables, the runtime can be
considerably long.

MONITOR Statement (monitor_statement)
The MONITOR statement can be used to initialize counters for monitoring the database with
0.

Syntax
<monitor statement> ::= MONITOR INIT

Explanation
The database system always records result counters. These are initialized with 0 when the
system is started. The MONITOR statement can be used to reset them to 0.

The event counters recorded by the database system can be retrieved by selecting monitor
system tables.

For a definition of the monitor system tables, see System Tables: SAP DB 7.4,
Definition of the System Tables.

Restrictions
Maximum values

Identifier length 32 characters

Precision of numeric values 38 digits

Number of tables unlimited

Internal length of a table row 8088 bytes

Length of a LONG column 2147483647 bytes

Reference Manual: SAP DB 7.4 219

SAP AG April 2003

Number of columns per table (with KEY) 1024

Number of columns per table (without KEY) 1023

Number of primary key columns per table 512

Sum of internal lengths of all key columns 1024 bytes

Number of indexes per table 255

Number of columns in an index 16

Sum of internal lengths of all columns belonging to an index 1024 bytes

Number of referential CONSTRAINT definitions (foreign key
dependencies) per table

unlimited

Number of columns in a referential CONSTRAINT definition 16

Number of triggers per table 3

Number of result columns in a SELECT instruction 1023

Number of join tables in a SELECT statement 64

Number of join conditions in a WHERE clause of a SELECT
statement

128

Number of correlated columns in an SQL statement 64

Number of correlated columns in an SQL statement 16

Number of the columns in an ORDER or GROUP clause 128

Length of the columns in an ORDER or GROUP clause 1020 bytes

Number of parameters in an SQL statement 2000

Length of an SQL statement (Configuration parameter
_PACKET_SIZE less administration overhead)

at least 16000 bytes

Number of rows per table unlimited

 Syntax List
This documentation uses the BNF syntax notation with the following conventions:

 Explanation

KEYWORDS Keywords are shown in uppercase letters for the sake of clarity. They can
be entered in uppercase or lowercase letters.

<xyz> Terms in angle brackets are placeholders for syntactical units explained
in this document. Do not use angle brackets when entering an SQL
statement.

Reference Manual: SAP DB 7.4 220

SAP AG April 2003

clause ::= rule Clauses are the building blocks of SQL statements. Rules describe how
these building blocks are put together to form more complex clauses and
also dictate the notation that is used.

clause1 clause2 The two clauses are written one after the other, separated by at least one
blank.

[clause] Optional clause. This clause can be ignored. Do not use square brackets
when entering an SQL statement.

Clause1 | clause2 | ... |
clausen

Alternative clauses. You can use exactly one of these clauses.

Clause,... The clause can be repeated as often as required. The individual
repetitions must be written one after the other and separated by a comma
and any number of blanks.

Clause... The clause can be repeated as often as required. The individual
repetitions must be written directly one after the other without a
separating comma or blank.

The syntax rules are specified in the following form:
Clause ::=
 Rule

If you want an explanation of the syntax rules, you can use the clause link to go to the
relevant part of the Reference Manual. As a result, you exit the syntax list itself.

A
<add_definition [Page 133]> ::=
 ADD <column_definition>,...
| ADD (<column_definition>,...)
| ADD <constraint_definition>
| ADD <referential_constraint_definition>
| ADD <key_definition>

<alias_name [Page 39]> ::=
 <identifier>

<all_function [Page 107]> ::=
 <set_function_name> ([ALL] <expression>)

<alter_definition [Page 134]> ::=
 ALTER CONSTRAINT <constraint_name> CHECK <search_condition>
| ALTER <key_definition>

<alter_index_statement [Page 149]> ::=
 ALTER INDEX <index_name> [ON <table_name>] ENABLE
| ALTER INDEX <index_name> [ON <table_name>] DISABLE
| ALTER INDEX <index_name> [ON <table_name>] INIT USAGE

Reference Manual: SAP DB 7.4 221

SAP AG April 2003

<alter_password_statement [Page 169]>::=
 ALTER PASSWORD <old_password> TO <new_password>
| ALTER PASSWORD <user_name> <new_password>

<alter_table_statement [Page 13]3 > ::=
 ALTER TABLE <table_name> <add_definition>
| ALTER TABLE <table_name> <drop_definition>
| ALTER TABLE <table_name> <alter_definition>
| ALTER TABLE <table_name> <column_change_definition>
| ALTER TABLE <table_name> <modify_definition>
| ALTER TABLE <table_name> <referential_constraint_definition>
| ALTER TABLE <table_name> DROP FOREIGN KEY
<referential_constraint_name>
| ALTER TABLE <table_name> <sample_definition>

<alter_user_statement [Page 165]> ::=
 ALTER USER <user_name> [<user_mode>]
 [TIMEOUT <unsigned_integer> | TIMEOUT NULL]
 [COSTWARNING <unsigned_integer> | COSTWARNING NULL]
 [COSTLIMIT <unsigned_integer> | COSTLIMIT NULL]
 [DEFAULT ROLE ALL [EXCEPT <role_name>] | DEFAULT ROLE NONE
 | DEFAULT ROLE <role_name> [IDENTIFIED BY <password>]]
 [[NOT] EXCLUSIVE]
 [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]

<alter_usergroup_statement [Page 166]> ::=
 ALTER USERGROUP <usergroup_name> [<usergroup_mode>]
 [TIMEOUT <unsigned_integer> | TIMEOUT NULL]
 [COSTWARNING <unsigned_integer> | COSTWARNING NULL]
 [COSTLIMIT <unsigned_integer> | COSTLIMIT NULL]
 [DEFAULT ROLE ALL [EXCEPT <role_name>] | DEFAULT ROLE NONE
 | DEFAULT ROLE <role_name> [IDENTIFIED BY <password>]]
 [[NOT] EXCLUSIVE]
 [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]

<argument [Page 15]2 > ::=
 <identifier>

<arithmetic_function [Page 73]> ::=
 TRUNC (<expression>[, <expression>])
| ROUND (<expression>[, <expression>])
| NOROUND (<expression>)
| FIXED (<expression>[, <unsigned_integer> [, <unsigned_integer]])
| FLOAT (<expression>[, <unsigned_integer>])
| CEIL (<expression>)
| FLOOR (<expression>)
| SIGN (<expression>)
| ABS (<expression>)
| POWER (<expression>, <expression>)
| EXP (<expression>)
| SQRT (<expression>)
| LN (<expression>)
| LOG (<expression>, <expression>)
| PI
| LENGTH (<expression>)
| INDEX (<string_spec>, <string_spec> [,<expression>[, <expression>]
])

<assignment_statement [Page 154]> ::=
 SET <variable_name> = <expression>

Reference Manual: SAP DB 7.4 222

SAP AG April 2003

B
<between_predicate [Page 56]> ::=
 <expression> [NOT] BETWEEN <expression> AND <expression>

<bool_predicate [Page 57]> ::=
 <column_spec> [IS [NOT] <TRUE | FALSE>]

<boolean_factor [Page 72]> ::=
 [NOT] <predicate>
| [NOT] (<search_condition>)

<boolean_term [Page 70]> ::=
 <boolean_factor>
| <boolean_term> AND <boolean_factor>

C
<call_statement [Page 183]> ::=
 CALL <dbproc_name> [(<expression>,...)] [WITH COMMIT]

<cascade_option [Page 132]> ::=
 CASCADE
| RESTRICT

<case_else_clause [Page 157]> ::=
 ELSE <statement>

<case_function [Page 99]> ::=
 <simple_case_function>
| <searched_case_function>

<case_statement [Page 154]> ::=
 <simple_case_statement>
| <searched_case_statement>

<character [Page 30]> ::=
 <digit>
| <letter>
| <extended_letter>
| <hex_digit>
| <language_specific_character>
| <special_character>

<close_statement [Page 20]8 > ::=
 CLOSE [<result_table_name>]

<column_attributes [Page 124]> ::=
 [<key_or_not_null_spec>] [<default_spec>] [UNIQUE]
[<constraint_definition>]
 [REFERENCES <referenced_table> [(<referenced_column>)]
[<delete_rule>]]

<column_change_definition [Page 133]> ::=
 COLUMN <column_name> NOT NULL
| COLUMN <column_name> DEFAULT NULL
| COLUMN <column_name> ADD <default_spec>
| COLUMN <column_name> ALTER <default_spec>
| COLUMN <column_name> DROP DEFAULT

