

Optimizer: SAP DB

Vers ion 7 .4

SAP AG April 2003

Copyright

© Copyright 2003 SAP AG.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation.
For more information on the GNU Free Documentaton License see
http://www.gnu.org/copyleft/fdl.html#SEC4.

Optimizer: SAP DB 7.4 2

SAP AG April 2003

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Typographic Conventions

Type Style Description

Example text Words or characters that appear on the screen. These include field
names, screen titles, pushbuttons as well as menu names, paths and
options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, titles of graphics and tables.

EXAMPLE TEXT Names of elements in the system. These include report names,
program names, transaction codes, table names, and individual key
words of a programming language, when surrounded by body text, for
example, SELECT and INCLUDE.

Example text Screen output. This includes file and directory names and their paths,
messages, source code, names of variables and parameters as well as
names of installation, upgrade and database tools.

EXAMPLE TEXT Keys on the keyboard, for example, function keys (such as F2) or the
ENTER key.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Pointed brackets indicate that you replace these
words and characters with appropriate entries.

Optimizer: SAP DB 7.4 3

SAP AG April 2003

Optimizer: SAP DB 7.4 .. 6
Factors that Influence the Processing of an SQL Statement... 6
Runtime Improvement for SQL Applications.. 7
Search Condition ... 8

Equality Condition .. 8

Area Condition.. 8

IN Condition.. 9

LIKE Condition ... 9

Search Strategy ... 10
Sequential Search .. 10

Search Conditions for Key Columns .. 10

Search Conditions for Inverted Columns ... 11

Examples: Search Conditions for Inverted Columns.. 11

Search Conditions for UPDATE Statements.. 12

Cost Determination... 12

Search Conditions Linked with OR .. 13

Postponement of the Search to the FETCH Time.. 13

Join ... 14

List of All Search Strategies ... 15

CATALOG KEY ACCESS... 16

CATALOG SCAN.. 16

CATALOG SCAN USING USER EQUAL CONDITION ... 16

DIFFERENT STRATEGIES FOR OR-TERMS... 16

EQUAL CONDITION FOR INDEX.. 17

EQUAL CONDITION FOR INDEX (SUBQ) .. 17

EQUAL CONDITION FOR KEY COLUMN... 17

EQUAL CONDITION FOR KEY COLUMN (SUBQ) ... 17

IN CONDITION FOR INDEX .. 17

IN CONDITION FOR KEY COLUMN ... 18

JOIN VIA INDEXED COLUMN ... 18

JOIN VIA KEY COLUMN.. 18

JOIN VIA KEY RANGE... 18

JOIN VIA MULTIPLE INDEXED COLUMNS.. 18

JOIN VIA MULTIPLE KEY COLUMNS... 19

JOIN VIA RANGE OF MULTIPLE INDEXED COL... 19

JOIN VIA RANGE OF MULTIPLE KEY COLUMNS... 19

NO RESULT SET POSSIBLE .. 19

NO STRATEGY NOW (ONLY AT EXECUTION TIME) ... 19

RANGE CONDITION FOR KEY COLUMN .. 20

Optimizer: SAP DB 7.4 4

SAP AG April 2003

RANGE CONDITION FOR KEY COLUMN (SUBQ)... 20

RANGE CONDITION FOR INDEX ... 20

RANGE CONDITION FOR INDEX (SUBQ) ... 20

INDEX SCAN.. 20

TABLE SCAN ... 21

EXPLAIN Statement .. 21
EXPLAIN Statement for Joins .. 21

EXPLAIN Statement for Complicated SELECT Statements .. 22

EXPLAIN Statement for SELECT Statements with Subqueries 22

EXPLAIN Statement: Columns O,D,T,M.. 22

Terms and Examples ... 23
Inverted Column ... 23

Inversion List .. 24

Examples.. 24

example .. 24

ind ... 24

indf .. 24

invcolumn1.. 24

invcolumn2.. 25

one .. 25

ten1 ... 25

ten2 ... 25

Optimizer: SAP DB 7.4 5

SAP AG April 2003

 Optimizer: SAP DB 7.4
This documentation describes how the SAP DB Optimizer processes SQL statements. It
provides information about the meaning and possibilities of creating optimal SQL statements
for your application.

For general information about the SAP DB database system, see the
documentation The SAP DB Database System at the following Internet address:
www.sapdb.org → Documentation.

For information about the syntax of the SQL statements that can be entered in
SAP DB, see the Reference Manual: SAP DB 7.4.

Optimizing SQL Statements
Determining the optimal SQL statements for a SAP DB application is an important task.
Optimal SQL statements significantly influence the performance of the entire SAP DB
application. An SQL statement is optimal if it is written in such a way that it can be processed
in as short a time as possible with a minimal storage area requirement.

To process SQL statements optimally, the factors that influence the processing of an SQL
statement [Page 6] must be considered. In particular, you should consider the influence of the
search conditions [Page 8] on the processing of an SQL statement. There are a series of
additional possibilities for runtime improvement for SQL applications [Page 7].

The SQL statements should be written in such a way that search strategies [Page 10] can be
used. The following goals should be achieved in doing so:

Search only those lines that it is necessary to search

Restrict results tables and temporary results tables to the smallest possible size

Postponement of the Search to the FETCH Time [Page 13]

If a large number of changes has been made in a table, you should run the UPDATE
STATISTICS statement. This statement updates the details about the tables that are
necessary for the work of the Optimizer (such as value distribution, size of tables, and
inversions).