Reference Manual: SAP DB 7.4 223

SAP AG April 2003

<column_definition [Page 118]> ::=
 <column_name> <data_type> [<column_attributes>]
| <column_name> <domain_name> [<column_attributes>]

<column_list [Page 158]> ::=
 <column_name>
| <column_list>, <column_name>

<column_name [Page 46]> ::=
 <identifier>

<column_spec [Page 47]> ::=
 <column_name>
| <table_name>.<column_name>
| <reference_name>.<column_name>
| <result_table_name>.<column_name>

<comment [Page 150]> ::=
 <string_literal>
| <parameter_name>

<comment_on_statement [Page 150]> ::=
 COMMENT ON <object_spec> IS <comment>

<commit_statement [Page 213]> ::=
 COMMIT [WORK]

<comp_op [Page 59]> ::=
 <
| >
| <>
| !=
| =
| <=
| >=
| = | < | > (for machines with EBCDIC Code)
| ~= | ~< | ~> (for machines with ASCII Code)

<comparison_predicate [Page 58]> ::=
 <expression> <comp_op> <expression>
| <expression> <comp_op> <subquery>
| <expression_list> <equal_or_not> (<expression_list>)
| <expression_list> <equal_or_not> <subquery>

<connect_option [Page 211]> ::=
 SQLMODE <INTERNAL | ANSI | DB2 | ORACLE>
| ISOLATION LEVEL <unsigned_integer>
| TIMEOUT <unsigned_integer>

<connect_statement [Page 211]> ::=
 CONNECT <parameter_name> IDENTIFIED BY <parameter_name>
[<connect_option>...]
| CONNECT <parameter_name> IDENTIFIED BY <password>
[<connect_option>...]
| CONNECT <user_name> IDENTIFIED BY <parameter_name>
[<connect_option>...]
| CONNECT <user_name> IDENTIFIED BY <password> [<connect_option>...]

<constraint_definition [Page 127]> ::=
 CHECK <search_condition>

Reference Manual: SAP DB 7.4 224

SAP AG April 2003

| CONSTRAINT <search_condition>
| CONSTRAINT <constraint_name> CHECK <search_condition>

<constraint_name [Page 40]> ::=
 <identifier>

<conversion_function [Page 103]> ::=
 NUM (<expression>)
| CHR (<expression>[,<unsigned_integer>])
| HEX (<expression>)
| HEXTORAW (<expression>)
| CHAR (<expression>[,<datetimeformat>])

<create_dbproc_statement [Page 152]> ::=
 CREATE DBPROC <procedure_name> [(<formal_parameter>,..)] [RETURNS
CURSOR] AS <routine>

<create_domain_statement [Page 140]> ::=
 CREATE DOMAIN <domain_name> <data_type> [<default_spec>]
[<constraint_definition>]

<create_index_statement [Page 148]> ::=
 CREATE [UNIQUE] INDEX <index_name> ON <table_name> (<column_name>
[ASC | DESC],...)

<create_role_statement [Page 169]> ::=
 CREATE ROLE <role_name> [IDENTIFIED BY <password>]

<create_sequence_statement [Page 140]> ::=
 CREATE SEQUENCE [<owner>.]<sequence_name>
 [INCREMENT BY <integer>]
 [START WITH <integer>]
 [MAXVALUE <integer> | NOMAXVALUE]
 [MINVALUE <integer> | NOMINVALUE]
 [CYCLE | NOCYCLE]
 [CACHE <unsigned_integer> | NOCACHE]
 [ORDER|NOORDER]

<create_synonym_statement [Page 142]> ::=
 CREATE [PUBLIC] SYNONYM [<owner>.]<synonym_name> FOR <table_name>

<create_table_statement [Page 115]> ::=
 CREATE TABLE <table_name> (<column_definition>
 [,<table_description_element>,...]) [IGNORE ROLLBACK]
[<sample_definition>]
| CREATE TABLE <table_name> [(<table_description_element>,...)]
 [IGNORE ROLLBACK] [<sample_definition>] AS <query_expression>
[<duplicates_clause>]
| CREATE TABLE <table_name> LIKE <table_name> [IGNORE ROLLBACK]

<create_table_temp> :: =
 <create_table_statement> for creating temporary tables,
 that is, the table name table_name in the CREATE TABLE statement
 must have the format TEMP.<identifier>.

<create_trigger_statement [Page 158]> ::=
 CREATE TRIGGER <trigger_name> FOR <table_name> AFTER
<trigger_event,..>
 EXECUTE (<routine>) [WHENEVER <search_condition>]

<create_user_statement [Page 160]> ::=
 CREATE USER <user_name> PASSWORD <password>
 [<user_mode>]

Reference Manual: SAP DB 7.4 225

SAP AG April 2003

 [TIMEOUT <unsigned_integer>]
 [COSTWARNING <unsigned_integer>]
 [COSTLIMIT <unsigned_integer>]
 [[NOT] EXCLUSIVE]
 [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]
| CREATE USER <user_name> PASSWORD <password> LIKE <source_user>
| CREATE USER <user_name> PASSWORD <password> USERGROUP
<usergroup_name>

<create_usergroup_statement [Page 162]> ::=
 CREATE USERGROUP <usergroup_name>
 [<usergroup_mode>]
 [TIMEOUT <unsigned_integer>]
 [COSTWARNING <unsigned_integer>]
 [COSTLIMIT <unsigned_integer>]
 [[NOT] EXCLUSIVE]
 [DEFAULTCODE <ASCII | EBCDIC | UNICODE>]

<create_view_statement [Page 143]> ::=
 CREATE [OR REPLACE] VIEW <table_name> [(<alias_name>,...)]
 AS <query_expression> [WITH CHECK OPTION]

D
<data_typ [Page 119]> ::=
 CHAR[ACTER] [(<unsigned_integer>)] [ASCII | BYTE | EBCDIC |
UNICODE]
| VARCHAR [(<unsigned_integer>)] [ASCII | BYTE | EBCDIC | UNICODE]|
LONG [VARCHAR] [ASCII | BYTE | EBCDIC | UNICODE]
| BOOLEAN
| FIXED (<unsigned_integer> [,<unsigned_integer>])
| FLOAT (<unsigned_integer>)
| INT[EGER]
| SMALLINT
| DATE
| TIME
| TIMESTAMP

<date_function [Page 92]> ::=
 ADDDATE (<date_or_timestamp_expression>, <expression>)
| SUBDATE (<date_or_timestamp_expression>, <expression>)
| DATEDIFF (<date_or_timestamp_expression>,
<date_or_timestamp_expression>)
| DAYOFWEEK (<date_or_timestamp_expression>)
| WEEKOFYEAR (<date_or_timestamp_expression>)
| DAYOFMONTH (<date_or_timestamp_expression>)
| DAYOFYEAR (<date_or_timestamp_expression>)
| MAKEDATE (<expression>, <expression>)
| DAYNAME (<date_or_timestamp_expression>)
| MONTHNAME (<date_or_timestamp_expression>)

<date_or_timestamp_expression [Page 95]> ::=
 <expression>

<datetimeformat [Page 50]> ::=
 EUR
| INTERNAL
| ISO
| JIS
| USA

<dbproc_name [Page 40]> ::=
 [<owner>.]<procedure_name>

Reference Manual: SAP DB 7.4 226

SAP AG April 2003

<declare_cursor_statement [Page 185]> ::=
 DECLARE <result_table_name> CURSOR FOR <select_statement>

<default_predicate [Page 60]> ::=
 <column_spec> <comp_op> DEFAULT

<default_spec [Page 125]> ::=
 DEFAULT <literal >
| DEFAULT NULL
| DEFAULT USER
| DEFAULT USERGROUP
| DEFAULT DATE
| DEFAULT TIME
| DEFAULT TIMESTAMP
| DEFAULT TRUE
| DEFAULT FALSE
| DEFAULT TRANSACTION
| DEFAULT STAMP
| DEFAULT SERIAL[(<unsigned_integer>)]

delete_rule [Page 130]> ::=
 ON DELETE CASCADE
| ON DELETE RESTRICT
| ON DELETE SET DEFAULT
| ON DELETE SET NULL

<delete_statement [Page 181]> ::=
 DELETE [FROM] <table_name> [<reference_name>]
 [KEY <key_spec>,...] [WHERE <search_condition>]
| DELETE [FROM] <table_name> [<reference_name>]
 WHERE CURRENT OF <result_table_name >

<delimiter_token [Page 38]> ::=
 (|) | , | . | + | - | * | / | < | > | <> | != | = | <= | >=
| ¬= | ¬< | ¬> (for machines with EBCDIC code)
| ~= | ~< | ~> (for machines with ASCII code)

<derived_column [Page 193]> ::=
 <expression> [[AS] <result_column_name >]
| <result_column_name> = <expression>

<digit [Page 30]> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

digit_sequence [Page 33]> ::=
 <digit>...