If you consider all of these hints, you can write optimal SQL statements.

Checking SQL Statements
...

Check your SQL statements for correctness, for example, with the help of the SAP DB tool
SQL Studio.

Analyze your SQL statements with regard to the performance that can be achieved through
them. To do this, use the appropriate EXPLAIN statements [Page 21].

Only after you have completed these checks of your SQL statements should you insert them
into your application program.

 Factors that Influence the Processing of an SQL
Statement
The following factors play a role during the processing of an SQL statement:

• Type of physical storage of a table

Optimizer: SAP DB 7.4 6

SAP AG April 2003

• Size of the tables (Number of lines and B* tree pages)

• Definition of the table (especially the key columns)

• Definition of indexes

• Type of SQL statement (SELECT, INSERT, UPDATE, DELETE)

• Elements of a SELECT statement (ORDER clause, UPDATE clause, DISTINCT
specification, and specification of FOR REUSE)

• Changes that are specified in the UPDATE statement

• Search conditions [Page 8]

These factors especially influence the processing of an SQL statement if the SQL statement
triggers a search of a large quantity of data. This generally happens with the following SQL
statements:
SELECT ...
INSERT ... SELECT ...
UPDATE ... WHERE <search_condition>
DELETE ... WHERE <search_condition>

 Runtime Improvement for SQL Applications
The following are general hints that can contribute to an improved runtime for SQL
applications.

• When you are building a database, you should derive the definition of the tables from a
previously performed examination of the structures. When defining the key columns,
you should ensure that the columns that are especially selective, and for which search
conditions are specified especially often, are placed at the beginning of the key. This
creates the possibility of only having to consider a very small part of the table when
processing a SELECT statement.

• Only columns with as high a selectivity as possible should be inverted [Page 23]. Do
not choose columns such as gender or marital status as index keys, due to their low
number of different values. These columns can only be used very rarely for a non-
sequential search, as these would usually be more costly than a sequential search
[Page 10].

• In the case of relatively static datasets, a large number of columns can be inverted. In
doing so, you must ensure, as with the definition of the key columns, that you specify
columns that are as selective as possible, and that are often used in equality conditions
[Page 8] at the beginning of the index.

• You should never invert all of the columns that are used in search conditions. The
space for the indexes and the cost for their maintenance is considerable.

• If a large number of changes has been made in a table, you should run the UPDATE
STATISTICS statement.

• You should only formulate search conditions [Page 8] that cannot be fulfilled by all
lines. Applications are often written so that the user determines the values of a search
condition. If the user does not enter any values, standard values are inserted into the
search condition, so that it always returns “true”. The database system must now
evaluate this ineffective search condition for every line that is to be searched. It is
better to execute different SELECT statements depending on a user entry.

• You should place the most selective search conditions at the beginning of the
condition, as it may be possible to terminate the check earlier.

Optimizer: SAP DB 7.4 7

SAP AG April 2003

• The specification
columnx IN (1,13,24,...)
is better than
columnx=1 OR columnx=13 OR columnx=24 OR ...

 Search Condition
Search conditions (<search_condition>) are often specified in SQL statements. However, not
all of the search conditions that can be entered are used by the Optimizer to determine an
optimal search strategy [Page 10], but rather only a few of these possible search conditions.
To be able to write optimal SQL statements, you should have a detailed knowledge of the
search conditions that can be evaluated by the Optimizer.

The search conditions that the Optimizer can use to determine the optimal search strategy
are the following:

• Equality Condition [Page 8]

• Area Condition [Page 8]

• IN Condition [Page 9]

• LIKE Condition [Page 9]

If the search conditions in an SQL statement cannot be converted into one of the forms listed
above, they cannot be used when selecting a search strategy.

The order of search conditions that are linked by equal Boolean operators has no influence on
the selection of a search strategy.

If you use UPDATE statements, you can only use the search conditions with restrictions
(Search Conditions for UPDATE Statements [Page 12]).

 Equality Condition
Equality conditions are search conditions [Page 8] with a comparison predicate, to which the
following rules apply:

• The only operator is the relational operator =.

• Equality conditions have one of the following forms:
<column_spec> = <extended_value_spec>
<column_spec> = <subquery>

Only equality conditions that satisfy these prerequisites can use the Optimizer to determine
an optimal search strategy [Page 10].

Conditions in the format ...NOT (<column_spec> <> <extended_value_spec>) or
...NOT (<column_spec> <> <subquery>) are, where possible, converted into an
expression without NOT, with a correspondingly negated operator =. The system then
continues processing the condition in this converted format.

 Area Condition
Area conditions are search conditions [Page 8] with a comparison predicate or a BETWEEN
predicate, to which the following prerequisites apply:

Optimizer: SAP DB 7.4 8

SAP AG April 2003

• The only valid operators are the relational operators < | <= | => | > and the operator
BETWEEN.

• Area conditions have one of the following formats:
<column_spec> < < | <= | => | > > <extended_value_spec>
<column_spec> BETWEEN <extended_value_spec> AND
<extended_value_spec>

Only area conditions that satisfy these prerequisites can use the Optimizer to determine an
optimal search strategy [Page 10].

Whether the area is defined using a BETWEEN operator or using a combination of the
relational operators <= and => is irrelevant to the search strategy.