<distinct_function [Page 193]>::=
 <set_function_name> (DISTINCT <expression >)

<distinct_spec [Page 193]> ::=
 DISTINCT
| ALL

<domain_name [Page 41]> ::=
 [<owner>.]<identifier>

<double_quotes [Page 37]> ::=
 "

<drop_dbproc_statement [Page 158]> ::=
 DROP DBPROC <dbproc_name>

<drop_definition [Page 136]> ::=
 DROP <column_name>,... [<cascade_option >] [RELEASE SPACE]
| DROP (<column_name>,...) [<cascade_option>] [RELEASE SPACE]

Reference Manual: SAP DB 7.4 227

SAP AG April 2003

| DROP CONSTRAINT <constraint_name>
| DROP PRIMARY KEY

<drop_domain_statement [Page 140]> ::=
 DROP DOMAIN <domain_name>

<drop_index_statement [Page 14]9 > ::=
 DROP INDEX <index_name> [ON <table_name>]

<drop_role_statement [Page 170]> ::=
 DROP ROLE <role_name>

<drop_sequence_statement [Page 141]> ::=
 DROP SEQUENCE [<owner>.]<sequence_name>

<drop_synonym_statement [Page 142]> ::=
 DROP [PUBLIC] SYNONYM [<owner>.]<synonym_name>

<drop_table_statement [Page 132]> ::=
 DROP TABLE <table_name> [<cascade_option>]

<drop_trigger_statement [Page 159]> ::=
 DROP TRIGGER <trigger_name> OF <table_name>

<drop_user_statement [Page 164]> ::=
 DROP USER <user_name> [<cascade_option>]

<drop_usergroup_statement [Page 165]> ::=
 DROP USERGROUP <usergroup_name> [<cascade_option>]

<drop_view_statement [Page 147]> ::=
 DROP VIEW <table_name> [<cascade_option>]

<duplicates_clause [Page 176]> ::=
 REJECT DUPLICATES
| IGNORE DUPLICATES
| UPDATE DUPLICATES

E
<equal_or_not [Page 59]> ::=
 <>
| =
| Ø = (for machines with EBCDIC code)
| ~= (for machines with ASCII code)

<exists_predicate [Page 60]> ::=
 EXISTS <subquery >

<exists_table_statement [Page 139]> ::=
 EXISTS TABLE <table_name >

<explain_statement [Page 209]> ::=
 EXPLAIN [(<result_table_name>)] <query_statement>
| EXPLAIN [(<result_table_name>)] <single_select_statement >

<exponent [Page 34]> ::=
 [<sign>][[<digit>]<digit>]<digit>

<expression [Page 52]> ::=
 <term>
| <expression> + <term>
| <expression> - <term>

<expression_list [Page 52]> ::=
 (<expression>,...)

Reference Manual: SAP DB 7.4 228

SAP AG April 2003

<extended_expression [Page 177]> ::=
 <expression>
| DEFAULT
| STAMP

<extended_letter [Page 31]> ::=
 #
| @
| $

<extended_value_spec [Page 49]> ::=
 <value_spec>
| DEFAULT
| STAMP

<extraction_function [Page 97]> ::=
 YEAR (<date_or_timestamp_expression >)
| MONTH (<date_or_timestamp_expression>)
| DAY (<date_or_timestamp_expression>)
| HOUR (<time_or_timestamp_expression >)
| MINUTE (<time_or_timestamp_expression>)
| SECOND (<time_or_timestamp_expression>)
| MICROSECOND (<expression>)
| TIMESTAMP (<expression>[, <expression>])
| DATE (<expression>)
| TIME (<expression>)

 F
<factor [Page 54]> ::=
 [<sign>] <value_spec>
| [<sign>] <column_spec>
| [<sign>] <function_spec>
| [<sign>] <set_function_spec>
| <scalar_subquery>
| <expression>

<fetch_statement [Page 205]> ::=
 FETCH [FIRST | LAST | NEXT | PREV | <position> | SAME]
[<result_table_name>]
 INTO <parameter_spec>,...

<final_select [Page 186]> ::=
 <select_statement>

<first_character [Page 37]> ::=
 <letter>
| <extended_letter>
| <language_specific_character>

<first_password_character [Page 42]> ::=
 <letter>
| <extended_letter>
| <language_specific_letter>
| <digit>

<fixed_point_literal [Page 33]> ::=
 [<sign>]<digit_sequence>[.<digit_sequence>]
| [sign]<digit_sequence>.
| [sign].<digit_sequence>

<floating_point_literal [Page 33]> ::=
 <mantissa>E<exponent>
| <mantissa>e<exponent>

Reference Manual: SAP DB 7.4 229

SAP AG April 2003

<formal_parameter [Page 152]> ::=
 IN <argument> <data_type>
| OUT <argument> <data_type>
| INOUT <argument> <data_type>

<from_clause [Page 196]> ::=
 FROM <from_table_spec>,...

<from_table_spec [Page 196]> ::=
 <table_name> [<reference_name>]
| <result_table_name> [<reference_name>]
| (<query_expression>) [<reference_name>]
| <joined_table>

<function_spec [Page 73]> ::=
 <arithmetic_function>
| <trigonometric_function>
| <string_function>
| <date_function>
| <time_function>
| <extraction_function>
| <special_function>
| <conversion_function>

G
<grant_statement [Page 170]> ::=
 GRANT <priv_spec>,... TO <grantee>,... [WITH GRANT OPTION]
| GRANT EXECUTE ON <dbproc_name> TO <grantee>,...
| GRANT SELECT ON <sequence_name> TO <grantee>,... [WITH GRANT
OPTION]

<grant_user_statement [Page 168]> ::=
 GRANT USER <granted_users> [FROM <user_name>] TO <user_name>

<grant_usergroup_statement [Page 168]> ::=
 GRANT USERGROUP <granted_usergroups> [FROM <user_name>] TO
<user_name>

<granted_usergroups [Page 168]> ::=
 <usergroup_name>,...
| *

<granted_users [Page 168]> ::=
 <user_name>,...
| *

<grantee [Page 171]> ::=
 PUBLIC
| <user_name>
| <usergroup_name>
| <role_name>

<group_clause [Page 199]> ::=
 GROUP BY <expression>,...

H
<having_clause [Page 200]> ::=
 HAVING <search_condition>

<hex_digit [Page 31]> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Reference Manual: SAP DB 7.4 230

SAP AG April 2003

| A | B | C | D | E | F
| a | b | c | d | e | f

<hex_digit_seq [Page 32]> ::=
 <hex_digit><hex_digit>
| <hex_digit_seq><hex_digit><hex_digit>

<hex_literal [Page 32]> ::=
 x''
| X''
| x'<hex_digit_seq>'
| X'<hex_digit_seq>'

<hours [Page 96]> ::=
 <expression>

I
<identifier [Page 36]> ::=
 <simple_identifier>
| <double quotes><special_identifier><double_quotes>

<identifier_tail_character [Page 37]> ::=
 <letter>
| <extended_letter>
| <language_specific_character>
| <digit>
| <underscore>

<if_statement [Page 154]> ::=
 IF <search_condition> THEN <statement> [ELSE <statement>]

<in_predicate [Page 61]> ::=
 <expression> [NOT] IN <subquery>
| <expression> [NOT] IN <expression_list>
| <expression_list> [NOT] IN <subquery>
| <expression_list> [NOT] IN (<expression_list>,...)

<index_name [Page 42]> ::=
 <identifier>

<indicator_name [Page 42]> ::=
 <parameter_name>

<initial_select [Page 186]> ::=
 <query_spec>

<insert_expression [Page 173]> ::=
 <extended_expression>
| <subquery>

<insert_statement [Page 173]> ::=
 INSERT [INTO] <table_name> [(<column_name>,...)]
 VALUES (<insert_expression>,...) [<duplicates_clause>]
| INSERT [INTO] <table_name> [(<column_name>,...)]
 <query_expression> [<duplicates_clause>]
| INSERT [INTO] <table_name> SET <set_insert_clause>,...
[<duplicates_clause>]

<integer [Page 34]> ::=
 [sign]<unsigned_integer>

Reference Manual: SAP DB 7.4 231

SAP AG April 2003

J
<join_predicate [Page 62]> ::=
 <expression> [<outer_join_indicator>] <comp_op> <expression>
[<outer_join_indicator>]

<join_spec> ::=
 ON <search_condition>

<joined_table [Page 197]> ::=
 <from_table_spec> CROSS JOIN <from_table_spec>
| <from_table_spec> [INNER] JOIN <from_table_spec> <join_spec>
| <from_table_spec> [<LEFT|RIGHT|FULL> [OUTER]] JOIN
 <from_table_spec> <join_spec>

K
<key_definition [Page 131]> ::
 PRIMARY KEY (<column_name>,...)

<key_or_not_null_spec [Page 124]> ::=
 [PRIMARY] KEY
| NOT NULL [WITH DEFAULT]

<key_spec [Page 52]> ::=
 <column_name> = <value_spec>

<key_word [Page 35]> ::=
 <not_reserved_key_word>
| <reserved_keyword>

L
<language_specific_character [Page 31]> ::=
 <every letter that occurs in a Northern, Central, or Southern
European language
 and is not included in the <letter> list>
| <for UNICODE-enabled databases: every character that is not
included in the ASCII code list from 0 to 127>

<letter [Page 30]> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

<like_expression [Page 64]> ::=
 <expression>
| '<pattern_element>...'

<like_predicate [Page 64]> ::=
 <expression> [NOT] LIKE <like_expression> [ESCAPE <expression>]

<literal [Page 31]> ::=
 <string_literal>
| <numeric_literal>

<local_variable [Page 153]> ::=
 <variable_name> <data_type>

<local_variable_list [Page 153]> ::=
 <local_variable>
| <local_variable_list>;<local_variable>

Reference Manual: SAP DB 7.4 232

SAP AG April 2003

<local_variables [Page 15]3 > ::=
 VAR <local_variable_list>;

<lock_option [Page 203]> ::=
 WITH LOCK [(IGNORE)|(NOWAIT)] [EXCLUSIVE | OPTIMISTIC] [ISOLATION
LEVEL <unsigned_integer>]

<lock_spec [Page 215]> ::=
 TABLE <table_name>,...
| <row_spec>...
| TABLE <table_name>,... <row_spec>...

<lock_statement [Page 215]> ::=
 LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN SHARE MODE
| LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN EXCLUSIVE MODE
| LOCK [(WAIT)|(NOWAIT)] <row_spec>... OPTIMISTIC
| LOCK [(WAIT)|(NOWAIT)] <lock_spec> IN SHARE MODE <lock_spec> IN
EXCLUSIVE MODE

M
<mantissa [Page 34]> ::=
 <fixed_point_literal>

<mapchar_set_name [Page 42]> ::=
 <identifier>

<match_char [Page 66]> ::=
 Every character except
 %
 | X'1F'
 | <underscore>
 | X'1E'

<match_set [Page 66]> ::=
 <underscore>
| X'1E'
| <match_char>

<match_string [Page 65]> ::=
 %
| X'1F'

<minutes [Page 96]> ::=
 <expression>

<modify_definition [Page 137]> ::=
 MODIFY (<column_name> [<data_type>] [<column_attributes>]...)

<monitor_statement [Page 219]> ::=
 MONITOR INIT

N
<named_query_expression [Page 191]> ::=
 <named_query_term>
| <named_query_expression> UNION [ALL] <query_term>
| <named_query_expression> EXCEPT [ALL] <query_term>

<named_query_primary [Page 192]> ::=
 <named_query_spec>
| (<named_query_expression>)

Reference Manual: SAP DB 7.4 233

SAP AG April 2003

<named_query_spec [Page 195]> ::=
 SELECT [<distinct_spec>] <result_table_name> (<select_column>,...)
<table_expression>

<named_query_term [Page 192]> ::=
 <named_query_primary>
| <named_query_term> INTERSECT [ALL] <query_primary>

<named_select_statement [Page 186]> ::=
 <named_query_expression> [<order_clause>] [<update_clause>]
[<lock_option>] [FOR REUSE]