Conditions in the format ...NOT (<column_spec> < < | <= | => | > >
<extended_value_spec>) or. ...NOT (<column_spec> NOT BETWEEN
<extended_value_spec> AND <extended_value_spec>)are, where possible,
converted to an expression without NOT, with a correspondingly negated operator. The
system then continues processing the condition in this converted format.

 IN Condition
IN conditions are search conditions [Page 8] with an IN predicate, to which the following rules
apply:

• The operator is the operator IN.

• IN conditions have one of the following formats:
<column_spec> IN (<extended_value_spec>,...)
<column_spec> IN <subquery>

Only IN conditions that satisfy these prerequisites can use the Optimizer to determine an
optimal search strategy [Page 10].

Conditions in the format ...NOT (<column_spec> NOT IN
(<extended_value_spec>,...)) or. ...NOT (<column_spec> NOT IN
<subquery>) are, where possible, converted to an expression without NOT, and with a
correspondingly negated operator. The system then continues processing the condition in this
converted format.

 LIKE Condition
LIKE conditions are search conditions [Page 8] with a LIKE predicate, to which the following
rules apply:

• The operator is the operator LIKE.

• LIKE conditions have the following format:
<column_spec> LIKE <extended_value_spec>

• The value specification used (extended_value_spec) may not begin with the SQL
syntax elements match_string or match_set.

Only LIKE conditions that satisfy these prerequisites can use the Optimizer to determine an
optimal search strategy [Page 10].

Conditions with the format ...NOT (<column_spec> NOT LIKE
<extended_value_spec>) are, where possible, converted into an expression

Optimizer: SAP DB 7.4 9

SAP AG April 2003

<column_spec> LIKE <extended_value_spec>. The system then continues
processing the condition in this converted format.

 Search Strategy
SQL statements should be written in such a way that the following aims for the processing of
an SQL statement are achieved when a search strategy is selected:

• Search only those lines that it is necessary to search

• Restrict results tables and temporary results tables to the smallest possible size

The search strategy that is selected is largely dependent upon the form of the search
condition [Page 8] specified in the SQL statement. The search strategy is also selected so
that the costs for the processing of the SQL statement are minimized.

For more detailed information about the selection of the search strategy, see the following
sections:

• Sequential Search [Page 10]

• Search Conditions for Key Columns [Page 10]

• Search Conditions for Inverted Columns [Page 11]

• Search Conditions for UPDATE Statements [Page 12]

• Cost Determination [Page 12]

• Search Conditions Linked with OR [Page 13]

• Postponement of the Search to the FETCH Time [Page 13]

• Join [Page 14]

• List of All Search Strategies [Page 15]

You can display the search strategy used for an SQL statement with the help of the EXPLAIN
statement [Page 21].

 Sequential Search
In principle, every search can be performed sequentially through the entire table. This is
necessary in the following cases:

• No search conditions [Page 8] have been specified

• No search condition has been specified either for key columns or for inverted columns.

If the possible non-sequential search strategies [Page 10] would be more costly than the
sequential search, the table is processed sequentially.

 Search Conditions for Key Columns
If search conditions [Page 8] are specified for key columns, the search is limited to the
corresponding part of the table, that is, the search strategy [Page 10] is determined as
specified in the table.

Search Condition Search Strategy

Optimizer: SAP DB 7.4 10

SAP AG April 2003

Equality condition [Page 8] for every key
column

The system accesses the appropriate table
line(s) directly.

IN condition [Page 9] for one key column and
an equality condition for all other key columns

The system accesses the appropriate table
line(s) directly.

Any other search condition for the key columns Upper and lower limits are created for the key
columns for the valid search area. All search
strategies, including strategies through
inversions, use the knowledge of this valid
search area.

 Search Conditions for Inverted Columns
If you specify search conditions [Page 8] for inverted columns [Page 23], the search strategy
[Page 10] is determined by the system as specified in the table.

Search Condition Search Strategy

Equality condition [Page 8] for all inverted
columns

Only those lines whose keys are contained in the
associated inversion list [Page 24] are accessed.

IN condition [Page 9] for inverted columns The system accesses the lines whose keys are
contained in the inversion lists.

Area Conditions [Page 8]

There is only one condition (<, <=, >, >=)
for one of the two area limits (upper or
lower limit).

The system accesses the lines whose keys are
contained in the inversion lists that were
determined by the area.

Area conditions

Both area limits are specified. It is
irrelevant to the selection of the search
strategy whether this specification is made
using a BETWEEN operator or using two
conditions (<= or >=) for the same
column linked by AND.

The system accesses the lines whose keys are
contained in the inversion lists that were
determined by the area.

In the case of the equality/IN conditions and the area conditions, there are also queries for
which it is not necessary to access the lines, as all required values are contained in the
inversion list(s).

See also:
Examples: Search Conditions for Inverted Columns [Page 11]

 Examples: Search Conditions for Inverted
Columns
Search conditions for inverted columns [Page 11] of the example [Page 24] table.

Excerpt from SQL Statement Search Strategy
... where firstkey >= 123 The table is searched sequentially from the line with

the key ‘123’.

Optimizer: SAP DB 7.4 11

SAP AG April 2003

... where invcolumn1 = 'Miller'
and firstkey >= 123

The inversion list with the value ‘Miller’ is searched
from the key ‘123’ to the end of the list.

... where invcolumn1 = 'Miller'
and invcolumn2 < 'C'

The system creates a logical inversion list that
contains all inversion lists of invcolumn 2 that begin
with a value smaller than 'C' (' ', 'A', 'B').

The intersection of the logical inversion list and the
inversion list with the value ‘Miller’ is determined and
the entirety of this intersection is processed.

... where invcolumn1 = 'Miller'
and invcolumn2 = 'Don'

The intersection of both inversion lists is determined
and processed completely.

... where invcolumn1 IN
('Miller', 'Smith', 'Hawk')

The entirety of three inversion lists are processed.

... where invcolumn2 > 8965 and
firstkey = 34 and secondkey
between 12 and 18

All inversion lists of invcolumn2 whose values are
greater than 8965 are processed. However, they are
only considered within the key limits ’34, 12’ and ’34,
18’.

... where
multinvcolumn1 = 'Düsseldorf'
and
multinvcolumn2 = '40223' and
multinvcolumn3 = 10000

The entirety of the named index ind [Page 24] with
the values ‘Düsseldorf’, ‘40223’ and 10000 is
processed.

... where
multinvcolumn1 = 'Düsseldorf' and
multinvcolumn2 between '40221' and
'40238'

The inversion list within and including the values
‘Düsseldorf’, ‘40221’ (binary zeros), and
‘Düsseldorf’, ‘40238’ (binary ones) is processed.

 Search Conditions for UPDATE Statements
If you use UPDATE statements, the following restrictions apply to the use of search
conditions [Page 8].

If the new value of a column is calculated in an arithmetical expression, an inversion of this
column, that is, the corresponding index, cannot be used during the search.

UPDATE <table_name> SET columnx = columnx + 3 WHERE columnx
IN (100, 103, 106, 109, 112)

This SQL statement can lead to erroneous results, if the inversion lists were
gradually processed with the values 100, 103, 106, 109, and 112.

You should also consider this factor when using FOR UPDATE in the SELECT statement.

 Cost Determination
The system determines the cost of every possible search strategy [Page 10].

This is necessary for the following reasons:

• There can be several search strategies, of which the best must be determined

Optimizer: SAP DB 7.4 12

SAP AG April 2003

• There are cases, in which searching with the help of an index would be more costly
than a sequential search [Page 10].

The costs relate to the expected number of I/O processes that would have to be executed due
to the chosen search strategy.

These costs are also output as a result of the EXPLAIN statement [Page 21].

 Search Conditions Linked with OR
There are search conditions [Page 8] linked with OR. The system analyzes the individual
search conditions.

If the system finds an equality condition [Page 8] for key columns, it ignores the other search
conditions linked with OR.

If the system does not find any equality conditions for key columns, the other search
conditions linked with OR, that the system has not considered until then, are analyzed.

Procedure
...

1. Conversion of the search condition into the disjunctive normal form
Example:
b1 and b2 and (b3 or b4 and b5)
results in the disjunctive normal form
(b1 and b2 and b3) or (b1 and b2 and b4 and b5)

2. Analysis of the new expression
Every bracketed expression is analyzed separately. If the analysis of the first
expression results in the best search strategy, this is used. However, if the analysis of
each bracketed expression provides a better search strategy, there are usually as
many search strategies as there are bracketed expressions to be analyzed.

3. Cost determination
The costs of the various search strategies are added together. If the total is lower than
the determined cost for the search strategy without consideration of the search
conditions linked with OR, the various search strategies are used.

If applicable, the EXPLAIN statement [Page 21] displays the search strategy
DIFFERENT STRATEGIES FOR OR-TERMS [Page 16].

 Postponement of the Search to the FETCH Time
A goal of optimization is to save storage area; that is, the creation of results tables should be
avoided. Except for the cases in which the syntax element FOR REUSE or the existence of a
join forces the creation of results tables, the creation of a results table is avoided where
possible.

A possible search strategy [Page 10] is therefore the postponement of the search to the
FETCH time (FETCH statement), without the creation of a results table. In this way, no
memory is used for results, quick access to the first results is possible, and a quicker
comparison can be made of the received and the desired results.

The postponement of the search to the FETCH time is not possible for all SQL statements.
The following is an overview of a number of SQL statements for which a postponement is not
permissible:

SELECT for multiple tables (Join)
SELECT ... FOR REUSE

Optimizer: SAP DB 7.4 13

SAP AG April 2003

SELECT DISTINCT ... (in most cases)
SELECT ... ORDER BY ... (in most cases)

SELECT ... ORDER BY
If the ORDER clause was specified, it is only possible to avoid the creation of a results table,
if all of the following conditions are met:

• Neither a DISTINCT specification (<distinct spec>) (with a few exceptions), nor the
syntax element FOR REUSE, are specified.

• The columns by which the system is to sort form an index in the specified order and
with the specified sorting (ascending or descending).

You can use the EXPLAIN statement [Page 21] to display whether a results table is created
(RESULT IS COPIED) or not (RESULT IS NOT COPIED).

 Join
Some background information about the processing of joins is required to understand how
search strategies [Page 10] are found for joins.

Creating a Results Table for All Tables Linked by a Join
You can use a join to link up to 64 tables with each other. The system links the tables in
steps; that is, one join is created from two tables. An additional table is then linked with the
join result to form a new join.
...

1. The first table is searched.

2. The result is stored in a temporary results table.

3. The temporary results table is sorted by the join columns of the following join step.

4. The next table that still exists is searched.

5. The existing temporary results table is linked with the new table.

6. The result is stored in a new temporary results table.

7. This temporary results table is sorted by the join columns of the following join step.

8. The old temporary results table is deleted.

9. If there are more tables, the procedure is repeated from step 4.

The last temporary results table is the results table that the user wants.