<new_index_name [Page 149]> ::=
 <index_name>

<new_table_name [Page 138]> ::=
 <table_name>

<next_stamp_statement [Page 183]> ::=
 NEXT STAMP [INTO] <parameter_name>

<not_reserved_key_word [Page 36]> ::=

ACTION ACTIVATE ADABAS ADD ADDRESS

ADD_MONTHS AFTER ANALYZE AND ANSI

APPEND ARCHIVE AS ASC AT

AUTO AUTOSAVE

BACKUP_PAGES BAD BEFORE BEGIN BEGINLOA

BEGINPROC BETWEEN BLOCK BLOCKSIZE BOTH

BREAK BUFFER BUFFERPOOL BWHIERACHY BY

CACHE CACHELIMIT CACHES CALL CANCEL

CASCADE CAST CATALOG CATCH CHECKPOI

CLEAR CLOSE CLUSTER COMMENT COMMIT

COMPLETE COMPUTE CONFIG CONNECT CONSTRAI

CONTAINER CONTINUE COSTLIMIT COSTWARNING CREATE

CURRENT_DATE CURRENT_SCHEMA CURRENT_TIME CURRENT_TIMESTAMP CURRVAL

CURSOR CYCLE

DATA DAYS DB2 DBA DBFUNCTI

DBPROC DBPROCEDURE DB_ABOVE_LIMIT DB_BELOW_LIMIT DECLARE

DEFAULTCODE DEGREE DESC DESCRIBE DEVICE

DIAGNOSE DIMENSION DISABLE DIV DO

DOMAIN DROP DSETPASS DUPLICATES DYNAMIC

EDITPROC ELSE ENABLE END ENDLOAD

ESCAPE ESTIMATE EUR

EVENT EXCLUSIVE EXECUTE EXPLAIN EXPLICIT

EXTRACT

FACT FALSE FETCH FILE FLUSH

FORCE FOREIGN FORMAT FREEPAGE FVERSION

ENDPROC ERROR

Reference Manual: SAP DB 7.4 234

SAP AG April 2003

GET GRANT

HIGH HOLD HOURS

IF IMPLICIT IN INCREMEN

INDEXNAME INDICATOR INFO INIT INITRANS

INOUT INPROC INSTANCE INSTR IS

ISO ISOLATION

JAVA JIS

KEEP

LABEL LANGUAGE LAST_DAY LEADING LEVEL

LIKE LOAD LOCAL LOCK LOGFULL

LOGWRITER LOG_ABOVE_LIMIT LOW

MAXTRANS MAXVALUE MEDIANAME MEDIUM MICROSEC

MIGRATE MINUS MINUTES MINVALUE MODE

MODIFY MONITOR MONTHS MONTHS_BETWEEN

NEW_TIME NEXTVAL NEXT_DAY

NLSSORT NLS_DATE_FORMAT NLS_DATE_LANGUAGE NLS_LANGUAGE NLS_SORT

NOCACHE NOCYCLE NOLOG NOMAXVALUE NOMINVAL

NONE NOORDER NOREWIND NORMAL NOSORT

NOWAIT NUMBER NVL

OBID OFF ONLY OPEN OPTIMIST

OPTIMIZE OPTION OR ORACLE OUT

OUTER OVERWRITE

PACKAGE PAGE PAGES PARAM PARSE

PARSEID PASSWORD PCTFREE PCTUSED PERCENT

PING PIPE POS PRECISION PREPARE

PRIV PRIVILEGES PROC PROCEDURE PSM

PUBLIC

QUICK

RANGE RAW RAWTOHEX READ RECURSIV

REFERENCES REGISTER RELEASE REMOTE REMOVE

RENAME RESOURCE RESTART RESTORE RESTRICT

RESUME RETURN RETURNS REUSE REVOKE

ROLE ROLLBACK ROW ROWNUM ROWS

SAME SAMPLE SAPR3 SAVE SAVEPOIN

SCHEMA SECONDS SEGMENT SELECTIVITY SEQUENCE

SERVERDB SESSION SHARE SHUTDOWN SIMILAR

SOUNDS SQLID SQLMODE STANDARD STANDBY

START STARTPOS STAT STATE STOP

IDENTIFIED

NAME NEW

Reference Manual: SAP DB 7.4 235

SAP AG April 2003

STORAGE SUBPAGES SUBTRANS SUSPEND SWITCH

SYNCHRONIZE SYNONYM SYSDATE

TABID TABLESPACE TAKEOVER TAPE TEMP

THEN TIMEOUT TOPIC TO_CHAR TO_DATE

TO_NUMBER TRACE TRAILING TRIGGER TRUE

TRY TYPE

UNKNOWN UNLOAD UNLOCK UNTIL

UNUSED USA USAGE USERID

VALIDPROC VARCHAR2 VARYING VERIFY VERSION

VIEW VOLUME VSIZE VTRACE

WAIT WHENEVER WHILE WORK WRITE

WRITER

YEARS

UNIQUE

<null_predicate [Page 67]> ::=
 <expression> IS [NOT] NULL

<numeric_literal [Page 33]> ::=
 <fixed_point_literal >
| <floating_point_literal>

O
<object_spec [Page 150]> ::=
 COLUMN <table_name>.<column_name>
| DBPROC[EDURE] <dbproc_name>
| DOMAIN <domain_name>
| FOREIGN KEY <table_name>.<referential_constraint_name>
| INDEX <index_name> ON <table_name>
| SEQUENCE <sequence_name>
| [PUBLIC] SYNONYM <synonym_name>
| TABLE <table_name>
| TRIGGER <trigger_name>.<table_name>
| USER <user_name>
| USERGROUP <usergroup_name>
| <parameter_name>

<old_index_name [Page 14]9 > ::=
 <index_name>

<old_table_name [Page 138]> ::=
 <table_name>

<open_cursor_statement [Page 204]> ::=
 OPEN <result_table_name>

<order_clause [Page 202]> ::=
 ORDER BY <sort_spec>,...

<outer_join_inidicator [Page 62]> ::=
 (+)

<owner [Page 41]> ::=
 <user_name>

Reference Manual: SAP DB 7.4 236

SAP AG April 2003

| <usergroup_name>
| TEMP

 P
<parameter_name [Page 43]> ::=
 :<identifier>
| :<identfier>(<identifier>)
| :<identfier>(.<identifier>.)

<parameter_spec [Page 48]> ::=
 <parameter_name> [<indicator_name>]

<password [Page 42]> ::=
 <identifier>
| <first_password_character>[<identifier_tail_character>...]

<pattern_element [Page 65]> ::=
 <match_string>
| <match_set>

<position [Page 205]> ::=
 POS (<unsigned_integer>)
| POS (<parameter_spec>)
| ABSOLUTE <integer>
| ABSOLUTE <parameter_spec>
| RELATIVE <integer>
| RELATIVE <parameter_spec>

<predicate [Page 55]> ::=
 <between_predicate>
| <bool_predicate>
| <comparison_predicate>
| <default_predicate>
| <exists_predicate>
| <in_predicate>
| <join_predicate>
| <like_predicate>
| <null_predicate>
| <quantified_predicate>
| <rowno_predicate>
| <sound_predicate>

<priv_spec [Page 17]1 > ::=
 ALL [PRIV[ILEGES]] ON [TABLE] <table_name>,...
| <privilege>,... ON [TABLE] <table_name>,...
| <role_name>

<privilege [Page 43]> ::=
 INSERT
| UPDATE [(<column_name>,...)]
| SELECT [(<column_name>,...)]
| SELUPD [(<column_name>,...)]
| DELETE
| INDEX
| ALTER
| REFERENCES [(<column_name>,...)]

<procedure_name [Page 40]> ::=
 <identifier>

Reference Manual: SAP DB 7.4 237

SAP AG April 2003

Q
<quantified_predicate [Page 67]> ::=
 <expression> <comp_op> <quantifier> <expression_list>
| <expression> <comp_op> <quantifier> <subquery>
| <expression_list> <equal_or_not> <quantifier>
(<expression_list>,...)
| <expression_list> <equal_or_not> <quantifier> <subquery>

<quantifier [Page 69]> ::=
 ALL
| SOME
| ANY

<query_expression [Page 189]> ::=
 <query_term>
| <query_expression> UNION [ALL] <query_term>
| <query_expression> EXCEPT [ALL] <query_term>

<query_primary [Page 190]> ::=
 <query_spec>
| (<query_expression>)

<query_spec [Page 192]> ::=
 SELECT [<distinct_spec>] <select_column>,... <table_expression>

<query_statement [Page 18]4 > ::=
 <declare_cursor_statement>
| <recursive_declare_cursor_statement>
| <named_select_statement>
| <select_statement>

<query_term [Page 190]> ::=
 <query_primary>
| <query_term> INTERSECT [ALL] <query_primary>

 R
<recursive_declare_cursor_statement [Page 186]> ::=
 DECLARE <result_table_name> CURSOR FOR WITH RECURSIVE
<reference_name> (<alias_name>,...) AS (<initial_select> UNION
ALL <recursive_select>) <final_select>

<recursive_select [Page 186]> ::=
 <query_spec>

<reference_name [Page 45]> ::=
 <identifier>

<referenced_column [Page 128]> ::=
 <column_name>

<referenced_table [Page 12]8 > ::=
 <table_name>

<referencing_column [Page 128]> ::=
 <column_name>

<referential_constraint_definition [Page 12]8 > ::=
 FOREIGN KEY [<referential_constraint_name>]
(<referencing_column>,...)
 REFERENCES <referenced_table> [(<referenced_column>,...)]
[<delete_rule>]

Reference Manual: SAP DB 7.4 238

SAP AG April 2003

<referential_constraint_name [Page 44]> ::=
 <identifier>

<regular_token [Page 35]> ::=
 <literal>
| <key_word>
| <identifier>
| <parameter_name>

<release_statement [Page 217]> ::=
 COMMIT [WORK] RELEASE
| ROLLBACK [WORK] RELEASE

<rename_column_statement [Page 139]> ::=
 RENAME COLUMN <table_name>.<column_name> TO <column_name>

<rename_index_statement [Page 149]> ::=
 RENAME INDEX <old_index_name> [ON <table_name>] TO <new_index_name>

<rename_synonym_statement [Page 14]3 > ::=
 RENAME [PUBLIC] SYNONYM <old_synonym_name> TO <new_synonym_name>

<rename_table_statement [Page 138]> ::=
 RENAME TABLE <old_table_name> TO <new_table_name>

<rename_user_statement [Page 167]> ::=
 RENAME USER <user_name> TO <new_user_name>

<rename_usergroup_statement [Page 168]> ::=
 RENAME USERGROUP <usergroup_name> TO <new_usergroup_name>

<rename_view_statement [Page 147]> ::=
 RENAME VIEW <old_table_name> TO <new_table_name>