Optimization of the Tables Linked by a Join
You can only save time or space during the processing of tables linked by a join if the
temporary results tables are as small as possible and that the system can access the lines of
each of the new tables to be linked as directly as possible.

The Optimizer therefore attempts to place small tables with restrictive search conditions at the
beginning of the series of tables to be processed, in order to maintain small temporary results
tables.

The order in which the tables are specified in the FROM clause of the SELECT statement has
no influence on the order of processing. The Optimizer determines the order of processing
itself.

Search Strategies
You can display the search strategies using the EXPLAIN statement (EXPLAIN Statement for
Joins [Page 21]).

Optimizer: SAP DB 7.4 14

SAP AG April 2003

The following search strategies can be used to access lines in the new table, starting from the
join column values of the old temporary results table.

JOIN VIA INDEXED COLUMN [Page 18]

JOIN VIA KEY COLUMN [Page 18]

JOIN VIA KEY RANGE [Page 18]

JOIN VIA MULTIPLE INDEXED COLUMNS [Page 18]

JOIN VIA MULTIPLE KEY COLUMNS [Page 19]

JOIN VIA RANGE OF MULTIPLE INDEXED COL. [Page 19]

JOIN VIA RANGE OF MULTIPLE KEY COLUMNS [Page 19]

Multi-Column Key and Index Strategies
If two columns to be compared in a join step are not of the same length, not all of the search
strategies can be used. We recommend that you define columns that are to be linked using a
join with the same domain to avoid this restriction.

 List of All Search Strategies
You can use the EXPLAIN statement [Page 21] to display the selected search strategy [Page
10].

List of All Possible Search Strategies
CATALOG KEY ACCESS [Page 16]

CATALOG SCAN [Page 16]

CATALOG SCAN USING USER EQUAL CONDITION [Page 16]

DIFFERENT STRATEGIES FOR OR-TERMS [Page 16]

EQUAL CONDITION FOR INDEX [Page 17]

EQUAL CONDITION FOR INDEX (SUBQ) [Page 17]

EQUAL CONDITION FOR KEY COLUMN [Page 17]

EQUAL CONDITION FOR KEY COLUMN (SUBQ) [Page 17]

IN CONDITION FOR INDEX [Page 17]

IN CONDITION FOR KEY COLUMN [Page 18]

JOIN VIA INDEXED COLUMN [Page 18]

JOIN VIA KEY COLUMN [Page 18]

JOIN VIA KEY RANGE [Page 18]

JOIN VIA MULTIPLE INDEXED COLUMNS [Page 18]

JOIN VIA MULTIPLE KEY COLUMNS [Page 19]

JOIN VIA RANGE OF MULTIPLE INDEXED COL. [Page 19]

JOIN VIA RANGE OF MULTIPLE KEY COLUMNS [Page 19]

NO RESULT SET POSSIBLE [Page 19]

NO STRATEGY NOW (ONLY AT EXECUTION TIME) [Page 19]

RANGE CONDITION FOR KEY COLUMN [Page 20]

RANGE CONDITION FOR KEY COLUMN (SUBQ) [Page 20]

Optimizer: SAP DB 7.4 15

SAP AG April 2003

RANGE CONDITION FOR INDEX [Page 20]

RANGE CONDITION FOR INDEX (SUBQ) [Page 20]

INDEX SCAN [Page 20]

TABLE SCAN [Page 21]

 CATALOG KEY ACCESS
CATALOG KEY ACCESS is a search strategy [Page 10]. The SQL statement contains
equality conditions [Page 8], so that the query can be processed using an access to key
columns in the database catalog (for example, equality conditions for OWNER and
TABLENAME for queries for DOMAIN.TABLES).

See also:
List of All Search Strategies [Page 15]

 CATALOG SCAN
CATALOG SCAN is a search strategy [Page 10]. The system performs a sequential search of
the database catalog.

See also:
List of All Search Strategies [Page 15]

 CATALOG SCAN USING USER EQUAL
CONDITION
CATALOG SCAN USING USER EQUAL CONDITION is a search strategy [Page 10]. The
system performs a sequential search [Page 10] of the database catalog entries that describe
objects of the identified user.

See also:
List of All Search Strategies [Page 15]

 DIFFERENT STRATEGIES FOR OR-TERMS
DIFFERENT STRATEGIES FOR OR-TERMS is a search strategy [Page 10]. The system
converted and analyzed search conditions linked with OR [Page 13]. If the system finds an
equality condition [Page 8] for key fields, it ignores the other search conditions linked with OR.
If the system does not find an equality condition, the system determines different search
strategies for the different parts of the search conditions linked with OR.

See also:
List of All Search Strategies [Page 15]

Optimizer: SAP DB 7.4 16

SAP AG April 2003

 EQUAL CONDITION FOR INDEX
EQUAL CONDITION FOR INDEX is a search strategy [Page 10]. An equality condition [Page
8] was specified for all columns of an index. The system accesses the corresponding table
lines directly, with the help of the appropriate inversion list [Page 24].

See also:
List of All Search Strategies [Page 15]

 EQUAL CONDITION FOR INDEX (SUBQ)
EQUAL CONDITION FOR INDEX (SUBQ) is a search strategy [Page 10]. An equality
condition [Page 8] was specified for all columns of an index. The system accesses the
corresponding table lines for each hit line of the subquery directly, with the help of the
appropriate inversion list [Page 24].

See also:
List of All Search Strategies [Page 15]

 EQUAL CONDITION FOR KEY COLUMN
EQUAL CONDITION FOR KEY COLUMN is a search strategy [Page 10]. The table has only
one key column, for which an equality condition [Page 8] was specified. The system accesses
the appropriate table lines directly.

See also:
List of All Search Strategies [Page 15]

 EQUAL CONDITION FOR KEY COLUMN (SUBQ)
EQUAL CONDITION FOR KEY COLUMN (SUBQ) is a search strategy [Page 10]. The table
has only one key column, for which an equality condition [Page 8] was specified. The system
accesses the appropriate table line directly for each hit line of the subquery.

See also:
List of All Search Strategies [Page 15]

 IN CONDITION FOR INDEX
IN CONDITION FOR INDEX is a search strategy [Page 10]. An IN condition [Page 9] was
specified for the first column of an index that consists of multiple columns, or equality
conditions [Page 8] were specified for the first k-1 columns of an index of this type and an IN
condition was specified for the k-th column. The system accesses the corresponding table
lines directly, with the help of the appropriate inversion lists [Page 24].

See also:
List of All Search Strategies [Page 15]

Optimizer: SAP DB 7.4 17

SAP AG April 2003

 IN CONDITION FOR KEY COLUMN
IN CONDITION FOR KEY COLUMN is a search strategy [Page 10]. The table has only one
key column, for which an IN condition [Page 9] was specified. The system directly accesses
the table lines concerned.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA INDEXED COLUMN
JOIN VIA INDEXED COLUMN is a search strategy [Page 10] for joins [Page 14]. An index
was created for the join column that contains only this column. The system accesses the data
through the index of the column whose name is displayed.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA KEY COLUMN
JOIN VIA KEYCOLUMN is a search strategy [Page 10] for joins [Page 14]. The join column is
the only key column. The system accesses the table lines in the new table directly.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA KEY RANGE
JOIN VIA KEY RANGE is a search strategy [Page 10] for joins [Page 14]. The join column
whose name is displayed is the first key column. Within the key area, the system accesses
the table lines in the new table sequentially.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA MULTIPLE INDEXED COLUMNS
JOIN VIA MULTIPLE INDEXED COLUMNS is a search strategy [Page 10] for joins [Page 14].
The specified join columns can be combined into a complete index that incorporates multiple
columns. The system accesses the data through this index.

See also:
List of All Search Strategies [Page 15]

Optimizer: SAP DB 7.4 18

SAP AG April 2003

 JOIN VIA MULTIPLE KEY COLUMNS
JOIN VIA MULTIPLE KEY COLUMNS is a search strategy [Page 10] for joins [Page 14]. The
specified join columns can be combined into a multi-column key for the new table. The
system accesses the table lines in the new table directly.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA RANGE OF MULTIPLE INDEXED COL.
JOIN VIA RANGE MULTIPLE INDEXED COL. is a search strategy [Page 10] for joins [Page
14]. The specified join columns can be combined to form the start of a complete index that
incorporates multiple columns. Within the index area, the system accesses the lines of the
table.

See also:
List of All Search Strategies [Page 15]

 JOIN VIA RANGE OF MULTIPLE KEY COLUMNS
JOIN VIA RANGE MULTIPLE KEY COLUMNS is a search strategy [Page 10] for joins [Page
14]. The specified join columns can be combined to form the start of a multi-column key for
the new table. Within the key area, the system accesses the table lines in the new table
sequentially.

See also:
List of All Search Strategies [Page 15]

 NO RESULT SET POSSIBLE
The Optimizer identifies search conditions [Page 8] that logically cannot have a result (NO
RESULT SET POSSIBLE). In this case, no search is performed.

See also:
List of All Search Strategies [Page 15]

 NO STRATEGY NOW (ONLY AT EXECUTION TIME)
NO STRATEGY NOW (ONLY AT EXECUTION TIME) is a search strategy [Page 10]. In a
subquery, the corresponding column values are only known at the execution time for the
subquery. The search strategy for the most effective access to the corresponding table for the
subquery is only determined when these values are available.

See also:
List of All Search Strategies [Page 15]

Optimizer: SAP DB 7.4 19

SAP AG April 2003

 RANGE CONDITION FOR KEY COLUMN
RANGE CONDITION FOR KEY COLUMN is a search strategy [Page 10], with which a
sequential search [Page 10] is performed in part of the table.

See also:
List of All Search Strategies [Page 15]

 RANGE CONDITION FOR KEY COLUMN (SUBQ)
RANGE CONDITION FOR KEY COLUMN (SUBQ) is a search strategy [Page 10], with which
a sequential search [Page 10] is performed in part of the table with every hit line of the
subquery.

See also:
List of All Search Strategies [Page 15]

 RANGE CONDITION FOR INDEX
RANGE CONDITION FOR INDEX is a search strategy [Page 10]. Equality [Page 8] or area
conditions [Page 8] have been specified for the first k columns of an index. The system
accesses the corresponding table lines directly, with the help of the inversion lists [Page 24] in
the area.

See also:
List of All Search Strategies [Page 15]

 RANGE CONDITION FOR INDEX (SUBQ)
RANGE CONDITION FOR INDEX (SUBQ) is a search strategy [Page 10]. Equality [Page 8]
or area conditions [Page 8] have been specified for the first k columns of an index. The
system accesses the corresponding table lines for each hit line of the subquery directly, with
the help of the appropriate inversion lists [Page 24] in the area.