<reserved_key_word [Page 36]> ::=

ABS ABSOLUTE ACOS ADDDATE ADDTIME

ALL ALPHA ALTER ANY ASCII

ASIN ATAN ATAN2 AVG

BINARY BIT BOOLEAN BYTE

CASE CEIL CEILING CHAR CHARACTER

COLUMN CONCAT CONSTRAINT

COS COSH COT COUNT CROSS

CURDATE CURRENT CURTIME

DATABASE DATE DATEDIFF DAY DAYNAME

DAYOFMONTH DAYOFWEEK DAYOFYEAR DBYTE DEC

DECIMAL DECODE DEFAULT DEGREES DELETE

DIGITS DISTINCT DOUBLE

EBCDIC EXCEPT EXISTS EXP EXPAND

FIRST FIXED FLOAT FLOOR FOR

FROM FULL

GET_OBJECTNAME GET_OWNER GRAPHIC GREATEST GROUP

HAVING HEX HEXTORAW HOUR

IFNULL IGNORE INDEX INITCAP INNER

CHECK CHR

Reference Manual: SAP DB 7.4 239

SAP AG April 2003

INSERT INT INTEGER INTERNAL INTERSECT

INTO

JOIN

KEY

LAST LCASE LEAST LEFT LENGTH

LFILL LINK LIST LN LOCATE

LOG LOG10 LONG LONGFILE LOWER

MAKEDATE MAKETIME MAPCHAR MAX MBCS

MICROSECOND MIN MINUTE MOD MONTH

MONTHNAME

NATURAL NCHAR NEXT NO NOROUND

NOT NOW NULL NUM NUMERIC

OBJECT OF ON ORDER

PACKED PI POWER PREV PRIMARY

RADIANS REAL REJECT RELATIVE REPLACE

RFILL RIGHT ROUND ROWID ROWNO

RPAD RTRIM

SECOND SELECT SELUPD SERIAL SET

SHOW SIGN SIN SINH SMALLINT

SOME SOUNDEX SPACE SQRT STAMP

SUBDATE SUBSTR SUBSTRING

SUBTIME SUM SYSDBA

TAN TANH TIME

TIMESTAMP TIMEZONE TO TOIDENTIFIER TRANSACTION

TRUNC

UID UNICODE UPDATE

UPPER USER USERGROUP USING UTCDATE

VALUE VALUES VARCHAR VARGRAPHIC VARIANCE

WEEKOFYEAR WHEN WITH

ZONED

LPAD LTRIM

STATISTICS STDDEV

TABLE TIMEDIFF

TRANSLATE TRIM TRUNCATE

UCASE UNION

UTCDIFF

WEEK WHERE

YEAR

<result_column_name [Page 19]3 > ::=
 <identifier>

<result_table_name [Page 41]> ::=
 <identifier>

<revoke_statement [Page 172]> ::=
 REVOKE <priv_spec>,... FROM <grantee>,... [<cascade_option>]
| REVOKE EXECUTE ON <dbproc_name> FROM <grantee>,...

Reference Manual: SAP DB 7.4 240

SAP AG April 2003

| REVOKE SELECT ON <sequence_name> FROM <grantee>,...
[<cascade_option>]

<role_name [Page 45]> ::=
 <identifier>

<rollback_statement [Page 213]> ::=
 ROLLBACK [WORK]

<routine [Page 153]> ::=
 [<local_variables>] <statement_list>;

<routine_sql_statement [Page 15]4 > ::=
 <call_statement>
| <close_statement>
| <create_table_temp>
| <declare_cursor_statement>
| <delete_statement>
| <fetch_statement>
| <insert_statement>
| <lock_statement>
| <select_statement>
| <named_select_statement>
| <single_select_statement>
| <subtrans_statement>
| <update_statement>

<row_spec [Page 21]6 > ::=
 ROW <table_name> KEY <key_spec>,...
| ROW <table_name> CURRENT OF <result_table_name>

<rowno_column [Page 19]3 > ::=
 ROWNO [<result_column_name>]
| <result_column_name> = ROWNO

<rowno_predicate [Page 69]> ::=
 ROWNO < <unsigned_integer>
| ROWNO < <parameter_spec>
| ROWNO <= <unsigned_integer>
| ROWNO <= <parameter_spec>

S
<sample_definition [Page 11]7 > ::=
 SAMPLE <unsigned_integer> ROWS
| SAMPLE <unsigned_integer> PERCENT

<scalar_subquery [Page 201]> ::=
 <subquery>

<search_and_result_spec [Page 99]> ::=
 <search_expression>, <result_expression>

<search_condition [Page 70]> ::=
 <boolean_term>
| <search_condition> OR <boolean_term>

<searched_case_function [Page 101]> ::=
 WHEN <search_condition> THEN <result_expression>
 [...]
 [ELSE <default_expression>]
END

<searched_case_statement [Page 156]> ::=
 CASE

Reference Manual: SAP DB 7.4 241

SAP AG April 2003

 <searched_case_when_clause>…
 [<case_else_clause>]
 END [CASE]

<searched_case_when_clause [Page 15]6 > ::=
 WHEN <search_condition> THEN <statement>

<seconds [Page 96]> ::=
 <expression>

<select_column [Page 19]3 > ::=
 <table_columns>
| <derived_column>
| <rowno_column>
| <stamp_column>

<select_statement [Page 18]8 > ::=
 <query_expression> [<order_clause>] [<update_clause>]
[<lock_option>]
 [FOR REUSE]

<sequence_name [Page 45]> ::=
 <identifier>

<set_function_name [Page 108]> ::=
 COUNT
| MAX
| MIN
| SUM
| AVG
| STDDEV
| VARIANCE

<set_function_spec [Page 105]> ::=
 COUNT (*)
| <distinct_function>
| <all_function>

<set_insert_clause [Page 17]8 > ::=
 <column_name> = <extended_value_spec>

<set_statement [Page 212]> ::=
 SET ROLE ALL [EXCEPT <role_name>]
| SET ROLE NONE
| SET ROLE <role_name> [IDENTIFIED BY <password>]
| SET ISOLATION LEVEL <unsigned_integer>

<set_update_clause [Page 180]> ::=
 <column_name> = <extended_expression >
| <column_name>,... = (<extended_expression>,...)
| (<column_name>,...) = (<extended_expression>,...)
| <column_name> = <subquery>
| (<column_name>,...) = <subquery>

<sign [Page 33]> ::=
 +
| -

<simple_case_function [Page 10]2 > ::=
 CASE <check_expression>,
 WHEN <search_expression> THEN <result_expression>
 [...]
 [ELSE <default_expression>]
 END

Reference Manual: SAP DB 7.4 242

SAP AG April 2003

<simple_case_statement [Page 157]> ::=
 CASE <expression>
 <simple_case_when_clause>...
 [<case_else_clause>]
 END [CASE]

<simple_case_when_clause [Page 15]7 > ::=
 WHEN <literal>[, ...] THEN <statement>

<simple_identifier [Page 36]> ::=
 <first_character>[<identifier_tail_character>...]

<single_select_statement [Page 208]> ::=
 SELECT [<distinct_spec>] <select_column>,... INTO
<parameter_spec>,...
 FROM <from_table_spec>,...[<where_clause>] [<group_clause>]
 [<having_clause>] [<lock_option>]

<sort_spec [Page 202]> ::=
 <unsigned_integer> [ASC | DESC]
| <expression> [ASC | DESC]

<sound_predicate [Page 70]> ::=
 <expression> [NOT] SOUNDS [LIKE] <expression>

<source_user [Page 160]> ::=
 <user_name>

<special_character [Page 31]> ::=
 every character except
 <digit>
 | <letter>
 | <extended_letter>
 | <hex_digit>
 | <language_specific_character >
 | <character for the end of a line in a file>

<special_function [Page 99]> ::=
 VALUE (<expression>,<expression>,...)
| GREATEST (<expression>,<expression>,...)
| LEAST (<expression>,<expression>,...)
| DECODE
(<check_expression>,<search_and_result_spec>,...[,<default_expression
>])
| case_function

<special_identifier [Page 37]> ::=
 <special_identifier_character>...

<special_identifier_character [Page 37]> ::=
 Any character

<sql_comment [Page 111]> ::=
 /*<comment text>*/
| --<comment text>

<stamp_column [Page 19]3 > ::=
 STAMP [<result_column_name>]
| <result_column_name> = STAMP

<statement [Page 154]> ::=
 BEGIN <statement_list> END
| BREAK
| CONTINUE
| CONTINUE EXECUTION
| <if_statement>

Reference Manual: SAP DB 7.4 243

SAP AG April 2003

| <while_statement>
| <assignment_statement>
| <case_statement>
| RETURN
| STOP (<expression> [,<expression>])
| TRY <statement_list>; CATCH <statement>
| <routine_sql_statement>