See also:
List of All Search Strategies [Page 15]

 INDEX SCAN
INDEX SCAN is a search strategy [Page 10], with which a sequential search [Page 10] is
performed in the entire specified index.

See also:
List of All Search Strategies [Page 15]

Optimizer: SAP DB 7.4 20

SAP AG April 2003

 TABLE SCAN
TABLE SCAN is a search strategy [Page 10], with which a sequential search [Page 10] is
performed in the entire table.

See also:
List of All Search Strategies [Page 15]

 EXPLAIN Statement
The user can use EXPLAIN statements to find out which search strategy [Page 10] the
system is using to perform the specified SELECT statement. For an explanation of all search
strategies, see the List of All Search Strategies [Page 15].

Information about the EXPLAIN Statement

• For a complete syntax description for the EXPLAIN statement, see the Reference
Manual: SAP DB 7.4, under EXPLAIN Statement.

• Result of the cost determination for a search strategy: You can find this in the
PAGECOUNT column of the EXPLAIN statement output

• Special features for an EXPLAIN statement for joins [Page 21]

• Special features for an EXPLAIN statement for complicated SELECT statements [Page
22]

• Special features for an EXPLAIN statement for SELECT statements with subqueries
[Page 22]

• Explanation of the EXPLAIN Statement: Columns O,D,T,M [Page 22]

 EXPLAIN Statement for Joins
You can also use the EXPLAIN statement [Page 21] for joins [Page 14].

Result of the EXPLAIN Statement

• Display of the order in which the tables are processed when the SELECT statement is
executed

• Display of whether the join column values of the old temporary results table can be
accessed directly or through an inversion to the lines of a new table

• Display of the strategy used to search in the new table, if the lines of this table cannot
be accessed directly or using an inversion

EXEC SQL EXPLAIN SELECT one [Page 25].key ten1 [Page 25].keyft1,
ten2 [Page 25].keyft2
FROM one, ten1, ten2
WHERE ten1.keyft1 < 100
 AND ten1.ft1 = one.keyf
 AND one.indf [Page 24] = ten2.keyft2
 AND ten2.keyft2 < 100;

These EXPLAIN statement produces the following output:

Optimizer: SAP DB 7.4 21

SAP AG April 2003

TABLE
NAME

COLUMN_
OR_INDEX

STRATEGY PAGE
COUNT

TEN1

ONE

TEN2

KEF

KEYFT2

RANGE CONDITION FOR KEY COLUMN [Page 20]

JOIN VIA KEY COLUMN [Page 18]
JOIN VIA KEY COLUMN

RESULT IS COPIED, COSTVALUE IS

1250

125

1463

97

 EXPLAIN Statement for Complicated SELECT
Statements
Certain SELECT statements are so complicated that they are separated into several internal
SELECT steps.

For SELECT statements of this type, the EXPLAIN statement [Page 21] outputs several
search strategies [Page 10]. In this output, INTERNAL TEMPORARY RESULT is given as the
table name. Searches through internal temporary results of this type can only ever be
performed sequentially.

 EXPLAIN Statement for SELECT Statements with
Subqueries
To determine the cost of search strategies [Page 10] with which, the value of a column is
compared with the hit lines of a subquery, you must know the number of hit lines. You can
therefore only determine the cost of the search strategy after the subquery has been
processed.

For a SELECT statement with subqueries, the EXPLAIN statement [Page 21] determines the
possible search strategies, but does not execute the contained subqueries. Therefore, the
search strategy NO STRATEGY NOW (ONLY AT EXECUTION TIME) [Page 19] is usually
displayed for the outer SQL statement.

SQL statements that can only be processed on an index are an exception to this rule.

 EXPLAIN Statement: Columns O,D,T,M
Column O (Only Index)
'*'

This strategy uses only the specified index to process the command. The system does not
access the basis table data. To do this, it is necessary that only columns that are contained in
the index structure are addressed as a result of selected columns (<select_column>) or in a
WHERE clause, if one exists.

Column D (Distinct Optimization)
Column D only has an entry if column O contains the character ‘*’.

Optimizer: SAP DB 7.4 22

SAP AG April 2003

• 'C' (Complete Secondary Key)
All columns of an index (and only these) are specified as a result of selected columns
(<select_column>), after the keyword DISTINCT (DISTINCT specification
(distinct_spec)), in any order. The system accesses the values for each index column
only once. The system does not create a results table (such as SELECT DISTINCT
<all_columns_of_the_index> FROM ...).

• 'P' (Partial Secondary Key)
The first k (k < Total number of index columns) columns of an index are specified are
specified in any order as a result of selected columns (<select_column>), after the key
word DISTINCT. The system accesses the values for each index column only once.
The system does not create a results table (such as SELECT DISTINCT
<first_k_columns_of_the_index> FROM ...).

• 'K' (Primary Key)
All columns of an index, and the first k (k <= total number of columns in the key)
columns of the key are specified in any order as a result of selected columns
(<select_column>), after the keyword DISTINCT. The system accesses the values for
the corresponding index and key columns only once. The system does not create a
results table (such as SELECT DISTINCT
<all_columns_of_the_index_+_first_k_columns_of_the_key> FROM
...).

Column T (Temporary Index)
'*'

A temporary index is created internally, in which the keys of the hit lines determined through
the corresponding index are stored in ascending order. The system accesses the basis table
using this temporary index.