<statement_list [Page 154]> ::=
 <statement>
| <statement_list> ; <statement>

<string_function [Page 81]> ::=
 <string_spec> || <string_spec>
| <string_spec> & <string_spec>
| SUBSTR (<string_spec>,<expression>[,<expression>])
| LFILL (<string_spec>,<string_literal>[,<unsigned_integer>])
| RFILL (<string_spec>,<string_literal>[,<unsigned_integer>])
| LPAD
(<string_spec>,<expression>,<string_literal>[,<unsigned_integer>])
| RPAD
(<string_spec>,<expression>,<string_literal>[,<unsigned_integer>])
| TRIM (<string_spec>[,<string_spec>])
| LTRIM (<string_spec>[,<string_spec>])
| RTRIM (<string_spec>[,<string_spec>])
| EXPAND (<string_spec>,<unsigned_integer>)
| UPPER (<string_spec>)
| LOWER (<string_spec>)
| INITCAP (<string_spec>)
| REPLACE (<string_spec>,<string_spec>[,<string_spec>])
| TRANSLATE (<string_spec>,<string_spec>,<string_spec>)
| MAPCHAR (<string_spec>[,<unsigned_integer>][,<mapchar_set_name>])
| ALPHA (<string_spec>[,<unsigned_integer>])
| ASCII (<string_spec>)
| EBCDIC (<string_spec>)
| SOUNDEX (<string_spec>)
| GET_OBJECTNAME (<string_literal)
| GET_OWNER (<string_literal>)

<string_literal [Page 32]> ::=
 ''
| '<character>...'
| <hex_literal>

<string_spec [Page 52]> ::=
 <expression >

<subquery [Page 200]> ::=
 (<query_expression>)

<subtrans_statement [Page 214]> ::=
 SUBTRANS BEGIN
| SUBTRANS END
| SUBTRANS ROLLBACK

<synonym_name [Page 46]> ::=
 <identifier>

T
<table_columns [Page 193]> ::=
 *

Reference Manual: SAP DB 7.4 244

SAP AG April 2003

| <table_name>.*
| <reference_name>.*

<table_description_element [Page 115]> ::=
 <column_definition>
| <constraint_definition>
| <referential_constraint_definition>
| <key_definition>
| <unique_definition>

<table_expression [Page 19]5 > ::=
 <from_clause> [<where_clause>] [<group_clause>] [<having_clause>]

<table_name [Page 47]> ::=
 [<owner>.]<identifier>

<term [Page 52]> ::=
 <factor>
| <term> * <factor>
| <term> / <factor>
| <term> DIV <factor>
| <term> MOD <factor>

time_expression [Page 96]> ::=
 <expression>

<time_or_timestamp_expresion [Page 97]> ::=
 <expression>

<time_function [Page 95]> ::=
 ADDTIME (<time_or_timestamp_expression>, <time_expression>)
| SUBTIME (<time_or_timestamp_expression>, <time_expression>)
| TIMEDIFF (<time_or_timestamp_expression>,
<time_or_timestamp_expression>)
| MAKETIME (<hours>, <minutes>, <seconds>)

<trigger_event [Page 158]> ::
 INSERT
| UPDATE [(<column_list>)]
| DELETE

<trigger_name [Page 47]> ::=
 <identifier>

<trigonometric_function [Page 80]> ::=
 COS (<expression>)
| SIN (<expression>)
| TAN (<expression>)
| COT (<expression>)
| COSH (<expression>)
| SINH (<expression>)
| TANH (<expression>)
| ACOS (<expression>)
| ASIN (<expression>)
| ATAN (<expression>)
| ATAN2 (<expression>, <expression>)
| RADIANS (<expression>)
| DEGREES (<expression>)

U
<underscore [Page 37]> ::=
 _

Reference Manual: SAP DB 7.4 245

SAP AG April 2003

<unique_definition [Page 132]> ::=
 [CONSTRAINT <index_name>] UNIQUE (<column_name>,...)

<unlock_statement [Page 216]> ::=
 UNLOCK <row_spec>... IN SHARE MODE
| UNLOCK <row_spec>... IN EXCLUSIVE MODE
| UNLOCK <row_spec>... IN SHARE MODE <row_spec>... IN EXCLUSIVE MODE
| UNLOCK <row_spec>... OPTIMISTIC

<unsigned_integer [Page 34]> ::=
 <numeric_literal>

<update_clause [Page 20]3 > ::=
 FOR UPDATE [OF <column_name>,...] [NOWAIT]

<update_statement [Page 178]> ::=
 UPDATE [OF] <table_name> [<reference_name>] SET
<set_update_clause>,...
 [KEY <key_spec>,...] [WHERE <search_condition>]
| UPDATE [OF] <table_name> [<reference_name>] (<column_name>,...)
 VALUES (<extended_value_spec>,...) [KEY <key_spec>,...]
 [WHERE <search_condition>]
| UPDATE [OF] <table_name> [<reference_name>] SET
<set_update_clause>,...
 WHERE CURRENT OF <result_table_name>
| UPDATE [OF] <table_name> [<reference_name>] (<column_name>,...)
 VALUES (<extended_value_spec>,...) WHERE CURRENT OF
<result_table_name>

<update_statistics_statement [Page 217]> ::=
 UPDATE STAT[ISTICS] COLUMN <table_name>.<column_name>
 [ESTIMATE [<sample_definition>]]
| UPDATE STAT[ISTICS] COLUMN (<column_name>,...) FOR <table_name>
 [ESTIMATE [<sample_definition>]]
| UPDATE STAT[ISTICS] COLUMN (*) FOR <table_name>
 [ESTIMATE [<sample_definition>]]
| UPDATE STAT[ISTICS] <table_name> [ESTIMATE [<sample_definition>]]
| UPDATE STAT[ISTICS] [<owner>.][<identifier>]* [ESTIMATE
[<sample_definition>]]

<user_mode [Page 162]> ::=
 DBA
| RESOURCE
| STANDARD

<user_name [Page 40]> ::=
 <identifier>

<usergroup_mode [Page 164]> ::=
 RESOURCE
| STANDARD

<usergroup_name [Page 39]> ::=
 <identifier>

V
<value_spec [Page 49] > ::=
 <literal>
| <parameter_spec>
| NULL
| USER
| USERGROUP
| SYSDBA

Reference Manual: SAP DB 7.4 246

SAP AG April 2003

Reference Manual: SAP DB 7.4 247

| UID
| [<owner >.]<sequence_name>.NEXTVAL
| [<owner>.]<sequence_name>.CURRVAL
| <table_name>.CURRVAL
| DATE
| TIME
| TIMESTAMP
| UTCDATE
| TIMEZONE
| UTCDIFF
| TRUE
| FALSE
| TRANSACTION

<variable_name [Page 15]4 > ::=
 <identifier>

<where_clause [Page 19]8 > ::=
 WHERE <search_condition>

<while_statement [Page 15]4 > ::=
 WHILE <search_condition> DO <statement>

	Concepts
	Data Type
	NULL value
	Special NULL value
	Character string
	LONG column
	Number
	Date value
	Time value
	Timestamp value
	BOOLEAN
	Code Attribute
	UNICODE
	Code tables
	ASCII code
	EBCDIC code
	SERIAL
	Parameter
	Table
	Column
	Domain
	Index
	Synonym
	Users and Usergroups
	Privilege
	Role
	Database Catalog/Application Data
	Transaction
	Subtransaction
	Database Session
	Data integrity
	Database procedure
	Trigger
	SQL mode
	Basic Elements
	Character
	Digit
	Letter
	Extended letter
	hex_digit
	language_specific_character
	Special character
	Literal (literal)
	String Literal (string_literal)
	hex_literal
	hex_digit_seq
	Numeric Literal (numeric_literal)
	Fixed point literal
	Sign
	Digit sequence
	Floating point literal
	Mantissa
	Exponent
	Unsigned integer
	Integer
	Token
	Regular token
	Keyword
	Not reserved keyword
	Reserved keyword
	Identifier
	Simple Identifier (simple_identifier)
	First character
	Identifier tail character
	Underscore
	Double quotes
	Special Identifier (special_identifier)
	Delimiter token
	Names
	Alias name
	Usergroup name
	User name
	Constraint name
	Name of a database procedure (dbproc_name)
	Domain name
	Owner
	Result table name
	Index name
	Indicator name
	Mapchar Set Name (mapchar_set_name)
	Password
	Parameter name
	Privilege type (privilege)
	Name of a referential constraint (referential_constraint_name)
	Reference name
	Role Name (role_name)
	Sequence name
	Column name
	Synonym name
	Table name
	Trigger Name (trigger_name)
	Column specification (column_spec)
	Parameter specification (parameter spec)
	Specifying values (extended value spec)
	Specifying Values (value_spec)
	Date and time format (datetimeformat)
	Specifying a string (string spec)
	Specifying a Key (key_spec)
	Expression
	factor
	Predicate (predicate)
	BETWEEN predicate (between_predicate)
	Boolean predicate (bool_predicate)
	Comparison Predicate (comparison_predicate)
	Comparison operators (comp_op)
	Comparison operators (equal_or_not)
	DEFAULT predicate
	EXISTS Predicate (exists_predicate)
	IN Predicate (in_predicate)
	JOIN Predicate (join_predicate)
	LIKE Predicate (like_predicate)
	Pattern element
	match_string
	match_set
	NULL predicate
	Quantified Predicate (quantified_predicate)
	Quantifier
	ROWNO Predicate (rowno_predicate)
	SOUNDS predicate
	Search Condition (search_condition)
	Boolean factor
	Functions: Overview
	Function (function_spec)
	Arithmetic function
	ABS(a)
	CEIL(a)
	EXP(a)
	FIXED(a,p,s)
	FLOAT(a,s)
	FLOOR(a)
	INDEX(a,b,p,s)
	LENGTH(a)
	LN(a)
	LOG(a,b)
	NOROUND(a)
	PI
	POWER(a,n)
	ROUND(a,n)
	SIGN(a)
	SQRT(a)
	TRUNC(a,n)
	Trigonometric function
	String Function (string_function)
	ALPHA(x,n)
	ASCII/EBCDIC(x)
	EXPAND(x,n)
	GET_OBJECTNAME(x,o)
	GET_OWNER(x,o)
	INITCAP(x)
	LFILL(x,a,n)
	LPAD(x,a,y,n)
	LTRIM(x,y)
	MAPCHAR(x,n,i)
	REPLACE(x,y,z)
	RFILL(x,a,n)
	RPAD(x,a,y,n)
	RTRIM(x,y)
	SOUNDEX(x)
	SUBSTR(x,a,b)
	TRANSLATE(x,y,z)
	TRIM(x,y)
	UPPER/LOWER(x)
	Concatenation (concatenation)
	Date function
	ADDDATE/SUBDATE(t,a)
	DATEDIFF(t,s)
	DAYNAME/MONTHNAME(t)
	DAYOFWEEK/WEEKOFYEAR/DAYOFMONTH/DAYOFYEAR(t)
	MAKEDATE(a,b)
	date_or_timestamp_expression
	Time function
	ADDTIME/SUBTIME(t,a)
	MAKETIME(h,m,s)
	TIMEDIFF(t,s)
	hours/minutes/seconds
	Time expression
	Time or timestamp expression
	Extraction function
	DATE(a)
	HOUR/MINUTE/SECOND(t)
	MICROSECOND(a)
	TIME(a)
	TIMESTAMP(a,b)
	YEAR/MONTH/DAY(t)
	Special Function (special_function)
	DECODE(x,y(i),...,z)
	GREATEST/LEAST(x,y,...)
	VALUE(x,y,...)
	General CASE Function (searched_case_function)
	Simple CASE Function (simple_case_function)
	Conversion Function (conversion_function)
	CHAR(a,t)
	CHR(a,n)
	HEX(a)
	HEXTORAW(a)
	NUM(a)
	Set Function (set_function_spec)
	DISTINCT Function (distinct_function)
	ALL function
	Set function name
	AVG
	COUNT
	MAX/MIN
	STDDEV
	SUM
	VARIANCE
	SQL Statement: Overview
	Comment (sql_comment)
	Example Tables
	customer
	hotel
	room
	reservation
	Data definition
	CREATE TABLE Statement (create_table_statement)
	SAMPLE definition
	Column Definition (column_definition)
	Data Type (data_type)
	CHAR[ACTER]
	VARCHAR
	LONG[VARCHAR]
	BOOLEAN
	FIXED
	FLOAT
	INT[EGER]
	SMALLINT
	DATE
	TIME
	TIMESTAMP
	Memory requirements of a column value per data types
	Column Attributes (column_attributes)
	DEFAULT Specification (default_spec)
	CONSTRAINT definition (constraint_definition)
	Referential CONSTRAINT definition (referential_constraint_definition)
	DELETE rule
	CASCADE dependency
	Reference cycle
	Matching row
	Key Definition (key_definition)
	UNIQUE Definition (unique_definition)
	DROP TABLE statement
	CASCADE option
	ALTER TABLE statement
	ADD Definition (add_definition)
	ALTER definition
	COLUMN change definition
	DROP definition
	MODIFY definition
	RENAME TABLE statement
	RENAME COLUMN statement
	EXISTS TABLE statement
	CREATE DOMAIN statement
	DROP DOMAIN statement
	CREATE SEQUENCE Statement (create_sequence_statement)
	DROP SEQUENCE statement
	CREATE SYNONYM statement
	DROP SYNONYM statement
	RENAME SYNONYM statement
	CREATE VIEW Statement (create_view_statement)
	Complex view table
	Updateable View Table
	INSERT privilege for the owner of the view table
	UPDATE privilege for the owner of the view table
	DELETE privilege for the owner of the view table
	Updateable join view table
	DROP VIEW statement
	RENAME VIEW statement
	CREATE INDEX Statement (create_index_statement)
	DROP INDEX Statement (drop_index_statement)
	ALTER INDEX Statement (alter_index_statement)
	RENAME INDEX statement
	COMMENT ON Statement (comment_on_statement)
	CREATE DBPROC Statement (create_dbproc_statement)
	routine
	statement
	General CASE Statement (searched_case_statement)
	Simple CASE Statement (simple_case_statement)
	DROP DBPROC statement
	CREATE TRIGGER Statement (create_trigger_statement)
	DROP TRIGGER statement
	Authorization
	CREATE USER Statement (create_user_statement)
	User mode
	CREATE USERGROUP Statement (create_usergroup_statement)
	Usergroup name
	DROP USER statement
	DROP USERGROUP statement
	ALTER USER Statement (alter_user_statement)
	ALTER USERGROUP Statement (alter_usergroup_statement)
	RENAME USER statement
	RENAME USERGROUP statement
	GRANT USER Statement (grant_user_statement)
	GRANT USERGROUP Statement (grant_usergroup_statement)
	ALTER PASSWORD statement
	CREATE ROLE Statement (create_role_statement)
	DROP ROLE Statement (drop_role_statement)
	GRANT Statement (grant_statement)
	Privilege specification (priv_spec)
	grantee
	REVOKE Statement (revoke_statement)
	Data Manipulation
	INSERT Statement (insert_statement)
	Data type of the target column and inserted value
	Join View Table in INSERT Statement
	QUERY Expression in INSERT Statement
	DUPLICATES clause
	Constraint Definition in INSERT Statement
	Trigger in INSERT Statement
	Extended expression
	SET INSERT clause
	UPDATE Statement
	SET UPDATE clause
	Column combination for a given column of a join view table
	DELETE statement
	NEXT STAMP statement
	CALL Statement (call_statement)
	Data Query
	QUERY statement
	Named/Unnamed Result Table
	DECLARE CURSOR statement
	Recursive DECLARE CURSOR statement
	SELECT Statement (named_select_statement)
	SELECT Statement (select_statement)
	QUERY expression (query expression)
	QUERY term (query_term)
	QUERY expression (named query expression)
	QUERY term (named query term)
	QUERY specification (query_spec)
	DISTINCT function (distinct spec)
	Selected Column (select_column)
	QUERY specification (named_query_spec)
	Table expression
	FROM clause
	FROM TABLE specification (from_table_spec)
	joined_table
	WHERE Clause (where_clause)
	GROUP Clause (group_clause)
	HAVING clause
	Subquery
	Correlated Subquery
	Scalar Subquery (scalar_subquery)
	ORDER Clause (order_clause)
	UPDATE Clause (update_clause)
	LOCK Option (lock_option)
	OPEN CURSOR statement
	FETCH statement
	CLOSE statement
	SINGLE SELECT statement
	EXPLAIN Statement (explain_statement)
	Transaction
	CONNECT Statement (connect_statement)
	SET Statement (set_statement)
	COMMIT Statement (commit_statement)
	ROLLBACK Statement (rollback_statement)
	SUBTRANS Statement (subtrans_statement)
	LOCK Statement(lock_statement)
	ROW specification (row spec)
	UNLOCK Statement (unlock_statement)
	RELEASE Statement (release_statement)
	Statistics
	UPDATE STATISTICS Statement (update_statistics_statement)
	MONITOR Statement (monitor_statement)
	Restrictions
	Syntax List
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