Column M (More Qualifications)
'*'

There are search conditions for index or key columns that cannot be used for the direct
containment of the area for an index access (for example, in the case of an equality [Page 8]
/IN condition [Page 9], for the first and third columns of a multi-column index, only the first
search condition of the search strategy [Page 10] is used for access). These search
conditions flow into the corresponding index strategy. They are used to restrict accesses to
the basis table.

 Terms and Examples
Inverted Column [Page 23]

Inversion List [Page 24]

Examples [Page 24]

 Inverted Column
An inverted column is a column that is part of at least one index.

Optimizer: SAP DB 7.4 23

SAP AG April 2003

 Inversion List
An inversion list is a list of keys that belong to an index. In each column of the index, all table
lines whose keys are specified in the list contain the same value for this column.

 Examples
• Definition of tables (example [Page 24], one [Page 25], ten1 [Page 25], ten2 [Page 25]).

• Definition of indexes (invcolumn1 [Page 24], invcolumn2 [Page 25], indf [Page 24], ind
[Page 24]).

 example
Definition of the table example

EXEC SQL CREATE TABLE example
 (firstkey FIXED (3) KEY,
 secondkey FIXED (4) KEY,
 normalcolumn FIXED (5),
 invcolumn1 CHAR (15),
 invcolumn2 CHAR (9),
 multinvcolumn1 CHAR (22),
 multinvcolumn2 CHAR (5,
 multinvcolumn3 CHAR (8,
 PRIMARY KEY (firstkey, secondkey));

Two single-column indexes (invcolumn1 [Page 24] and invcolumn2 [Page 25]), and one multi-
column index ind [Page 24] are defined for the example table.

 ind
Definition of the index ind

EXEC SQL CREATE INDEX ind ON example [Page 24] (multinvcolumn1,
multinvcolumn2, multinvcolumn3);

 indf
Definition of the index indf

EXEC SQL CREATE INDEX indf on one [Page 25] (indf);

 invcolumn1
Definition of the index invcolumn1

EXEC SQL CREATE INDEX invcolumn1 ON example [Page 24] (invcolumn1);

Optimizer: SAP DB 7.4 24

SAP AG April 2003

Optimizer: SAP DB 7.4 25

 invcolumn2
Definition of the index invcolumn2

EXEC SQL CREATE INDEX invcolumn2 ON example [Page 24] (invcolumn2);

 one
Definition of the table one

EXEC SQL CREATE TABLE one
 (keyf FIXED (6),
 indf FIXED (3),
 ...,
 PRIMARY KEY (keyf)); /*1000 rows*/

The index indf [Page 24] is created for the table one.

 ten1
Definition of the table ten1

EXEC SQL CREATE TABLE ten1
 (keyft1 FIXED (6),
 ft1 FIXED (3),
 ...,
 PRIMARY KEY (keyft1)); /*10000 rows*/

 ten2
Definition of the table ten2

EXEC SQL CREATE TABLE ten2
 (keyft2 FIXED (6),
 ...,
 PRIMARY KEY (keyft2)); /*10000 rows*/

	Optimizer: SAP DB 7.4
	Factors that Influence the Processing of an SQL Statement
	Runtime Improvement for SQL Applications
	Search Condition
	Equality Condition
	Area Condition
	IN Condition
	LIKE Condition
	Search Strategy
	Sequential Search
	Search Conditions for Key Columns
	Search Conditions for Inverted Columns
	Examples: Search Conditions for Inverted Columns
	Search Conditions for UPDATE Statements
	Cost Determination
	Search Conditions Linked with OR
	Postponement of the Search to the FETCH Time
	Join
	List of All Search Strategies
	CATALOG KEY ACCESS
	CATALOG SCAN
	CATALOG SCAN USING USER EQUAL CONDITION
	DIFFERENT STRATEGIES FOR OR-TERMS
	EQUAL CONDITION FOR INDEX
	EQUAL CONDITION FOR INDEX \(SUBQ\)
	EQUAL CONDITION FOR KEY COLUMN
	EQUAL CONDITION FOR KEY COLUMN \(SUBQ\)
	IN CONDITION FOR INDEX
	IN CONDITION FOR KEY COLUMN
	JOIN VIA INDEXED COLUMN
	JOIN VIA KEY COLUMN
	JOIN VIA KEY RANGE
	JOIN VIA MULTIPLE INDEXED COLUMNS
	JOIN VIA MULTIPLE KEY COLUMNS
	JOIN VIA RANGE OF MULTIPLE INDEXED COL.
	JOIN VIA RANGE OF MULTIPLE KEY COLUMNS
	NO RESULT SET POSSIBLE
	NO STRATEGY NOW \(ONLY AT EXECUTION TIME\)
	RANGE CONDITION FOR KEY COLUMN
	RANGE CONDITION FOR KEY COLUMN \(SUBQ\)
	RANGE CONDITION FOR INDEX
	RANGE CONDITION FOR INDEX \(SUBQ\)
	INDEX SCAN
	TABLE SCAN
	EXPLAIN Statement
	EXPLAIN Statement for Joins
	EXPLAIN Statement for Complicated SELECT Statements
	EXPLAIN Statement for SELECT Statements with Subqueries
	EXPLAIN Statement: Columns O,D,T,M
	Terms and Examples
	Inverted Column
	Inversion List
	Examples
	example
	ind
	indf
	invcolumn1
	invcolumn2
	one
	ten1
	ten2

